Optimal household appliances scheduling under day-ahead pricing and load-shaping demand response strategies

Citation for published version (APA):

Document license:
TAVERNE

DOI:
10.1109/TII.2015.2438534

Document status and date:
Published: 01/12/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 15. Sep. 2023
Optimal Household Appliances Scheduling Under Day-Ahead Pricing and Load-Shaping Demand Response Strategies

Nikolaos G. Paterakis, Student Member, IEEE, Ozan Erdinç, Member, IEEE, Anastasios G. Bakirtzis, Fellow, IEEE, and João P. S. Catalão, Senior Member, IEEE

Abstract—In this paper, a detailed home energy management system structure is developed to determine the optimal day-ahead appliance scheduling of a smart household under hourly pricing and peak power-limiting (hard and soft power limitation)-based demand response strategies. All types of controllable assets have been explicitly modeled, including thermostatically controllable (air conditioners and water heaters) and nonthermostatically controllable (washing machines and dishwashers) appliances, together with electric vehicles (EVs). Furthermore, an energy storage system (ESS) and distributed generation at the end-user premises are taken into account. Bidirectional energy flow is also considered through advanced options for EV and ESS operation. Finally, a realistic test-case is presented with a sufficiently reduced time granularity being thoroughly discussed to investigate the effectiveness of the model. Stringent simulation results are provided using data gathered from real appliances and real measurements.

Index Terms—Demand response (DR), distributed generation (DG), electric vehicles (EVs), energy storage system (ESS), home energy management, smart household.

NOMENCLATURE

The main nomenclature used throughout this paper is stated as follows:

Sets:

\( m \) Set of shifting appliances.
\( p \) Set of operating phases of appliances.
\( t \) Set of time periods.

Parameters:

- \( a \) Ratio of increase over maximum daily price for pricing excessive power drawn from the grid.
- \( A_i \) Element area (m\(^2\)).
- \( c_a \) Thermal capacity of air (kJ/kg·°C).
- \( C \) Electric water heater (EWH) thermal capacitance (kWh/°C).
- \( CE_{\text{ESS}} \) Charging efficiency of energy storage system (ESS).
- \( CE_{\text{EV}} \) Charging efficiency of electric vehicle (EV).
- \( COP \) Coefficient of performance.
- \( DE_{\text{ESS}} \) Discharging efficiency of ESS.
- \( DE_{\text{EV}} \) Discharging efficiency of EV.
- \( L_{t} \) Inflexible load (kW).
- \( l_{i} \) Element thickness (m).
- \( L_{1} \) House length (m).
- \( L_{2} \) House width (m).
- \( L_{3} \) House height (m).
- \( M_{a} \) Mass of air (kg).
- \( M \) EWH tank size (gallons).
- \( m_{t} \) Hot water usage (gallons).
- \( N_{m} \) Number of times an appliance has to be operated during a day.
- \( PL_{1} \) Upper limit for the power drawn from the grid (kW).
- \( PL_{2} \) Upper limit for the power sold back to the grid (kW).
- \( PI_{t} \) Time varying upper limit for the power drawn from the grid (kW).
- \( R_{AC} \) Air conditioner (AC) rated power (kW).
- \( R_{PV,\text{PRO}} \) Available photovoltaic (PV) power (kW).
- \( R_{\text{ESS},\text{ch}} \) Rated power of an operating phase of a cycle of a nonthermostatically controllable appliance (kW).
- \( R_{EWH} \) EWH thermal resistance (°C/kW).
- \( R_{\text{ESS},\text{dis}} \) Equivalent thermal resistance (°C/kW).
- \( R_{\text{ESS},\text{ini}} \) Charging rate (kW).
- \( R_{\text{ESS},\text{dis}} \) Discharging rate (kW).
- \( R_{\text{EV},\text{ch}} \) Charging rate (kW).
- \( R_{\text{EV},\text{dis}} \) Discharging rate (kW).
- \( SOE_{\text{ESS},\text{ini}} \) Initial state-of-energy (SOE) of ESS (kWh).
- \( SOE_{\text{ESS},\text{max}} \) Maximum SOE of EV (kWh).
I. INTRODUCTION

A. Motivation and Background

THE SMART grid vision aims to enable more active end-user participation rather than just considering them passive consumption points, where smart households have gained increasing interest recently [2], [3]. Towards enabling smart end-user premises at household level, a home energy management system (HEMS) plays a vital role for the efficient and effective operation of such end-user points coordinated by load serving entities (LSEs) under demand response (DR) strategies [4].

HEMS receives relevant input information (such as pricing data that can be day-ahead, hour-ahead, peak power limits, and warnings for planned contingencies) from LSE and plans the operation of all electrical aspects of the household with a predefined aim under imposed constraints by means of LSE restrictions, consumer preferences, among others [5], [6]. Here, different electrical aspects provide several pros and cons in terms of effective HEMS-based operating strategy. There are several types of electrical appliances that can be classified as thermostatically controllable (ACs, EWHs, etc.), nonthermostatically controllable (washers, dryers, etc.), and noncontrollable appliances [7]. Here, as new electrical aspects, EVs in terms of a load or even a mobile storage unit, distributed generation (DG) such as roof-top PV units, as well as ESSs are also gaining importance nowadays within end-user premises with incentives given to local production and use of energy in consumption points in many countries all around the world. To capture the benefits of all such electrical aspects as well as to cover consumer preferences and limitations, an effective HEMS structure is strongly required.

B. Literature Overview

A broad literature is recently dedicated to implementation of different HEMS strategies for smart households. Chen et al. [11] and Tsui and Chan [12] developed an optimization strategy for the effective operation of a household with a price signal-based DR. Li and Hong [13] proposed a “user-expected price” based DR strategy for a smart household, including also a battery-based ESS aiming at lowering the total electricity cost by charging and discharging the ESS at off-peak and peak price periods, respectively. However, the impact of including an additional EV load that can also be helpful for peak clipping in certain periods when EV is at home.
and the possibility of an own production facility have not been evaluated in [13].

Zhao et al. [14] considered the HEMS strategy-based control of a smart household, including PV-based own production facility and availability of EV and ESS. However, vehicle-to-home (V2H) and further possible vehicle-to-grid (V2G) operating modes of EV have not been taken into account in [14]. Restegar et al. [15] developed a smart home load commitment strategy considering all the possible operating modes of EV and ESS. However, that paper neglected the impact of an extra peak power-limiting strategy that is probable to be imposed by an LSE, not considered also in [11]–[15].

Pipattanansompong et al. [16] and Kuzlu et al. [17] presented an HEMS strategy considering peak power-limiting DR strategy for a smart household, including both smart appliances and EV charging. Shao et al. [18] also investigated EV for DR-based load shaping of a distribution transformer serving a neighborhood.

However, References [16]–[18] did not provide an optimum operating strategy considering price variability with the aim of obtaining the lowest daily cost apart from just limiting peak power drawn from the grid by the household in certain periods.

Matalanas et al. [19] applied an HEMS based on neural networks with experimental results for a household including PV and ESS. However, the impacts of varying price as well as other types of DR strategies have not been evaluated in [19].

de Angelis et al. [20] performed the evaluation of an HEMS strategy considering the electrical and thermal constraints imposed by the overall power balance and consumer preferences. Chen et al. [21] provided an appliance scheduling in a smart home considering dynamic prices and appliance usage patterns of a consumer. Missaoui et al. [22] provided a smart building energy management strategy based on price variations and external conditions, as well as comfort requirements. The pricing data-based energy management has also been suggested by Hu and Li [23] together with a hardware demonstration. Erdinc [24] considered both pricing and peak power-limiting DR, but neglected the possibility of two-way energy trading for EV and ESS with the grid, which can further improve the economic advantage of the HEM structure by increased flexibility. Erdinc et al. [25] imposed distributed renewable energy contribution to reduce load demand on utility side, V2H option of EV to lower the demand peak periods, and two-way energy trading capability of EV (with V2G) and a possible ESS together with different DR strategies. However, the study in [25] neglected the operating strategy of thermal loads such as ACs and EWHs that have a vital role in end-user comfort-level supply and energy consumption variation within a residential area. Besides, only a hard peak power-limiting strategy and a single type of pricing strategy have been considered in [25] with a time granularity of 1 h that prevents a more detailed analysis of appliance scheduling and impacts of further different DR strategies.

In the literature, there are many methods to formulate an HEMS-based optimal in-home power scheduling problem. Methods such as particle swarm optimization [26], genetic algorithms [27], and game theory [28] comprise a part in the relevant literature. There are also studies using mixed-integer linear programming (MILP) approach [24], [25]. There are two main advantages of MILP as opposed to the other proposed approaches. First, the solution is guaranteed to be global optimum and, second, the structure of an MILP model is modular and may be easily modified to adapt to the required customizations. Finally, there is one more important group of DR studies also including residential consumers that comprise the effect of DR in distribution networks considering power flow and other system operational constraints [29], [30]. However, such considerations are out of the scope of this study.

These papers together with many other studies not referred here have provided valuable contributions to the application of smart grid concepts in household areas. However, many of the mentioned papers failed to address a combined evaluation of V2H operation of EV, impacts of an additional DG, bidirectional operation of ESS, and different appliances including both thermostatically and nonthermostatically types with a sufficiently reduced time granularity under several DR strategies.

C. Contributions

In this paper, an MILP model of the HEM structure is provided to investigate a collaborative evaluation of different pricing and peak power-limiting-based DR strategies, a PV-based DG system, the capability of an EV and ESS based on V2H and ESS-to-home (ESS2H), and different types of both thermostatically and nonthermostatically controllable appliances, such as AC, EWH, washing machine, and dishwasher.

To the best knowledge of the authors, this is the first study in the literature combining all aforementioned operational possibilities in a single HEMS formulated in an MILP framework, which is the main novelty of this paper. Besides, a reduced time granularity (minute-scale) is employed to better analyze the effectiveness of the appliance scheduling part of HEMS strategy. Moreover, a thermal model of the household is also provided to consider the impacts of ambient conditions on in-house thermal dynamics for a more realistic consideration of thermal load operations.

Different case studies including dynamic pricing based-, and hard and soft peak power-limiting-based DR strategies have been conducted. Both economic and technical impacts of these strategies are deeply analyzed in terms of total cost of daily operation and improvement of the load factor (LF) to have a more flat load pattern that is also the interest of the LSE.

D. Organization

This paper is organized as follows. Section II provides the methodology employed in the study. Afterward, Section III includes the case studies for evaluating daily DR-based operating strategies for the smart household. Finally, concluding remarks are presented in Section IV.

II. MATHEMATICAL FORMULATION

In this section, the formulation of the smart-household energy management system (Fig. 1.) under an MILP approach is thoroughly analyzed.
A. Assumptions

In order to mathematically formulate the problem, several assumptions are adopted. First, the degradation of the EV battery by the charging (home to vehicle—H2V) and discharging cycles (V2H and V2G) is neglected considering that the household participates in a battery rental business program offered by EV manufacturers (e.g., Renault [31]). These programs offer a free-of-charge change of EV battery when battery degrades to a level that requires replacement and demands a monthly paid regular rental fee to the manufacturer [32]. Besides, due to fact that the small sized and cheap battery system (such as the mature lead-acid battery technology) considered as ESS in this study has been calculated to have a negligible cost for degradation per cycle compared to electricity rates, the cost that may be related to ESS degradation is also neglected for the sake of simplicity.

The presented model receives the 24-h day-ahead hourly price signal through the smart-meter several hours before its activation. It is to be noted that this is not the actual price that the consumers will pay, but it provides an indication about the expected prices of the next day. The actual prices are announced in real time. It is to be stated that this is a common practice in real-life dynamic retail-pricing schemes [33].

Finally, all the required parameters are considered perfectly known. In practice, an adaptive system that learns from the end-users behavior may be employed or the occupants may insert these data themselves. Parameters such as the ambient temperature may be obtained by forecasting available online or by a local data-acquisition system, i.e., a weather station. The required infrastructure to enable the communication between the household elements with the HEMS has been described in [18].

B. Objective Function

The objective is to determine the least-cost daily operation of the smart household by optimally controlling the consumption of several types of appliances. This is expressed by (1).

\[
\text{Minimize} \quad \text{Cost} = \sum_t \left( P_{\text{grid}}^t \cdot \Delta T \cdot \lambda_{\text{buy}}^t - P_{\text{sold}}^t \cdot \Delta T \cdot \lambda_{\text{sell}}^t \right).
\]

It is to be noted that (1) stands for the actual cost of the household electricity consumption if only a simple day-ahead hourly pricing scheme is active. Other artificial or penalty terms regarding comfort loss or further DR schemes are superimposed to this basic relationship. These are elaborated in Section II-D.

In addition, there are also other costs related to the maintenance, replacement, etc., of existing components (PV, ESS, etc.) in smart households. However, even if those costs can be assumed also related to the family of “other” operating costs, the manuscript focuses on appliance-scheduling-based HEMS directly aiming to minimize the reduction of costs associated with the electricity bill of the consumer and therefore, such additional possible costs are neglected in this study.

C. Constraints

1) EV: The EV model employed in this study is described by (2)–(8). Equation (2) defines the usage of power that comes from discharging the EV (V2H or V2G). Constraints (3) and (4) limit the charging and discharging power of the EV, respectively. The SOE of the EV battery is defined by (5) and (6), while (7) stands for the minimum and maximum SOE of the EV to avoid deep discharge. Finally, (8) states that the EV should be fully charged at the end of the time horizon.
SOE_{E,W}^{EV, min} \leq SOE_t^{EV} \leq SOE_{E,W}^{EV, max} \quad \forall t \in [T^a, T^d] \quad (7)

SOE_t^{EV} = SOE_{E,W}^{EV, max}, \quad t = T^d. \quad (8)

2) ESS: The constraints that model the operation of the ESS (9)–(14) are similar to the ones describing the operation of the EV. The basic difference is that unlike the EV, the ESS is available at the household premises all day

$$P_t^{ESS, used} + P_t^{ESS, sold} = DE^{ESS}, \quad P_t^{ESS, dis} \quad \forall t$$

$$0 \leq P_t^{ESS, ch} \leq R^{ESS, ch} \cdot u_t^{ESS} \quad \forall t$$

$$0 \leq P_t^{ESS, dis} \leq R^{ESS, dis} \cdot (1 - u_t^{ESS}) \quad \forall t$$

$$SOE_t^{ESS} = SOE_{t-1}^{ESS} + CE^{ESS} \cdot P_t^{ESS, ch} \cdot \Delta T - P_t^{ESS, dis} \cdot \Delta T \quad \forall t > 1$$

$$SOE_t^{ESS} = SOE_{ESS, ini}, \quad \text{if } t = 1$$

$$SOE_{ESS, min} \leq SOE_t^{ESS} \leq SOE_{ESS, max} \quad \forall t$$

3) Nonthermostatically Controllable Loads: A typical household contains loads that operate on a predefined cycle, which means that both the duration of their operation and their consumption during operational phases are known (e.g., washing machine and dishwasher).

The HEMS may shift their operation to exploit low-price periods. These types of loads are modeled using (15)–(20). Equation (15) implies that the power that the appliance \( m \) is consuming during period \( t \) depends on the operating phase that is currently active. Constraint (16) states that a machine cannot be in more than one operating phase simultaneously. Equations (17)–(19) enforce the phase sequence logic. Equation (17) states that the phase \( p \) ends exactly \( T^m_{\text{dur}} \) periods after it starts. Equation (18) enforces the logic of starting and ending of each phase. Equation (19) states that as soon as a phase finishes, the next phase should immediately start. Finally, (20) enforces the number of times a specific appliance must operate during the horizon. These constraints assume that there is not a user-preference related to when the appliances should perform their task. Nevertheless, if such options need to be considered, desired time limits may be enforced by (15)–(20)

$$P_{mach}^{m, t} = \sum_{p} u_{m, p, t} \cdot P_{m, p}^{ph} \quad \forall m, t$$

$$\sum_{p} u_{m, p, t} \leq 1 \quad \forall m, t$$

$$y_{m, p, t}^{ph} = z_{m, p, t}^{ph}$$

$$y_{m, p, t}^{ph} - z_{m, p, t}^{ph} = u_{m, p, (t-1)}^{ph} \quad \forall m, p, t > 1$$

$$y_{m, p, t}^{ph} = y_{m, p, t + 1}^{ph} \quad \forall m, p < \text{card}(P), t$$

$$\sum_{t} y_{m, p, t}^{ph} = N_{m} \quad \forall m, p$$

4) Thermostatically Controllable Loads: In this study, the operation of two thermostatically controllable loads, namely the EWH and the AC, is modeled in detail. Such models are important because they are linked with both occupants’ comfort and high energy consumption, as mentioned before. Especially, the occupants’ comfort is a key factor that determines the success of a DR program. However, the operation of such loads depends on the thermal inertia of the water or the air inside the house, which in turn may be exploited to address the aforementioned issues.

The EWH model is adapted and suitably modified from [7], being represented by (21)–(24). Specifically, (21) models the water temperature inside the tank considering both the heat exchanged with the environment and the heat provided by the EWH resistance.

It should be stated that the EWH tank is considered to be located in an area that is immediately affected by the ambient air temperature. Furthermore, when hot water is drawn from the EWH, then it is replenished by cold inlet water and the temperature is determined by (22). Lastly, (23) sets the permissible limits of the hot water temperature, while (24) stands for the EWH electric power consumption

$$T_{t+1}^{h, w} = T_t^{a} + Q \cdot R \cdot u_t^{EWH} - \left( T_t^{a} - T_t^{h, w} \right) \cdot e^{-\frac{\Delta T}{1000}}$$

$$\forall t < T^{a}, m_t = 0$$

$$T_{t+1}^{h, w} = \frac{\left( T_t^{h, w} - M \cdot m_t \right) + T_c^{w}, m_t}{M} \quad \forall t < T^{a}, m_t > 0$$

$$T_{max}^{h, w, min} \leq T_{t+1}^{h, w} \leq T_{max}^{h, w, max} \quad \forall t$$

$$P_t^{EWH} = Q \cdot u_t^{EWH} \quad \forall t.$$

An AC may be operated in an interruptible manner to reduce its electricity consumption cost. In order to apply this type of operation, a model to determine the temperature inside the house has to be developed. The indoor temperature depends on several factors such as the thermal properties of air, the heat exchange between house and ambient, and the thermodynamic properties of the building structure. In this study, a model based on the equivalent thermal resistance of the building is developed. Naturally, this model is based on differential equations that under several plausible assumptions may be linearized [34] as in (25)–(27).

Equation (25) considers only the cooling operation, but it may be easily modified to consider heating as well. The occupants define the required set point for several periods during which the indoor temperature has to comply (26). The variables \( S_t^d \) and \( S_t^u \) are positive and define the deviation of the indoor temperature from the ideal point. They may be fixed by the end-user to define the AC dead-band (e.g., 1 °C around the set point) or they may be included in the objective function under a high artificial cost to minimize the comfort violation. Equation (27) stands for the power used by the AC

$$T_t^{a} = \left( 1 - \frac{\Delta T}{1000 \cdot M_a c_a R_{EQ}} \right) \cdot T_{t-1}^{a} + \frac{\Delta T}{1000 \cdot M_a c_a R_{EQ}} \cdot T_{t-1}^{a} \quad - u_{t-1}^{AC} \cdot \frac{COP \cdot P_{AC} \cdot \Delta T}{0.000277 \cdot M_a c_a} \quad \forall t > 1$$

$$SP_t - S_t^d \leq T_t^{a} \leq SP_t + S_t^u \quad \forall t$$

$$P_{t}^{AC} = P_{AC} \cdot u_{t}^{AC} \quad \forall t.$$
the proposed formulation since the discrete modes of operation of the thermostatically controllable appliances can be modeled by enforcing additional constraints similar to the ones that are enforced for the nonthermostatically controllable appliances.

5) Other Constraints: The power balance is described by

\[ P_{t}^{\text{grid}} + P_{t}^{\text{PV,used}} + P_{t}^{\text{EV,used}} + P_{t}^{\text{ESS,used}} = L_{t} + P_{t}^{\text{EV,ch}} + \sum_{m} P_{m,t}^{\text{mach}} + P_{t}^{\text{EWH}} + P_{t}^{\text{AC}} \forall t. \]  

(28)

Equation (29) implies that the available PV production may be used to cover household load and if it exceeds it, it is sold back to the grid. Constraints (30)–(32) define the energy transactions between house and grid

\[ P_{t}^{\text{PV,used}} + P_{t}^{\text{PV,sold}} = P_{t}^{\text{PV,PRO}} \forall t \]  

(29)

\[ P_{t}^{\text{sold}} = P_{t}^{\text{PV,sold}} + P_{t}^{\text{EV,sold}} + P_{t}^{\text{ESS,sold}} \forall t \]  

(30)

\[ P_{t}^{\text{grid}} \leq PL_{1} \cdot u_{t}^{\text{grid}} \forall t \]  

(31)

\[ P_{t}^{\text{sold}} \leq PL_{2} \cdot (1 - u_{t}^{\text{grid}}) \forall t. \]  

(32)

The parameters PL1 and PL2 may be used to impose limits to the power that may be drawn or injected back to the grid as a part of an advanced DR strategy. If no power limits are defined, then these parameters are set to sufficiently high positive values.

D. Power-Limiting Strategies

The HEMS described by the mathematical model developed previously aims at allocating as much load as possible during lowest-price periods.

As a result, a potentially high penetration of smartly operated household loads that operate with an HEMS optimizer raises concerns about causing high power peaks during these periods. This may lead to higher electricity prices during these normally low-demand and low-price periods, distribution transformer overloading, etc. Thus, it is relevant to investigate several power-limiting strategies.

1) “Hard” Power Limit During Several Periods: A power limit may be imposed to the smart households by responsible entities according to the DR program they participate. The simplest practice is to impose a limit on the power that may be drawn during several periods to respond to a contingency or to control the market price. The HEMS is aware of these limits through the smart-meter. To impose such limits, the parameter PL1 in (31) is substituted by a time-varying limit PL1t. Nevertheless, this strategy may still lead to several other peaks due to load recovery effect.

2) “Soft” Power Limit During the Day: The “hard” limit may be imposed only for several hours, while a DR event is in progress. Another strategy that may be used to control the maximum power drawn by the grid throughout the day is described by (33). First, a power limit PL1t is set for the applicable periods. The household is allowed to draw power that exceeds this limit, but the excessive energy is penalized. In this study, it is considered that the excessive energy is priced with the highest hourly price augmented by a percentage \( a \) (e.g., 10%). This strategy is a combination of time-varying DR and critical peak pricing [35]

\[ P_{t}^{\text{grid}} \leq PL_{1} + P_{t}^{\text{grid,ex}} \forall t. \]  

(33)

Under this scheme, the objective function is transformed to (34)

\[ \text{Cost} = \sum_{t} \left\{ P_{t}^{\text{grid,ex}} \cdot \Delta T \cdot \lambda_{t}^{\text{buy}} + P_{t}^{\text{grid}} \cdot \Delta T \cdot (1 + a) \cdot \max \left( \lambda_{t}^{\text{buy}}, \lambda_{t}^{\text{sell}} \right) - P_{t}^{\text{sold}} \cdot \Delta T \cdot \lambda_{t}^{\text{sell}} \right\}. \]  

(34)

3) Assessment of Power-Limiting Strategy: Generally, it may be desirable to obtain a power consumption curve as flat as possible to achieve better controllability of a load at a certain part of the distribution system. The end-users may be given incentives to achieve a certain value of the LF index described by (35), which stands for the ratio of the average net power drawn from the grid to the peak power. The higher the value of this index, the more flat the power curve of the household is

\[ LF = \frac{\text{avg}_{t} \left( P_{t}^{\text{grid}} - P_{t}^{\text{sold}} \right)}{\max_{t} \left( P_{t}^{\text{grid}} - P_{t}^{\text{sold}} \right)}. \]  

(35)

Another fact that is important to assess the potential macroscopic impacts of the proposed strategies on the operation of the power system is the load fluctuations that are caused by the operation of the HEMS. Steep increase or decrease in the load may require more regulation capacity to be employed by the system operator (SO), especially as the penetration of smart-grid-enabling technologies is increasing in the residential sector. For this reason, the average ramping index (ARI) that is a modified variant of the load turbulence index [36] is introduced

\[ ARI = \frac{1}{\text{card}(T)} \sum_{t} \left| P_{t}^{\text{grid}} - P_{t}^{\text{sold}} \right| - \left| P_{t-1}^{\text{grid}} - P_{t-1}^{\text{sold}} \right|. \]  

(36)

To facilitate the regulation of the load, it is desirable to have low ARI values. Considering that more customers would enroll to such programs in the future, more severe power peaks could occur during relatively low-price periods, causing violations to the voltage and current limits of the distribution system and increase market price volatility [30]. As a result, a criterion according to which a DR strategy should be evaluated is the smoothness of the induced load profile.

III. Tests and Results

A. Input Data

First, the selected time-window for the optimization is 5 min (0.00833 h). The household comprises several loads, the rated power of which can be found in Table I. The inflexible load consumption over the scheduling horizon is presented in Fig. 2 for a four-member household together with the installed PV system’s (1 kW) available production. The load profile in Fig. 2 is
TABLE I

<table>
<thead>
<tr>
<th>Appliance</th>
<th>Rated power (kW)</th>
<th>Periods (5-min)</th>
<th>Appliance</th>
<th>Rated power (kW)</th>
<th>Periods (5-min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerator</td>
<td>1.67</td>
<td>288</td>
<td>Desktop computer</td>
<td>0.15</td>
<td>24</td>
</tr>
<tr>
<td>Iron</td>
<td>2.4</td>
<td>6</td>
<td>Hair straightener</td>
<td>0.055</td>
<td>2</td>
</tr>
<tr>
<td>Toaster</td>
<td>0.8</td>
<td>2</td>
<td>Oven</td>
<td>2.4</td>
<td>13</td>
</tr>
<tr>
<td>Kettle</td>
<td>2</td>
<td>2</td>
<td>Cooker hood</td>
<td>0.225</td>
<td>13</td>
</tr>
<tr>
<td>Hairdryer</td>
<td>1.8</td>
<td>3</td>
<td>Lighting</td>
<td>0.1</td>
<td>90</td>
</tr>
<tr>
<td>Telephone</td>
<td>0.005</td>
<td>288</td>
<td>Other (fixed)</td>
<td>0.1</td>
<td>288</td>
</tr>
<tr>
<td>TV</td>
<td>0.083</td>
<td>158</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Inflexible load demand and PV production.

Table II

<table>
<thead>
<tr>
<th>Phase</th>
<th>Power (kW)</th>
<th>Duration (periods)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washing Machine</td>
<td>0.15</td>
<td>1 3 3 1 3 6 1</td>
</tr>
<tr>
<td>Dishwasher</td>
<td>2.2</td>
<td>0.15 0.22</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8 6</td>
</tr>
</tbody>
</table>

Fig. 3. Outside air temperature and inlet water temperature.

Table III

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>House length (L1)</td>
<td>30</td>
<td>m</td>
<td>Area of windows</td>
<td>1</td>
<td>m²</td>
</tr>
<tr>
<td>House width (L2)</td>
<td>10</td>
<td>m</td>
<td>Wall thermal coefficient</td>
<td>136.8</td>
<td>J/h-m-°C</td>
</tr>
<tr>
<td>House height (L3)</td>
<td>4</td>
<td>m</td>
<td>Window thermal coefficient</td>
<td>2808</td>
<td>J/h-m-°C</td>
</tr>
<tr>
<td>Roof angle (β)</td>
<td>40°</td>
<td></td>
<td>Thickness of windows</td>
<td>0.05</td>
<td>m</td>
</tr>
<tr>
<td>Number of windows</td>
<td>6</td>
<td></td>
<td>Thickness of walls</td>
<td>0.15</td>
<td>m</td>
</tr>
</tbody>
</table>

gathered from the real appliances-based load profile generation [37]. In addition, PV production is a real measurement from a 1-kW roof-top PV system.

Apart from these loads, a Chevy volt (EV) is also considered. It is employed with a charging station that has a charging power limited to 3.3 kW, while its battery rating is 16 kWh [10]. The charging efficiency is considered 95%. It should be noted that the EV arrives at home at 5 P.M. and needs to be fully charged at 6:55 A.M. of the next day. Its initial SOE is considered 8 kWh (50%). To avoid deep discharge, the lowest limit is set to 4.8 kWh (30%).

The washing machine and the dishwasher are considered controllable loads. Their operating cycle is described in Table II [38]. The washing machine consumes 2 kW during the heating phase, 0.15 kW during the washing and rinsing phase, and 0.3 kW during the spinning phase. The dishwasher consumes 2.2 kW for the washing, hot rinsing, and drying phases, and 0.15 kW for the cold rinse phase.

For the EWH, the water usage pattern and the set points are required. It is assumed that the shower head has a flow of 2.5 gallons/min, while each shower lasts 10 min (2 periods). During the shower, the water temperature should not be less than 40 °C. The occupants are assumed to take showers at 7:50 A.M., 1:30 P.M., and 8:30 P.M. During the horizon, the water temperature inside the EWH tank may not exceed 60 °C for safety reasons. The EWH is considered to be located in an area where the temperature is not affected by AC operation. Its rated power is 2 kW and its water capacity is 50 gallons. Other thermal properties of the EWH are the same as in [7].

To control the consumption of the AC, both the equivalent thermal resistance of the house and the mass of air inside it are required. These calculations may be performed using (37)–(39) considering a rectangular geometry and an inclination of the roof of β° [20]
are constructed as follows. First, an average temperature is considered (20 °C). Then, due to the high thermal capacity of the ground, it is considered that air temperature affects the inlet water temperature very little (e.g., a positively superimposed factor of 1/7). Lastly, Gaussian noise is added at the temperature in the range of −0.5 °C to 0.5 °C. The smart-meter receives the 24-h price signal presented in Fig. 4 that corresponds to a typical summer day. Day-ahead hourly prices are adapted from [33]. The PV power may be injected back at a feed-in tariff (FIT).

B. Simulation Results and Discussion

The presented simulations mainly aim at assessing the capability of the EMS to respond not only to the dynamic pricing to allocate the household load in the least-cost operation but also to specific load-shaped requirements imposed by the grid operator. In this respect, the capability of the household to sell energy back to the grid complicates the analysis. Besides, the pricing policy of selling energy back to the grid (dynamic selling-back price, FIT, etc.) may affect the result and thus a separate analysis is required. Nevertheless, this is out of the scope of this study. In this respect, in this study, it is considered that the household may not sell back energy to the grid.

Figs. 5–7 depict the power drawn from the grid during the day, while Figs. 8–10 illustrate the hourly energy allocation to the different loads as well as the energy contribution of EV, ESS, PV, and grid. In case no power restriction is set to the smart household (Figs. 5 and 8), the HEMS allocates the loads to the least-price periods causing peaks to emerge early in the morning. Then, a “hard” limit is considered to be active from 12 A.M. to 6:55 A.M., periods in which the electricity prices are the lowest within the day, and therefore a high load is expected to occur.

As can be noticed in Figs. 6 and 9, during these periods, the load is reduced to 4 kW and as a result, the EV is forced to charge using less power for a longer period. Similarly, the dishwasher and the washing machine are shifted. Before 11 P.M., the load remains essentially the same as that of the previously described case.

Figs. 7 and 10 correspond to the case where a power limit equal to 4 kW is enforced throughout the time horizon, allowing for violations under a penalty that is equal to 10% of the
highest price of the day. As it can be noticed in Fig. 10, for the periods after 11 P.M., the results are similar to that of the “hard” limit case. The ESS provides energy to the home during 7 A.M. and 1 P.M. to eliminate the peak caused mainly by the noncontrollable loads operating during this hour. Furthermore, the EWH and the AC are operated for a longer time to store energy by means of hot water and building structure thermal inertia, respectively.

To sum up, comparing Figs. 5–7 demonstrates that the effect of limiting the power that may be drawn from the grid through a power-limiting DR strategy in combination with the price-based DR is the redistribution of the load among the lowest-price periods that coincide with the hard power limit (Fig. 6). In case of the “soft” power limit, excessive power can be procured, but HEMS prevents this to avoid being penalized. In addition, comparing Figs. 8–10, the rescheduling of different appliances can be better observed by the shifting of the loads such as EV charging, washing machine, and dishwasher as mentioned before. To better illustrate the effects of power-limiting strategies, a parametric analysis is performed and the results concerning the cost and the LF are presented in Table IV. The “hard” power-limiting strategy guarantees that peaks do not occur during 12 A.M. and 6:55 A.M. This leads to an improved LF for all cases. Cost increases by imposing a stricter power limit because of shifting energy consumption to relatively higher price periods for hourly pricing scheme.

In case of the “soft” power limit, excessive power can be procured, but HEMS prevents this to avoid being penalized. In addition, comparing Figs. 8–10, the rescheduling of different appliances can be better observed by the shifting of the loads such as EV charging, washing machine, and dishwasher as mentioned before. To better illustrate the effects of power-limiting strategies, a parametric analysis is performed and the results concerning the cost and the LF are presented in Table IV. The “hard” power-limiting strategy guarantees that peaks do not occur during 12 A.M. and 6:55 A.M. This leads to an improved LF for all cases. Cost increases by imposing a stricter power limit because of shifting energy consumption to relatively higher price periods for hourly pricing scheme.

The “soft” power-limiting strategy results into flattening the load curve in comparison with the case in which no power limit is imposed. An increase in the cost of the power drawn from the grid is noticed because of two factors: controllable load is shifted to periods with greater price and also the excessive energy, mainly because of inflexible load, is penalized. It is also noticed that as the “soft” power limit becomes lower, the LF is no longer improved; instead, it slightly decreases. This is caused by the fact that the energy that may be provided by the household assets (EV, ESS, and PV) to reduce power drawn from the grid to cover inflexible load is limited, and thus it is not possible to mitigate peaks.

In order to evaluate how different consumer behaviors affect the optimal operational cost of the smart households, different cases of initial EV SOE and EV arrival time are investigated and the relevant results are presented in Table V. It can be noticed that as the EVs arrive later in the day, the operational cost increases since they offer energy to cover a portion of the household load via V2H during less costly periods, which in turn is covered by energy purchased by the grid during higher price periods. Another observation is that the increase in the initial SOE by 40.7% renders a 10.8% decrease in the operational cost, while the reduction of 21.2% in the initial SOE results in 2.9% higher daily energy procurement cost, considering that the EV arrival time is 5:05 P.M.

To complete the analysis of the proposed HEMS model, the impact of ESS as a load-shaping mechanism is studied (Table VI) both for unconstrained operation of the smart household and considering a “soft” power limit DR strategy of 5 kW throughout the day. The ESS capacity varies between 0 and 6 kWh. Note that the initial SOE of the ESS is considered 50% of the maximum capacity, and the charging/discharging rates are adjusted, so that 20% of this capacity can be charged/discharged per hour. Lastly, the minimum allowable ESS capacity is considered 25% of the maximum capacity. First of all, it may be noticed that in the case in which no power limitation is imposed, increasing the ESS capacity results into a decrease in the LF and an increase in the ARI indices, respectively. From the perspective of the SO, the increased flexibility offered by the higher capacity of the ESS to the end-user results into a fluctuating load profile that can macroscopically pose challenges for the system operation.
(i.e., load balancing) as the penetration of smart technologies increases in the residential sector. When the “soft” limit DR strategy is enforced, the ESS appears to have a different role. As the capacity of ESS increases, it can be noticed that LF also increases, as a result of the HEMS being forced to reduce the peaks to avoid being penalized. Furthermore, the ARI is also reduced compared to the previous case of not enforcing the DR strategy. Note that in all cases, increasing the capacity of the ESS results into reduced costs.

C. Practical Applicability of the Proposed Approach

The 5-min time frame is adequate to describe in detail the use of several household appliances, such as a hairdryer and user behavior (arrival time of EV, duration of showers, etc.). In general, the number of constraints and variables is indicative of the computational burden associated with the developed model, which in turn highly depends on the adopted time granularity.

The model has been coded in GAMS 24.0.2 and has been solved by the commercial solver CPLEX 12. The dimensions of the computationally worst simulation are noticeable: 18769 constraints, 20084 variables, and 13413 binary variables. The average solution time, considering an optimality gap of 0%, is 16 sec on a modern laptop computer (i7 at 2.4 GHz, 64 GB of RAM, 64-bit Windows) and less than 1 s in a workstation (two 6-core processors at 3.46 GHz, 96 GB of RAM, 64-bit Windows).

As the computational capabilities of embedded systems that are needed to implement HEMS and monitoring systems increase, it appears that such complex algorithms will be practically applicable even for larger scale systems. As a result, the model presented in this study may indeed be effectively employed in real-life real-time applications.

IV. CONCLUSION

In this study, an HEMS structure has been described where thermostatically and nonthermostatically controllable loads were explicitly modeled using MILP. ESS and DG were also considered. The aim of the optimization problem was to minimize the total cost to meet the electrical energy needs of the household in a dynamic pricing environment. Furthermore, the effect of several load-shaping strategies based on hard and soft peak power-limiting DR was investigated. Then, the model was tested using a realistic test case with sufficiently low level of time granularity and the results were thoroughly discussed. Based on the simulations conducted, despite the considerable complexity of the mathematical model, the model proved to be computationally efficient.

REFERENCES


Ozan Erdinç (M'14) received the B.Sc., M.Sc., and Ph.D. degrees from the Department of Electrical Engineering, Yıldız Technical University, Istanbul, Turkey, in 2007, 2009, and 2012, respectively. Since May 2013, he has been a Postdoctoral Fellow under EU FP7 project Smart and Sustainable Insular Electricity Grids Under Large-Scale Renewable Integration (SINGULAR) with the University of Beira Interior (UBI), Covilhã, Portugal. From February 2014 to January 2015, he worked as an Assistant Professor with the Electrical Electronics Engineering Department, Istanbul Arel University, Istanbul. On January 2015, he joined the Electrical Engineering Department, Yıldız Technical University, where he is currently working as an Assistant Professor. His research interests include hybrid renewable energy systems, electric vehicles, power system operation, and smart grid technologies.