Human neutrophil cytosolic phospholipase C: partial characterization
Faber, A.J.; Aviram, I.

Published in:
Biochimica et Biophysica Acta, Lipids and Lipid Metabolism

DOI:
10.1016/0005-2760(92)90251-P

Published: 01/01/1992

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Human neutrophil cytosolic phospholipase C:
partial characterization

Anat Faber and Irit Aviram
Department of Biochemistry, Tel Aviv University, Tel Aviv (Israel)

(Received 4 February 1992)
(Revised manuscript received 9 June 1992)

Key words: Neutrophil; Cytosolic; Phospholipase C; Phosphoinositide

The activity of neutrophil cytosolic phospholipase C on PIP₂ and PI was compared employing [³²P]inositol-labeled heat-inactivated membranes of differentiated HL-60 cells, into which tracer [³²P]PIP₂ was incorporated. Hydrolysis of PIP₂ did not require Ca²⁺ and was stimulated when the content of PIP₂ in the membrane was increased by incorporation of unlabeled inositol lipid. At equal concentrations of PI and PIP₂ in the membrane, hydrolysis of PIP₂ was faster and no evidence of competition between the two substrates was obtained. Incorporation of PI into PE-[³²P]PIP₂ vesicles, accelerated PIP₂ hydrolysis also at conditions that favor hydrolysis of PI. Partial purification of neutrophil cytosolic PLC on Q Sepharose, phenyl Sepharose and heparin-Agarose columns is described. From heparin-Agarose column, two PLC activity peaks exhibiting different substrate specificities were eluted. The elution profile of the main PLC species from Superose 12 gel filtration column was compatible with an approx. 150 kDa protein.

Introduction

Phosphoinositide-specific phospholipase C (PLC) participates in signal transduction initiated by hormones, neurotransmitters and growth factors [1,2]. Following cell stimulation, PLC catalyzes hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP₂) to generate two second messengers, sn-1,2-diacylglycerol (DAG) and inositol 1, 4, 5-trisphosphate (IP₃) [3]. Activation of PLC may be mediated by receptor-coupled G proteins or by the tyrosine kinase activity of receptors to growth factors [4]. Mammalian PLC in their membrane-bound or cytosolic forms consist of at least four isozymes, designated α, β, τ and δ. The isozymes differ in their structure, molecular mass and activity.

Surface-receptors for chemotactic ligands expressed by neutrophils are coupled to PLC-mediated phosphoinositide hydrolysis. Due to this, neutrophils and the related leukemia HL-60 cell line cells, have been extensively used as models for studies of signal transduction pathways involving inositol lipid turnover [5–8]. Participation of G proteins in the activation of PLC in intact and permeabilized neutrophils and in neutrophil membranes has been documented [9,10]. Only few studies, however, have been devoted to the characterization of neutrophil PLC at the molecular level [11,12]. In this present report, a partial characterization of cytosolic neutrophil PLC with respect to its activity and structure, is presented. Preliminary data of this study have been published [13].

Materials and Methods

Materials. Dowex-AG-X8 (100–200 mesh, formate form) was purchased from Bio-Rad. Culture media RPMI-1640 and M-199 were obtained from Biological Industries (Beth Haemek). All other materials were from Sigma.

Fractionation of neutrophils. Human neutrophils were isolated from fresh buffy coats by standard procedures of dextran sedimentation, Ficoll density gradient centrifugation and hemolysis. The cells were broken and fractionated as described elsewhere [14].

Synthesis of [³²P]PIP₂ by human red blood cell PIP kinase [15]. PIP (0.6 mg/ml) was suspended by bath sonication in 50 mM Mes (pH 6.5) 2 mM EGTA/2 mM EDTA. Red blood cell membranes were suspended at 1.5 mg protein/ml in 10 mM Tris–HCl (pH
7.4) 1 mM EGTA/250 mM sucrose/0.5% CHAPS. 25
μCi of [γ-32P]ATP (Amersham, 3000 Ci/mmol) were
mixed with 100 μM ATP solution in 100 μM KP (pH
7.5) 10 mM MnCl2/20 mM MgCl2 (final volume of 10
μl). 10 μl aliquots of PIP2, ATP and red blood cell
membranes were mixed and incubated at 30°C for 3.5
h. The reaction was terminated by the addition of 30
μl of 5 mM KP and 2 ml of chloroform/methanol/HCl
(800:800:4, v/v). After vortexing and incubation with
shaking (20 min at 37°C), 0.4 ml of 0.6 M HCl was
added and phases were separated by centrifugation.
The lower phase was washed twice with 1 ml chloro-
form/methanol/HCl (3:48:47, v/v) and its Cerenkov
radiation was estimated. The radiolabeled lipid was
stored at −20°C.

Preparation of PE-[32P]PIP2 vesicles. Aliquots of
[32P]PIP2 (about 15 000 cpm) were mixed with 2.5 μg phosphatidyethanolamine (PE) and 25 μg unlabeled
PIP2 dissolved in chloroform. After evaporation of the solvent under a stream of nitrogen, the lipids were
suspened by bath sonication (20 min) in the reaction buffer.

Preparation of heat-inactivated, [3H]inositol- and
[32P]PIP2-labeled membranes. HL-60 cells were labeled
with [3H]-myo-inositol (Amersham, 0.75-0.9 μCi/ml)
and isolated as described [16]. The membranes were
heated for 10 min at 100°C to inactivate intrinsic mem-
brane-bound PLC. For an assay, membranes (about 15 μg of protein) were added to a test tube containing
10 000 cpm of dried [32P]PIP2 and the components were
sonicated in a bath sonicator (10 min) to permit
corporation of PIP2 [7]. For the preparation of
PPIP2-enriched membranes, unlabeled PIP2 was pre-
mixed with [32P]PIP2 to give a final 1:1 molar ratio of
PI: PIP2.

Enzyme activity of cytosolic PLC. Neutrophil cytosol
(aabout 240 μg protein/ml) was incubated with one of the labeled substrates (6 min, 37°C) in 0.05 ml (for
PE-PIP2 vesicles) or 0.25 ml (for labeled membranes)
reaction mixtures containing 50 mM Hepes (pH 6.7) 5
mM MgCl2/10 mM LiCl/3 mM EGTA. CaCl2 was
added to the desired concentration calculated accord-
ing to Schatzman [18]. Activities of column fractions were determined at 2.3 μM free Ca2++ plus 340 μM
arachidonate [16]. Hydrolysis was terminated by the addition of chloroform/methanol (2:1, v/v). Inositol
phosphates were isolated on Dowex AG1-X8-formate
columns eluted with 0.2 M ammonium formate/1.0 M
formic acid and their radioactivities were determined in liquid scintillation counter [19].

Gel filtration of cytosolic PLC on Superose-12. Cy-
tosol (1 mg in 0.25 ml) was fractionated on a Superose-
12 column equilibrated with 10 mM KP (pH 7.0) 131
mM NaCl/0.5 mM EGTA/0.5 μM PMSF/1 μg/ml
leupeptin employing an HPLC-system of Waters, Mil-
ford, MA. Fractions of 0.3 ml were collected (flow rate
was 0.2 ml/min) and their enzymic activities were
determined.

Chromatography of cytosolic PLC on a Q Sepharose column. Cytosol (ca. 12 mg protein) was diluted with 2
vol of 10 mM Hepes (pH 7.5) and loaded at a flow rate
of 12 ml/h onto a Q Sepharose column (1.5 ml), equilibrated with 10 mM Hepes (pH 7.5) 43 mM NaCl.
The column was washed and the proteins were eluted with a linear gradient of 0.043-0.6 M NaCl (20 ml).
Fractions of 1 ml were collected and stored at −20°C up to 6 months without loss of activity.

Chromatography of PLC on a phenyl-Sepharose col-
umn. Active fractions from Q Sepharose were concen-
trated by ultrafiltration (Diaflo membrane XM-100,
Amicon, MA), mixed with 0.8 M ammonium sulfate
and applied (12 ml/h) to a phenyl-Sepharose column
(2 ml) equilibrated with 0.8 M ammonium sulfate/10
mM KP (pH 6.7). The column was washed and pro-
teins were eluted with 8 ml of KP2-buffered 0.3 M
ammonium sulfate followed by 8 ml of 40% (v/v)
KP2-buffered ethylene glycol. Fractions of 1 ml were
collected and stored at −20°C.

Separation of cytosolic PLC forms by heparin-Agarose.
Cytosol (0.4 ml, 1.65 mg protein) was diluted with an equal volume of 10 mM Hepes (pH 7.5) and applied
(10 ml/h) to a column preequilibrated with 10 mM
Hepes (pH 7.5) 65 mM NaCl. After washing, proteins
were eluted stepwise with 0.2 M, 0.5 M and 0.8 M
Hepes-buffered NaCl solutions. 1 ml fractions were
oclected.

Protein determination. The method of Bradford was
employed, with bovine serum albumin as a standard
[20].

Results

In the first part of this study, neutrophil cytosol was
employed as a source of PLC to follow hydrolysis of
PPIP2 in PE-[32P]PIP2 vesicles. Formation of the prod-
ucts proceeded linearly with time (up to 6 min) and
with the concentration of cytosolic proteins. At concen-
trations exceeding about 240 μg protein/ml deviations
from linearity were observed (data not shown).

PPIP2 hydrolysis did not require Ca2+ and proceeded
also in the presence of 3 mM EGTA (Table I); rates of
substrate breakdown were augmented by arachidonate
and Ca2+. Arachidonate and other cis-unsaturated fatty
acids, in the presence of Ca2+, were previously shown
to dramatically stimulate PI hydrolysis by neutrophil
cytosolic PLC [16].

Incorporation of PI into the PE-[32-P]PIP2 vesicles at
a 1:1 molar ratio to PIP2 was expected to inhibit PIP2
hydrolysis by competition between the two substrates
for the available enzyme [21]. PI, however, markedly
augmented rates of PIP2 breakdown, also at conditions
previously shown by us to stimulate PI breakdown, i.e.,
TABLE I
The effect of PI on the hydrolysis of \(^{32}\)P\(\text{PIP}_2\) in PE-\(\text{PIP}_2\) vesicles

PE-\(\text{PIP}_2\) vesicles contained 1 \(\mu\)g PE, 2.5 \(\mu\)g unlabeled \(\text{PIP}_2\) and \(^{32}\)P\(\text{PIP}_2\) (15000 cpm). When indicated, 2.5 \(\mu\)g PI was also incorporated into the vesicles.

<table>
<thead>
<tr>
<th>Additions</th>
<th>PE-(\text{PIP}_2) vesicles</th>
<th>PE-(\text{PIP}_2)-PI vesicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1.29</td>
<td>4.16</td>
</tr>
<tr>
<td>Ca(^{2+}) (2.3 (\mu)M)</td>
<td>2.26</td>
<td>16.30</td>
</tr>
<tr>
<td>Arachidonate (340 (\mu)M)</td>
<td>1.58</td>
<td>8.56</td>
</tr>
<tr>
<td>Ca(^{2+}) plus arachidonate</td>
<td>6.41</td>
<td>22.24</td>
</tr>
</tbody>
</table>

TABLE II

PLC-catalyzed hydrolysis of \(^{3}H\)PI and \(^{32}\)P\(\text{PIP}_2\): effect of PI:PI\(\text{PIP}_2\) ratio

\(^{3}\)HPI and \(^{32}\)P\(\text{PIP}_2\) were incorporated into \(^{3}\)HPI-labeled inactivated neutrophil membranes without affecting the PI:PI\(\text{PIP}_2\) ratio. \(^{32}\)P\(\text{PIP}_2\) plus unlabeled PI\(\text{PIP}_2\) were incorporated into \(^{3}\)HPI-labeled inactivated neutrophil membranes resulting in a PI:PI\(\text{PIP}_2\) ratio of 1:1. The concentrations of Ca\(^{2+}\) and arachidonate were 2.3 \(\mu\)M and 340 \(\mu\)M, respectively.

<table>
<thead>
<tr>
<th>Additions (\text{Ca}^{2+})</th>
<th>Enriched membrane (\text{PI})</th>
<th>Enriched membrane (\text{PI} \text{PI} \text{PIP}_2)</th>
<th>Enriched membrane (\text{PI})</th>
<th>Enriched membrane (\text{PI} \text{PI} \text{PIP}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>(\leq 2)</td>
<td>(\leq 2)</td>
<td>(\leq 2)</td>
<td>(\leq 2)</td>
</tr>
<tr>
<td>+</td>
<td>(\leq 2)</td>
<td>(\leq 2)</td>
<td>(\leq 2)</td>
<td>(\leq 2)</td>
</tr>
<tr>
<td>+</td>
<td>(165.1)</td>
<td>15.0</td>
<td>158.5</td>
<td>280.0</td>
</tr>
</tbody>
</table>

Fig. 1. (A) Chromatography of cytosolic PLC on a Q Sepharose column. Neutrophil cytosol (4 mg/ml, 3 ml) was applied to a Q Sepharose column (1.5 ml), equilibrated with 10 mM Hepes (pH 7.5), 43 mM NaCl and eluted with a linear gradient of NaCl. (\(\odot\), \(\Delta\)) PI hydrolysis. In three similar experiments, the mean recovery of enzymatic activity equaled 110%. (B) Chromatography of PLC on a phenyl-Sepharose column. Active pooled fractions from Q Sepharose column were applied to a phenyl-Sepharose column (2 ml) equilibrated with 0.8 M ammonium sulfate/10 mM KPi (pH 6.7) (a). Elution with (b) 0.3 M ammonium sulfate (c) 40% ethylene glycol. 82% of the loaded activity was recovered.
donate were not reduced by enrichment with PIP2 in spite of simultaneous hydrolysis of the latter. Thus, no inhibition of PI hydrolysis by the competing substrate, PIP2, was observed.

GTPγS (1–100 μM) was unable to enhance activity of cytosolic PLC when tested in either PE-PIP2 vesicles or in the double labeled membranes (Table III). This result was obtained at different concentrations of calcium ions. GDPβS (400 μM) inhibited hydrolysis of PIP2 in both forms of substrate presentation and unexpectedly NaF (10 mM) also reduced activity in both cases (Table III).

Discussion

Most studies on inositol lipid-specific PLC in neutrophils dealt with membrane-associated enzyme in intact, permeabilized or broken cell preparations [5–9]. The neutrophil enzyme was stimulated by binding of chemotactic ligands to surface receptors coupled to G proteins [7–10].

In a previous communication, we described a remarkable enhancement of the activity of neutrophil cytosolic PLC by unsaturated fatty acids and calcium ions [16]. Stimulating effects of anionic phospholipids and amphiphiles and their ability to relieve PI hydrolysis from inhibition by long-chain phosphatidylethanolamine molecules, were demonstrated in other systems by Irvine et al. [22] and Hofmann and Majerus [23]. These authors attributed alterations in the activity of PLC caused by incorporation of certain lipids into the membrane, to the effects of the lipids on the physical structure of the substrate.

In the present report, we extended our earlier studies on PI-hydrolyzing activity of neutrophil cytosolic PLC [16] to hydrolysis of PIP2 in membranes and PE-PIP2 vesicles. The activity of cytosolic PLC on PIP2 in PE-PIP2 vesicles was also augmented by arachidonate and calcium; unlike PI breakdown, however, PIP2 hydrolysis proceeded also in the absence of both activating agents (Table I). The remarkable potentiation of PIP2-hydrolyzing activity by incorporation of PI in the absence of activators, namely at conditions unfavorable for PI hydrolysis, may be attributed to alterations in the physicochemical structure of the vesicles [22–24]. Alternatively, it can be suggested that PI as well as arachidonate interact with a resting or turning-over PLC at a site distinct from the active site of the enzyme.
enzyme. In a single case, binding of PLC to PI vesicles was indeed described [25].

In cellular signalling processes, PIP$_2$ is hydrolyzed preferentially to PI, to give two second messengers, IP$_3$ and diacyl glycerol [1,2]. Potentiation of PIP$_2$ hydrolysis by PI demonstrated in the present study (Table I), may constitute a factor that contributes to the preferential cleavage of PIP$_2$ in biological membranes. It should be pointed out, however, that our data were obtained employing lipid vesicles and not membranes as a substrate.

Experiments conducted with membranes (Table II) permitted direct comparison of activities of neutrophil cytosolic PLC on PI and PEP$_2$ in a milieu which may be considered as close as possible to the natural milieu in the cell. Although the heat pretreatment of the membranes, employed by us to inactivate intrinsic PLC, might have introduced alterations in their topography, the overall composition of the membrane was retained. Since in vivo the negatively charged inositol lipids and particularly PIP$_2$ are bound to membrane proteins [26], the presence of proteins in the microenvironment of the substrate may represent an advantage over pure lipid or lipid-detergent vesicles.

In HL-60 cell membranes in which the ratio of PI:PIP$_2$ is approx. 93.8:2.3 [27], hydrolysis of both inositol substrates by cytosolic PLC proceeded at low and similar rates (Table II). The presence of arachidonate and calcium rendered PI the preferable substrate, although cleavage of PIP$_2$ was also enhanced. Hydrolysis of PIP$_2$ was stimulated by the enrichment of the membranes with exogenous PIP$_2$. Assuming that the presentation of membrane-incorporated PIP$_2$ and intrinsic PIP$_2$ to the enzyme are similar [17], these data imply that prior to the enrichment, the rate of PIP$_2$ breakdown was below V_{max}. The experiments summarized in Table II indicate also that at equal PI and PIP$_2$ concentrations, neutrophil cytosolic PLC acts preferentially on PIP$_2$, in the presence as well as in the absence of Ca$^{++}$. In spite of this preferential hydrolysis of PIP$_2$, excess of PIP$_2$ incorporated into the membrane did not competitively inhibit the cleavage of PI stimulated by Ca$^{2+}$/arachidonate (Table II). This result may be attributed to dual and opposing effects of PIP$_2$ acting both as a competing substrate that inhibits PI hydrolysis [21] and as a positive modulator which augments its breakdown. In membranes in which the effect of PIP$_2$ on PI hydrolysis was tested (Table II) these opposing effects were of similar magnitude; in the reciprocal situation represented by PE-PIP$_2$ vesicles enriched by PI (Table I), the positive modulation by PI was stronger resulting in a net stimulation of PIP$_2$ hydrolysis. An alternative explanation for the lack of mutual inhibition of PIP$_2$ cleavage by PI (Table I) or PI cleavage by PIP$_2$ (Table II) may implicate PLC isoforms that differ in their kinetic parameters (affinity, V_{max}) with respect to the two substrates. This possibility is indeed implied by chromatography on heparin-Agarose which revealed only one activity peak exhibiting substantial activity on PI (Fig. 2).

The elution profile of PLC activity from a heparin-Agarose column is consistent with the presence of at least two isoforms (Fig. 2). Most living cells contain several isoforms of PLC which differ in their structure and activity [1,2,4]. Three species of PLC were previously detected by gel filtration of neutrophil cytosol [28]. The size of one of them resembled the main PLC species of neutrophil PLC reported in this study (Fig. 4) and was compatible with the size of β or γ isoforms of PLC. PLC$_{\gamma}$, which undergoes phosphorylation on tyrosyl residues by the growth factor-stimulated kinase activity of the receptor has been detected in most living cells [4]. Moreover, in the promyelocytic leukemia HL-60 cells, which upon appropriate induction undergo maturation into cells that resemble neutrophils, PLC$_{\gamma}$ and PLCβ forms have been identified [4,27].

The deviations from linearity of PLC activity observed by us at high concentrations of cytosol, cannot be attributed to exhaustion of the substrate (less than 15% was hydrolysed) nor to accumulation of products of the reaction. They may reflect the presence in the cytosol of an endogenous inhibitor loosely associated with the enzyme and its dissociation upon dilution of cytosol.

Stimulation of inositol lipid hydrolysis by guanine nucleotides compatible with involvement of G proteins in the activity of neutrophil PLC has been described by many investigators [8-10, 29-32]. In our hands, the activity of neutrophil cytosolic PLC assayed in lipid vesicles or in heat-inactivated membranes devoid of active G proteins was not affected by GTPγS (Table III). Moreover, fluoride and GDPβS exerted an unexplained inhibition of the enzymic activity (Table III). In parallel experiments carried out on membrane PLC acting on endogenous substrate, we observed stimulation of the enzyme by GTPγS (data not shown). These results may imply that either PLC isoforms present in neutrophil cytosol are not regulated by G proteins (e.g., PLC$_{\gamma}$) or that compatible G proteins were not present in the cytosolic preparations. In the closely related permeabilized HL-60 cells, Cockcroft et al. indeed described restoration of GTPγS-elicted responses by rat brain soluble phospholipases C of β and ϵ types, but not by the PLC$_{\gamma}$ [26], indicating that G proteins responsible for the stimulation were present in membranes of the permeabilized cells. Contrary to this, Camps et al. [33] have recently demonstrated activation of cytosolic PLC from differentiated HL-60 cells by GTPγS, implicating soluble G protein/s in activation of the enzyme. Further characterization and resolution of neutrophil cytosolic PLC forms will be required to clarify the mode of their regulation.
References