A study of oxidative degradation of plastics by GC and GC-MS
Pacakova, V.; Leclercq, P.A.; Holotik, S.; Beroun, I.

Published in:
Analytical Letters. Part A, Chemical Analysis

DOI:
10.1080/00032718508064478

Published: 01/01/1985

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 09. Jan. 2019
A STUDY OF OXIDATIVE DEGRADATION OF PLASTICS
BY GC AND GC-MS

Key words: plastics, oxidative degradation, gas chromatography and mass spectrometry

V. Pacaková¹, P. A. Leclercq², S. Holotik³ and I. Beroun¹

Department of Analytical Chemistry, Charles University, Albertov 2030, 128 40 Prague 2, Czechoslovakia
Laboratory of Instrumental Analysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Slovak Technical University, Jánšká 1, 880 37 Bratislava, Czechoslovakia

ABSTRACT

The behaviour of plastics, namely, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyamide and some copolymers, was studied in a combustion chamber in which the conditions of large-scale fires were simulated. Volatile combustion products were frozen-out or analyzed directly on two columns, one packed with Porapak Q and the other capillary column coated with squalane or CP Sil 5 CB. Carbonyl compounds were determined as the 2,4-dinitrophenyl hydrazones on an OV-1 stationary phase. Thermal conductivity and flame ionization detectors were used. The decomposition products were identified either on the basis of retention data (retention indices) or by combined capillary GC-MS. The data obtained are used for the cataloguing of plastics from the point of view of their product toxicity during fires.
INTRODUCTION

A great danger in fires is caused by toxic products formed during combustion of plastics. In addition to CO and HCN, many other toxic substances are formed that may effect the function of vitally important organs. Therefore, detailed analysis of the volatile products liberated during combustion of plastics is important.

In the laboratory, the conditions prevalent during fires can be simulated in combustion chambers. Capillary gas chromatography is advantageous in the analysis of complex mixtures of the products. To identify the compounds, the GC-MS combination is optimal, but sometimes the comparison of accurately measured retention indices with the literature values can also be used (see e.g. refs. 1-4).

Many data on the composition of the combustion products of polymers in inert and oxygen atmosphere have been published (e.g. refs. 4-20). However, a standard analysis method must be used for the comparison of materials with respect to the toxicity of their combustion products. The extensive published data are inhomogenous and cannot be used in cataloguing of plastics. This is mainly caused by varying experimental conditions on which the composition of the products is strongly dependent.

A solution to the problem of the danger caused by the combustion products of plastics requires a complex approach, i.e. a combination of various analytical methods, such as DTA, GC, GC-MS, IR spectroscopy, biological tests, etc. The present paper is a part of extensive research carried out in many laboratories in Czechoslovakia. The topic of the present paper is the use of capillary GC and GC-MS for the identification of polymer combustion products, obtained under fire conditions simulated in a combustion chamber.

EXPERIMENTAL

Materials

Polymers: polyethylene BraLEN RB 03-23, polypropylenes Tatren TF 411, Mosten 52 492, Mosten 52 577, polystyrene Krasten 127, polyvinyl chloride Sloviplast GC-702, polyamide Spolamid 6, copolymers of styrene with butadiene Krasten 336, with acrylonitrile Kostil SAN, and with butadiene and acrylonitrile Forsan 752, copolymer of ethylene with vinyl acetate Urlen, all produced in Czechoslovakia.

Chemicals: n-hydrocarbons C5, C6 - Laborchemie Apolda, GDR, C7 - Lobachemie, Austria, C9 - Reakhim, USSR, C20, C22, C24, C28 - Applied Sci. Lab., USA. All the other chemicals were of p.a. purity and were obtained from Lachema, Czechoslovakia.

Equipment and Methods

The studied polymers were pyrolyzed in nitrogen in a vertical tubular pyrolyzer and decomposed in air in a combustion chamber. The combustion chamber is depicted in Fig. 1. It consists of separate compartments for the sample combustion and the biological tests with mice. The sample is placed in a crucible that is electrically heated to the required temperature. A ventilator forces the combustion products into the smoke compartment from which the samples are taken by syringes or are drained by an inert gas into absorption vessels. The absorption vessels used were either empty and were cooled with dry ice for the sample collection for the GC-MS analysis, or contained a frit and a saturated solution of 2,4-dinitrophenyl hydrazine in 2NL- HCl (the volume of solution, 4 ml). The sample weight was 200 mg, the oven temperature 600°C and the overall volume of the chamber was 4.51.

Standards of 2,4-dinitrophenylhydrazones were prepared by precipitation of an aqueous or alcoholic solution of the corresponding carbonyl compounds with a saturated solution of 2,4-dinitrophenylhydrazine in 2N-HCl or H2SO4. The contents of the carbonyl compounds in the combustion products were found using the absolute calibration method.

A Chrom 4A gas chromatograph with a flame ionization detector (Labororní Přístroje, Czechoslovakia) and a Carlo Erba gas
Fig. 1 Combustion chamber CAB 4.2. 1- combustion chamber, 2- flame chamber, 3- crucible oven, 4- ventilator, 5- thermometer, 6- oxygen concentration probe, 7- safety valve, 8- sampling septum

chromatograph Model C with a flame-ionization and thermal-conductivity detectors (Italy) were employed. A 50 m x 0.2 mm I.D. stainless steel capillary column coated with squalane (an efficiency of 3000 plates/m for heptane) and packed columns with Porapak Q, 30 mm x 2.5 cm and with 5% OV-1 D1 on silanized Chromosorb W (60-80 mesh), 190 cm x 3 mm I.D. Column temperatures were 60 and 80°C for squalane, with nitrogen carrier gas, ca. 0.3 ml/min, and with hydrogen and air flow-rates of 35 ml/min and 0.25 l/min, respectively. The Porapak column was operated at 25°C (TCD) and 80°C (FID), with a carrier gas (nitrogen) flow-rate of 30 ml/min. The temperatures of the OV-1 D1 column, the injector and the detector were 232, 280 and 150°C, respectively. Nitrogen carrier gas flow rate was 30 ml/min.

A Finnigan 4000 GC/MS instrument (Finnigan MAT, USA) was used in the electron ionization (EI) mode under the following conditions: electron energy, 70 eV, electron current, 0.30 mA, ion source temperature, 250°C. A 50 m x 0.33 mm I.D. fused silica columns coated with CP Sil 5 CB was used. The flow-rate of the carrier gas, helium, was 1 ml/min, with a split ratio of 1:100. The end of the column was directly inserted into the ion source. The interface oven was kept at 200°C. The temperature of the injector and splitter were 220 and 200°C, respectively; the column temperature was programmed as follows: 5 min at 70°C, then 5°C/min up to 200°C and finally isothermal regime; 1µl samples were injected.

The molecular weights of the decomposition products of the polyamide samples were verified by positive ion chemical ionization, using ammonia as the reagent gas (at a pressure of 0.3 torr; ion source temperature, 200°C). The spectra were obtained with a Data General Nova 4/S computer system with custom-made software.

RESULTS AND DISCUSSION

Commercially available plastics were burned in the chamber depicted in Fig. 1. The degradation products were sampled by a syringe and directly injected into the gas chromatograph. For the GC-MS analysis, the products were frozen out. The most volatile products (CO, CO2, HCN, hydrocarbons C1 - C9) were separated on columns with Porapak Q at 25°C (TCD) and 80°C (FID) (see Fig. 2). Degradation products with carbon numbers of up to C8 - C9 were analyzed on a capillary column coated with squalane. The products were identified on the basis of their retention indices or by combined capillary GC-MS.

The carbonyl compounds formed during combustion of plastics could not be identified when the combustion products were directly injected into the column, as their concentrations are very low and their adsorption occurs on the smoke particles and on the walls of the combustion chamber and the syringe. These compounds may also be irreversibly adsorbed or decomposed in various parts of the gas chromatograph. Therefore, the carbonyl compounds were absorbed in 2,4-dinitrophenylhydrazine and the
Hydrazones formed were analyzed on an OV-1 column at 232°C. The amounts of aldehydes and ketones found (in per cent), related to the weight of the burnt polymer sample, are given in Table 1.

Polyethylene and polypropylenes

From various polyethylenes, the commercial linear product Bralen R80323 was studied. A chromatogram of the thermooxidation products is given in Fig. 3. As can be seen, the main products of the combustion of polyethylene are 1-alkenes, in addition to CO and CO₂. Alkanes and alkadienes are also present. The products are virtually the same as produced by pyrolysis in an inert atmosphere 3.

Similar results were obtained with the combustion of the polypropylenes Tatren 411, Mosten 52492 and Mosten 52517. All three polypropylenes yielded chromatograms similar to those obtained after pyrolysis at the same temperature 3 (see Fig. 4). In addition to CO, CO₂, methane, ethane, ethylene and propane, the propene monomer, the 2-methyl-1-pentene dimer and the 2,4-dimethyl-1-pentene trimer were found, as well as a number of
other branched and unbranched hydrocarbons. No oxygen containing substances were found with direct injection of the combustion products of polyethylene and polypropylenes. In addition to the main product, acetaldehyde, further saturated and unsaturated aldehydes and ketones were detected in the form of 2,4-dinitrophenyldrazones in PE and PP (see Table 1). The low concentrations found indicate that the oxidation to CO and CO₂ is prevalent in the combustion chamber under the given experimental conditions.
Polyvinyl chloride

Polyvinyl chloride is one of the most common plastics because of its favourable properties (resistance to alkalis, elasticity, mechanical strength). At higher temperatures (above 150°C) it is degraded with the liberation of hydrogen chloride that is dangerous to human health. The degradation can be described by the scheme (e.g. refs. 14, 52)

\[
\text{-CH}_2\text{-CH-CH}_2\text{-CH=CH} \rightarrow \text{CH}_2\text{=C} \quad \text{Cl}
\]

\[
\text{CH-CH-CH-} \rightarrow \text{low molecular weight products}
\]

cross-linked structure

Decomposition to the monomer virtually does not occur; dehydrochlorination proceeds first to 96 to 99%, followed by the scission of C-C bonds. During the thermal degradation, first linear and then cross-linked three-dimensional structures are formed.

Under the combustion conditions used in this work, CO, CO\(_2\), HCl, methane, ethane, ethene, propane and propene were detected with TCD and FID using a Porapak Q column. Among the volatile products detected using a squalane capillary column, benzene is most abundant; toluene was also present (see Fig. 5). Substance No. 12 is probably 1-octene. Benzene is formed via intramolecular cyclization involving a cyclohexadiene intermediate. Among the volatile hydrocarbons, similar triplets as during the combustion of polyethylene are obtained, i.e., 1,4-pentadiene, 1-pentene and pentane and 1,5-hexadiene, 1-hexene and hexane. By the GC-MS analysis of a frozen-out sample, some other compounds were identified: acetaldehyde, ethanol, acetone, 2-propanol, acetic acid, 1-chlorobutane and cyclopentanone. The presence of acetaldehyde and cyclopentanone was also verified by GC analysis of the corresponding 2,4-dinitrophenylhydrazones, but other carbonyl compounds were also found. HCl that is produced as a main product during combustion of PVC is dangerous not only to living organisms, but also destroys the column packing as well as the metallic parts of the gas chromatograph and the combustion chamber. Therefore, it was attempted to trap HCl on a precolumn containing CaCl\(_2\) but it adsorbed all components from the samples.

Polystyrenes

The products of the degradation of polystyrene and styrene copolymers in air are listed in Table 2. Similar to polyethylene and polypropylenes, the same products as those obtained during pyrolysis in nitrogen were
TABLE 2

Combustion Products of Polystyrene and Styrene Copolymers

<table>
<thead>
<tr>
<th>Product</th>
<th>Retention index</th>
<th>Krasten 127</th>
<th>Krasten 336</th>
<th>Kostil SAN</th>
<th>Forsan 752</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrocarbons C\textsubscript{1}-C\textsubscript{2}</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>hydrocarbons C\textsubscript{3}</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1,3-butadiene</td>
<td>387.7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>trans-2-butene</td>
<td>406.5</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>acrylonitrile</td>
<td>435.2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1-pentene</td>
<td>482.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>methacrylonitrile</td>
<td>535.3</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>cyclopentene</td>
<td>552.7</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>1-hexene</td>
<td>582.9</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>benzene</td>
<td>646.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>toluene</td>
<td>753.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>phenylacetylene</td>
<td>827.4</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>vinylcyclohexene</td>
<td>833.5</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ethylbenzene</td>
<td>844.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>styrene</td>
<td>870.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

identified by capillary GC. CO, CO\textsubscript{2}, low molecular weight hydrocarbons and HCN (from the copolymers Kostil SAN and Forsan 752) were identified using Porapak Q column. Benzaldehyde was formed as the main carbonyl product of the pure polystyrene Krasten 127. With a styrene-butadiene-acrylonitrile copolymer (Forsan 752) a greater number of carbonyl compounds is formed due to the oxidation of butadiene (see Table 1).

Polyamide

The anionic polycaprolactam Spolamid 6 was decomposed both in an inert and in the air atmosphere at 600°C. The pyrolysis products obtained in a quartz tubular pyrolyzer are shown in Fig. 6. Lower hydrocarbons, mostly olefins and diolefins, up to C\textsubscript{7} were found. The caprolactam monomer could not be eluted under the experimental conditions used in this work.

In the combustion chamber, only CO, CO\textsubscript{2}, NH\textsubscript{3}, HCN and low hydrocarbons were detected in the decomposition products formed.
by burning of Spolamid 6 (see Fig. 2). Other products were present in negligible amounts and could not be identified on the basis of the retention indices. Therefore, the products were also frozen-out and analyzed by GC-MS. The total ion current chromatogram obtained under EI conditions is shown in Fig. 7. In addition to the main product, ε-caprolactam, the presence of saturated and unsaturated mononitriles was demonstrated, in accordance with ref. 20. Heterocyclic N-containing compounds (pyridine, 2-methylpyridine), aromatic compounds (benzene, toluene, aniline) and ketones (acetone, cyclopentanone) were also found.

The carbonyl compounds formed in the combustion products of polyamide include acetone and cyclopentanone that were also detected by the GC-MS analysis, as well as small amounts of propionaldehyde and butyraldehyde (see Table 1).

Ethylene-vinyl acetate copolymer

The ethylene-vinyl acetate copolymer,

![Image](https://example.com/figure7)

The ethylene-vinyl acetate copolymer,

![Image](https://example.com/figure8)

As can be seen from the figure, the main products formed are analogous to those formed in the combustion of polyethylene, namely, the triplets consisting of alkanes, 1-alkenes and α,ω-alkadienes. The oxygen-containing substances involved acetone and propionaldehyde, in addition to CO and CO₂.
Chromatogram of the combustion products of Urlen (squalane, 30°C).

It can be concluded from the results obtained with polyethylene, polypropylene and polystyrene, that combustion in the air yields the main products analogous to those obtained during pyrolysis in nitrogen. O-containing compounds were identified in the combustion products of polyvinyl chloride, polyamide and of the copolymer Urlen. The carbonyl compounds are present at very low concentrations and mostly cannot be directly detected by GC; their determination is only possible after the conversion into the 2,4-dinitrophenylhydrazones.

REFERENCES

Received June 5, 1985
Accepted July 2, 1985