Influence of quartz surfaces on the reaction C3A + CaSO4.2H2O + water

Citation for published version (APA):

DOI:
10.1016/0008-8846(77)90091-6

Document status and date:
Published: 01/01/1977

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 09. Apr. 2024
INFLUENCE OF QUARTZ SURFACES ON THE REACTION C₃A + CaSO₄·2H₂O + WATER.

C.L.M. Holten and H.N. Stein
Laboratory of General Chemistry
Technological University, Eindhoven, The Netherlands

(Communicated by H. F. W. Taylor)
(Received February 28, 1977)

ABSTRACT

Quartz surfaces counteract the retarding action of SO₄²⁻ on the hydration of C₃A, by presenting additional sites for ettringite crystallization. Strong retardation requires the presence of ettringite near the C₃A, influencing the local concentrations there.

Quarzoberflächen wirken der Verzögerung der Hydration des C₃A durch Sulfationen entgegen, indem sie Extraplätze für die Kristallisation des Ettringits bieten. Eine starke Verzögerung erfordert die Anwesenheit des Ettringits dicht neben dem C₃A, wodurch die lokalen Konzentrationen dort beeinflusst werden.
Introduction

In studies of the reaction $\text{C}_3\text{A} + \text{CaSO}_4 \cdot 2\text{H}_2\text{O} + \text{H}_2\text{O}$ in pastes, quartz is frequently added as an "inert" filler in order to prevent demixing and sedimentation (1, 2). The inert character of the quartz may, however, be doubted, if only because the presence of a foreign surface might influence nucleation of hydrates. Indications of this have been reported for cement pastes (3). It was thought desirable to perform similar experiments with pure C_3A since they may give a clue on the mechanism responsible for the retardation of its hydration by SO_4^{2-}.

Experimental

The $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$ was ex Merck pro analysi. C_3A, sample a, had 0.1% free CaO and Blaine surface area $0.075 \text{ m}^2\text{g}^{-1}$; sample b had 0.3% free CaO and N_2 adsorption surface area $0.321 \text{ m}^2\text{g}^{-1}$. The samples were either kept in a sealed glass ampoule, or heated to 1000°C for 2 h shortly before use. The quartz was ex Riedel de Haën; Blaine surface area $0.60 \text{ m}^2\text{g}^{-1}$. On treating with HF + H_2SO_4, 0.6% of residue remained. It was heated to 1000°C for 2 h shortly before use. The water was twice distilled, and then again distilled under reduced pressure shortly before use.

The conduction calorimeter, mixing and X-ray diffraction procedures were the same as described previously (4). The SEM was a Cambridge MK-2A instrument. The hydration reaction was stopped by washing with absolute ethanol and drying in a stream of nitrogen freed from CO$_2$. In some cases the drying was effected by sucking air through the precipitate in a glove-box in an atmosphere free of CO$_2$.

Results

In Fig.1 heat evolution rate is plotted against time for pastes with C_3A sample b, weight ratios $\text{C}_3\text{A}:\text{CaSO}_4 \cdot 2\text{H}_2\text{O}:\text{H}_2\text{O}:\text{SiO}_2 = 1.5:1.43:5.0:z$ (z in caption). Groups of three graphs in the same horizontal position refer to one experiment; the breaks correspond to scale adjustments. The main features of Fig.1 were also shown by pastes with $\text{C}_3\text{A}:\text{CaSO}_4 \cdot 2\text{H}_2\text{O}:\text{H}_2\text{O}:\text{SiO}_2$ weight ratios $1.5:0.77:5.0:z$ ($0 \leq z \leq 5.0$), for both C_3A samples. For $z\neq 0$, the effects of increasing quartz content can be summarized as follows:

1) The first heat evolution rate peak (A) is intensified and shifted slightly forward.

2) After some time the heat evolution rate decreases further (shortly after stage B). For $0.82 \leq z \leq 1.65$, a peak is found at stage B. At large z values the transition to the low heat evolution stage C is smooth.

3) The transition to stage C starts earlier, and once started is faster with increasing z.

4) The final heat evolution peak D occurs earlier.

Experiments with pastes mixed in a glove-box in an atmosphere free of CO$_2$ did not show significant differences from
Heat evolution rate vs. time for pastes C\(_3\)A + CaSO\(_4\).2H\(_2\)O + H\(_2\)O + SiO\(_2\), weight ratios 1.50:1.43:5.00:2; C\(_3\)A sample b. The vertical bars indicate the reaction stages up to which integration of the curves was carried out (see text).

Discussion

An increasing quartz content of the paste has a distinct influence which, at least for \(z>2.97\), cannot be ascribed to counteraction of demixing. An ever increasing counteraction of demixing with increasing \(z\) might be held responsible for the...
intensification of the first peak and the shifting forwards of
stage B, but not for the fact that the transition to stage C,
once started, is quicker (i.e., the hydration of C3A is slowed
down faster) in the presence of more quartz. The experimental
evidence against demixing at \(z = 2.97 \) has also been mentioned.

Three possible mechanisms for the retardation of hydration
in the presence of \(\text{SO}_4^{2-} \) will be considered:

I. The solution between the C3A grains is saturated towards
the anhydrous C3A, and C3A reacts only to the extent that
reaction replaces ions withdrawn from the solution by
precipitation of hydrates. \(\text{SO}_4^{2-} \) lowers the solubility of C3A,
causing a slower precipitation of ettringite as compared with the
precipitation of AFm phases from a medium less rich in \(\text{SO}_4^{2-} \).
Hydrate precipitation is the rate-determining step (12, 15).

II. C3A reacts only where its surface is met by dislocations;
the hydration is accompanied by movement of the dislocations, and
ions adsorbed onto the surface impede this movement (14).

III. A hydration product, e.g. ettringite (15), forms a
protective layer.

Mechanism II is contradicted by the fact that quartz has any
influence at all. C3A and CaSO4·2H2O dissolve quickly in water,
as shown by electrical conductivity data in systems C3A + H2O (16)
and C3A + CaSO4·2H2O + H2O (17), and by the fact that no
difference is seen between pastes prepared with pure water and
with water previously saturated towards CaSO4·2H2O. The reaction
of quartz with the ions concerned is much slower (quartz has no
influence on the concentrations in C3A suspensions during the
initial stages (16)). Thus, the presence of quartz cannot
reasonably be supposed to influence either the concentrations of
ions in the solution, or their adsorption onto the C3A.

Mechanism I might account for the intensification of the
first peak, and the shifting forwards of stage B with increasing
z. Although quartz cannot change the concentrations in a
solution saturated towards C3A and CaSO4·2H2O, the quartz
surfaces could facilitate nucleation of hydrates, thus
accelerating what is, according to this mechanism, the rate-
determining step. However, the following arguments are adduced
against mechanism I:

1) The concentrations in a solution saturated towards C3A, as
calculated from thermodynamic data (18), are at least 100 times
larger than those found experimentally in C3A + CaSO4 + H2O
systems (2).

2) The concentrations found experimentally correspond to the
solubilities of the hydrates. The large difference between the
enthalpies of dissolution of the hydrates on the one hand, and of
C3A on the other, lead to the expectation that the solubility of
C3A should be much larger than those of the hydrates.

3) If such \(\text{SO}_4^{2-} \) concentrations as are present in a solution
saturated towards CaSO4·2H2O would reduce the solubility of C3A
to the extent required by the mechanism, then \(\text{SO}_4^{2-} \) must strongly
increase the activity coefficients of the other ions present.
This is not known in the thermodynamics of electrolyte solutions
(cf. data on activity coefficients of 1:1 electrolytes in the
presence of SO_4^{2-} (19)).

According to mechanism III, the quartz presents additional sites for ettringite crystallization and prevents formation of ettringite on the C_3A surface. This is compatible with the heat evolution rate data; however, ettringite layers as formed in hydrating pastes are too incoherent for complete screening of the C_3A (13).

However, there is no need to assume such a complete screening. If ettringite is the sole hydrate formed, and counteracts the transport of ions from the bulk solution towards the vicinity of the C_3A sufficiently for a concentration gradient to exist between those regions, there will arise a local SO_4^{2-}-shortage near the C_3A. If initially the solution is saturated towards $\text{CaSO}_4\cdot 2\text{H}_2\text{O}$, H_2O and CaSO_4 reach the C_3A in a weight to weight ratio of 4:0:1; if ettringite precipitates as the sole hydrate, H_2O and CaSO_4 are withdrawn from the solution in a weight to weight ratio of 14:1. Thus, predominant ettringite formation leads to a local SO_4^{2-}-shortage near the C_3A. Nevertheless, the reactivity of C_3A is lower than in SO_4^{2-}-free pastes. It has been suggested (2) that amorphous Al(OH)_3 is formed because the ettringite crystals tend to grow further when there is no SO_4^{2-} at hand, with 2OH^- replacing SO_4^{2-}, causing a locally low pH and Ca^{2+} concentration near the C_3A. Although mixed crystals $\text{Ca}_6\text{Al}_2(\text{OH})_{12}(\text{SO}_4^{2-})_3 \times (\text{OH})_{25}\text{H}_2\text{O}$ are not known, the effect suggested here may be a surface effect rather than a bulk effect.

Earlier (2) it was supposed that the amorphous Al(OH)_3 precipitates from solution. However, recent data on the hydration of C_3A in NaOH solutions (10, 20) suggest the formation of a disturbed surface layer on the C_3A, approaching Ca(OH)_2 in composition, by preferential extraction of aluminate ions from the C_3A and their replacement by OH^-. It would be more in line with these data to think in the present case of a disturbed surface layer on the C_3A approaching Al(OH)_3 in composition, formed by preferential extraction of Ca^{2+} and its replacement by H^+.

The occurence at stage B of a peak at small values of z, and a quicker and smoother transition to stage C at larger values, can be explained thus. As long as SO_4^{2-} diffuses between the ettringite crystals towards the C_3A, the ettringite remains stable. The SO_4^{2-} replaces OH^- in or on ettringite, and the hydration of C_3A continues slowly. If, however, no SO_4^{2-} reaches the C_3A, the ettringite is converted into monosulphate and C_4AH_{19}, but not C_2AH_8 (2, 17). If C_4AH_{10} precipitation dominates, the pH and Ca^{2+} concentration near the C_3A decrease again (Ca$^{2+}$ and aluminate ions enter the solution in 3:2 molar ratio, but are withdrawn from it in 2:1 ratio), leading to a rapid new retardation. This will occur when, on ettringite conversion, little SO_4^{2-} is freed for monosulphate formation; i.e. when a large fraction of the ettringite is not formed near the C_3A, but on the SiO_2 surfaces; i.e. at large z.

SEM evidence supported ettringite formation on quartz surfaces and the incoherent character of the ettringite layers near the C_3A, although it was difficult to be sure that no artefacts were introduced during sample preparation.

The final peak (stage D) at $z \neq 0$ can be understood by assuming that in the long run the ettringite far from the C_3A is
converted too, converting C$_4$AH$_{19}$ initially formed into monosulphate and increasing local pH near the C$_3$A.

The proposed mechanism is regrettably complicated, but the complicated heat evolution rate curves cannot be explained by a simple mechanism.

Acknowledgements

We thank Miss Blijlevens for assistance with SEM, and Mr. Spierings for providing one of the C$_3$A samples.

References

7. Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie etc., p.211, Springer-Verlag, Berlin etc. 2 (4) (1961).