Magneto-elastic buckling of superconducting structural systems
Lieshout, van, P.H.; van de Ven, A.A.F.

Published: 01/01/1988

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 30. Nov. 2018
MAGNETO-ELASTIC BUCKLING
OF SUPERCONDUCTING
STRUCTURAL SYSTEMS

by

P.H. van Lieshout
A.A.F. van de Ven

Reports on Applied and Numerical Analysis
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands
ABSTRACT

P.R. van Lieshout and A.A.F. van de Ven
Eindhoven University of Technology,
Department of Mathematics and Computing Science,
P.O. Box 513,
5600 MB Eindhoven,
The Netherlands.

MAGNETO-ELASTIC BUCKLING OF SUPERCONDUCTING STRUCTURAL SYSTEMS

The stability (buckling) of systems of superconducting elastic slender bodies under prescribed current is investigated.

Two methods for the calculation of the buckling current are presented.

The first method, based upon a variational principle, yields an explicit expression for the buckling current. For the evaluation of this expression the magnetic fields pertinent to the deformed superconductor must be calculated.

The second method employs a formula for the Lorentz force on one conductor in interaction with a second conductor, which follows from the law of Biot and Savart.

Applications of both methods are presented for sets of straight parallel rods and for pairs of (concentric or coaxial) rings. The respective buckling currents differ a constant factor, which turns out to be the ratio of the elastic energies.

The differences in results of both methods are small as long as the rods or rings are not too nearby.
SUMMARY
P.H. van Lieshout and A.A.F. van de Ven
Eindhoven University of Technology,
Department of Mathematics and Computing Science,
P.O. Box 513,
5600 MB Eindhoven,
The Netherlands.

The stability of superconducting structural systems can be investigated on the basis of a variational principle (cf. [1] or [2]). In this presentation we consider systems consisting of superconducting slender bodies (rods or rings) under prescribed total current I_0. What we are looking for is that value of I_0 (called the buckling value I_{0c}) for which the natural state of the body becomes unstable (buckles). The method described in [1] and [2] results in an explicit expression for the buckling current I_{0c} as a quotient of two terms (both referring to the buckled state of the system)

- the elastic energy W of the deformed system;
- an integral K over the surface of the body; the integrand of K contains the magnetic fields and the displacements of the body (see [3] or [4]).

The further procedure consists of

- a choice for the displacement field u, specific for the slender body under consideration;
- calculation of the elastic energy W;
- determination of the magnetic fields (by solution of the equations obtained by the variational principle) and, finally, calculation of K.

In this way an explicit value of I_{0c} is obtained.

An alternative method is based upon a formula for the force on a curved current carrier (wire) derived from a generalization of the law of Biot and Savart, as given by F.C. Moon (cf. [5], Sect. 2.6, Eq. 2-6.4). In this method, which is less rigorous than the preceding one, the wires are considered as one-dimensional curves. For two curves L_1 and L_2 the force on L_1 is calculated as the Lorentz force due to the current through L_1 times the magnetic field caused by L_2. The buckling value is then obtained in the classical way by solution of beam or ring equations, under the assumptions

- the displacements are small;
- the systems are slender (see below).
Applications of both methods will be presented for:

1. A set of two straight parallel rods (infinitely long but periodically supported, support length \(l \)).
2. A pair of two concentric rings in one plane (radii \(b_1 \) and \(b_2 \)).
3. A pair of two (identical) coaxial rings (radius \(b \)).
4. A set of an infinite number of parallel rods (of the type 1.) in one plane.

The cross-sections of the rods or rings are circular (radius \(R \)) and the distance between two members of a system is always \(2a \). The systems are called slender if \(R \ll a \ll L \), where \(L \) can be \(l \), \(b_1 \) (or \(b_2 \)) or \(b \). Moreover, the currents are identical in each rod or ring.

The following results are obtained (here \(I_0 \) is the buckling current, \(E \) Young’s modulus, \(\mu_0 \) the permeability in vacuum and \(\Omega \) a numerical factor dependent on \(a/R \) only (cf. [3])):

<table>
<thead>
<tr>
<th>Variational method</th>
<th>Biot-Savart method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (I_0 = \frac{\pi^2 R^3}{l^2} \sqrt{\frac{E}{\mu_0 \Omega}})</td>
<td>(I_0 = \frac{\pi^2 a R^2}{l^2} \sqrt{\frac{E}{\mu_0}})</td>
</tr>
<tr>
<td>2. (I_0 = \frac{3\pi R^3}{b^2} \sqrt{\frac{E}{\mu_0 \Omega}}) (b = \frac{1}{2} (b_1 + b_2))</td>
<td>(I_0 = \frac{3\pi a R^2}{b^2} \sqrt{\frac{E}{\mu_0}})</td>
</tr>
<tr>
<td>3. (I_0 = \frac{6\pi R^3}{\sqrt{5 + \nu b^2}} \sqrt{\frac{E}{\mu_0 \Omega}})</td>
<td>(I_0 = \frac{6\pi a R^2}{\sqrt{5 + \nu b^2}} \sqrt{\frac{E}{\mu_0}})</td>
</tr>
<tr>
<td>4. in (\text{per} \text{varation})</td>
<td>(I_0 = \frac{\pi^2 a R^2}{l^2} \sqrt{\frac{E}{\mu_0}})</td>
</tr>
</tbody>
</table>

Conclusions

i) The results for 1., 2. and 3. only differ in a constant factor. This factor is solely due to the different elastic energies of the systems; the integral \(K \) takes for all these systems the same value ([3], [4]).

ii) The results of the variational and the Biot-Savart method differ from each other only in a factor

\[\frac{a}{R} \sqrt{\Omega} . \]

Hence the results should be in agreement if

\[\frac{1}{\sqrt{\Omega}} = \frac{a}{R} . \]

It turns out ([3]) that for \(a/R \) not too close to 1 the difference between \(Q^{-1/2} \) and \(a/R \) is small and decreases with increasing \(a/R \) (e.g. for \(a/R \geq 4 \), the relative difference
less than 5%, whereas this difference is at most 80% for $a/R \rightarrow 1$).

iii) Comparing 1. and 4. we conclude that the buckling current for an infinite set of rods is a factor π less than that of a pair of rods.

References

