Neutron diffraction study of beta'-sialon

van Dijen, F.K.; Metselaar, R.; Helmholdt, R.B.

Published in:
Journal of Materials Science Letters

DOI:
10.1007/BF01729146

Published: 01/01/1987

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Neutron diffraction study of β'-sialon

F. K. VAN DIJEN, R. METSELAAR
Laboratory for Physical Chemistry/Centre for Technical Ceramics, Eindhoven University of Technology, Eindhoven, The Netherlands

R. B. HELMHoldt
Netherlands Energy Research Foundation ECN, Petten, The Netherlands

β'-sialons are solid solutions with the structure of β-Si$_3$N$_4$. The general formula is Si$_{6-z}$Al$_z$O$_z$N$_{z+1}$. Silicon and aluminium occupy 6h sites $(x, y, \frac{1}{4})$ in the hexagonal cell with spacegroup $P6_3/m$ [1, 2]. Nitrogen and oxygen are present on 6h and 2c sites $(1/3, 2/3, 1/4)$. Gillot et al. [3] have performed neutron diffraction studies of sialons with $z = 2.0, 2.9$ and 4.0. Because of the different neutron diffraction scattering amplitudes of nitrogen and oxygen the atomic distribution of these atoms over the 6h and 2c sites could be determined. The authors find there is a definite trend towards a preferential occupation by oxygen of the 2c sites. Gillot et al. also report that the profile refinement gives the best fit with the experimental data when it is assumed that vacancies are present on the silicon and aluminium positions. The vacancy concentrations of 3.5% and 5% observed for the metal-6h sites for $z = 2.0, 2.9$ and 4.0 suggest that the actual composition of β'-sialon should be written as Si$_{6-3/4z}$Al$_{2/3z}$O$_z$N$_{z+1/2}$, where V represents a vacancy. The calculated vacancy concentrations corresponding to the latter formula would be 2.8%, 4.2% and 5.5%, respectively. This somewhat unexpected result led us to a reinvestigation of the β'-sialon structure.

In fact the problem is related to the question whether β'-sialons can be prepared from Si$_3$N$_4$ + Al$_2$O$_3$ or from Si$_3$N$_4$ + AlN. Gillot et al. have used the first method to prepare their samples. From later studies of the phase diagram it follows that three components are necessary to produce β'-sialon. Thus, the sample of Gillot et al. probably contained small amounts of second phases. Because such phases are often present in an amorphous state they are difficult to observe. A small number of weak impurity peaks is present in the diffraction patterns of Gillot et al.

We have chosen a different approach, using carbothermal conversion of kaolinite to produce sialon powders. A sample with $z = 3$ was prepared, according to the reaction

$$3\text{Al}_2(\text{OH})_3\text{Si}_2\text{O}_3 + 5\text{N}_2 + 15\text{C} \rightarrow 2\text{Si}_3\text{Al}_2\text{O}_3\text{N}_4 + 15\text{CO} + 6\text{H}_2\text{O}$$

Details of the preparation method are published elsewhere [4]. Because of the presence of small amounts of impurities in the kaolinite, used as starting product, minor amounts of second phases FeSi$_2$ and TiN are present.

A neutron diffractogram has been obtained at 293 K on the powder diffractometer at the HFR reactor at Petten. Neutrons of wavelength $\lambda = 0.25790$ (3) nm were obtained by using the beam reflected from the (1 1 1) planes of a single crystal of copper and the λ/n contamination was reduced to less than 0.1% by means of a pyrolytic graphite filter. Soller slits with a divergence of $30'$ were placed between the reactor and in front of the four 3He counters. The pattern was analysed by means of the Rietveld profile refinement technique [5]. The scattering amplitudes used were taken from Koester and Yelon [6].

The quality of the fit is given by the expression

$$\chi^2 = \sum w_i[|y_i(\text{obs}) - y_i(\text{calc})|^2]/\nu,$$

where $y_i(\text{obs})$ and $y_i(\text{calc})$ are the observed and calculated values of the ith measuring point, w_i being its statistical weight and ν representing the degrees of freedom. The value obtained is $\chi^2 = 19$. This rather high value is ascribed to the presence of extra peaks in the diffractogram because of the impurities already mentioned. The value for the often used reliability index R defined as $R = \Sigma[y(\text{obs}) - y(\text{calc})]/\Sigma y(\text{obs})$ is 2.9%.

The lattice parameters calculated from the neutron diffraction data are: $a = 0.76805$ (4) nm, $c = 0.29750$ (2) nm. The coordinates of the 6h sites for silicon and aluminium are $x = 0.1675 (8)$ and $y = -0.2395 (12)$. The coordinates of the 6h sites for oxygen and nitrogen are $x = 0.3330 (7)$ and $y = 0.0317 (3)$.

The calculated diffraction profile gives the best fit with the experiments when it is assumed that all sites are occupied. The site occupancy is shown in Table I. The table also gives the calculated occupancy for a random distribution of nitrogen and oxygen over the 6h and 2c sites. From these data it is evident that oxygen atoms show a preference for 2c sites and nitrogen for 6h sites. It is interesting to make a comparison with β-Si$_3$N$_4$ and Si$_2$N$_2$O. In Si$_3$N$_4$ there are SiN$_4$ tetrahedra consisting of three nitrogen on h-sites and one nitrogen on a c-site. The Si$_2$N$_2$O structure can be derived from the β-Si$_3$N$_4$ structure by replacing the nitrogen on the c-site by an oxygen atom. We then

<table>
<thead>
<tr>
<th>Site</th>
<th>Atom</th>
<th>Observed occupation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6h</td>
<td>O</td>
<td>1.73 (3)</td>
</tr>
<tr>
<td>6h</td>
<td>N</td>
<td>4.27 (3)</td>
</tr>
<tr>
<td>2c</td>
<td>O</td>
<td>1.27 (3)</td>
</tr>
<tr>
<td>2c</td>
<td>N</td>
<td>0.73 (3)</td>
</tr>
</tbody>
</table>

© 1987 Chapman and Hall Ltd.
have pseudo-planar SiN$_3$ groups connected with each other by Si–O–Si bonds. In β'-sialon we find an intermediate case.

The bond lengths obtained are 0.1743, 0.1746 and 0.1816 nm, while those obtained by Gillot et al. are 0.1730, 0.1739 and 0.1745 nm. We do not have any explanation for the value of 0.1816 nm.

Summarizing we can say that our measurements confirm the earlier conclusion of Gillot et al. concerning the site preference of oxygen and nitrogen atoms. We have not found any indication for the presence of structural vacancies in the β'-sialon structure, however. This is in accordance with the generally accepted formula Si$_{6-z}$Al$_z$O$_z$N$_{8-z}$ for β'-sialon.

References

Received 17 March and accepted 31 March 1987