Multi-echelon production/inventory systems: optimal policies, heuristics, and algorithms

Citation for published version (APA):

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 20. Apr. 2020
Multi-Echelon Production/Inventory Systems: Optimal Policies, Heuristics, and Algorithms

G.J. van Houtum
Department of Technology Management, Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB, Eindhoven, Netherlands, g.j.v.houtum@tm.tue.nl

May 11, 2006

Abstract
The theory on multi-echelon production/inventory systems is a core theory within supply chain management. It provides useful insights for design of supply chains and may be used for tactical and operational planning decisions. The multi-echelon theory started with the seminal paper of Clark and Scarf in 1960. In this tutorial, we describe for which systems optimal policies are known, which key features are needed for these optimal policy structures, and we discuss heuristics for systems of which the optimal policy structure is not known. We describe the complete analysis for the most basic multi-echelon production/inventory system: the serial, two-echelon production/inventory system with linear inventory holding and backordering costs. We show that basestock policies are optimal, we derive a decomposition result for the determination of optimal basestock levels, we present Newsboy equations for the optimal basestock levels, and we discuss computational procedures. Next, we describe a variety of systems for which generalized classes of basestock policies have been derived to be optimal. This includes assembly systems and systems with fixed batch sizes, fixed replenishment intervals, generalized demand processes, and a service level constraint instead of backordering costs. Finally, we discuss approaches that have been taken for distribution systems and systems with a general structure.

Keywords: production/inventory; multi-echelon; stochastic demand; stochastic dynamic programming; basestock policies; Newsboy equations

1. Introduction

Supply chain management is a broad area that covers strategic, tactical, and operational management decisions. The objective of a supply chain is to deliver products of the right quality, at the right time, in the right amount, and preferably against low costs. Two primary sources of costs in supply chains are capacity costs and material costs. Typically, capacity decisions are made for a longer term than material decisions; thus capacity decisions are often made first, and material decisions follow. Material decisions themselves may also be made sequentially, according to a hierarchical approach with two decision levels:

(i) a first level decides on such things as the form of batching, the batch sizes and replenishment intervals, and the (planned) leadtimes, where a multi-item, multi-echelon view is taken. Via these decisions, one can accommodate setups, capacity constraints, capacity partitioning, and shipment consolidation. These decisions may be reviewed annually, for example;
(ii) a second level decides on reorder and basestock levels, adapted on a daily, weekly, or monthly basis (e.g., when procedures like exponential smoothing are used for demand forecasting). Here the batching rule is taken as given, and a single-item, multi-echelon view can be incorporated.

The essential feature of this approach is that batching decisions are separated from safety stock decisions, as advocated by e.g. Graves [39]. For the second-level material decisions, excellent support may be provided by multi-echelon production/inventory models. In addition, the multi-echelon models give insights into the effect of e.g. leadtimes, batch sizes, and demand uncertainty on total costs. They thus may also support first-level material decisions, capacity decisions, and design decisions (see also [16, 59]).

The theory of multi-echelon production/inventory decisions is the topic of this chapter. This theory was started by Clark and Scarf [14] in 1960. In their paper, a basic model for a supply chain consisting of multiple stages with a serial structure is considered. The stages are numbered 1, . . . , N. Stage N orders at an external supplier, stage N − 1 orders at stage N, stage N − 2 orders at stage N − 1, and so on. Finally at the most downstream stage, stage 1, external demand occurs. A stage may represent a production node, in which case input material is transformed into another product, or a transportation node, in which case a product is moved from one location to another location. At the end of each stage, products can be kept on stock in a stockpoint, where they stay until they are demanded by either the next stage or the external customers. Time consists of periods of equal length, which may be days, weeks, or months, and the time horizon is infinite. Each stage is allowed to order at the beginning of each period. One can never order more than the amount available at the supplying stage, and the ordered amount by a stage n is assumed to arrive at the stockpoint at the end of stage n after a deterministic leadtime. For the demand, a stationary, stochastic demand process is assumed. Costs consist of (linear) inventory holding costs, which models the costs of working capital in the supply chain, and linear penalty costs for backordering, which constitute the counterpart for the inventory holding costs. Clark and Scarf proved that so-called basestock policies based on echelon inventory positions are optimal, and they showed that the optimal basestock levels are obtained by the minimization of one-dimensional convex cost functions (this is known as the decomposition result). We refer to their model as the Clark-Scarf model.

Since 1960, a lot of research has been executed to extend the work of Clark and Scarf. Extensions that have been considered are e.g. systems with a pure assembly/convergent structure, fixed batch sizes or fixed replenishment intervals, a service level constraint, and advance demand information. Also, alternative approaches were developed to derive the main results for the Clark-Scarf model, which has contributed to a better understanding of which features are key to obtain the optimality of basestock policies.

The objective of this tutorial is to expose for which systems optimal policies are known, which key features are needed to be able to derive the structure of optimal policies, and to discuss heuristics for systems of which the optimal policy structure is not known. We will start with a complete analysis of the most basic system: the two-echelon, serial system. From there on, we describe many extensions that have been made. For these extensions, generalized forms of basestock policies have been shown to be optimal. This includes assembly/convergent systems. For distribution/divergent systems, basestock policies are optimal under the so-called balance assumption, but they are not
optimal without that assumption.

Systems with a general structure (i.e., with a mixed convergent-divergent structure) are most difficult. For those systems, concepts have been developed that are based on basestock policies and that we can relate to insights for basic systems (see §5.3). In the past few years, these concepts have been successfully applied in practice. In [46, 40, 18], applications in large-scale projects at IBM, Eastman Kodak, and Philips Electronics have been reported. There are also several applications in smaller projects, and currently there is also commercial software available that is based on multi-echelon theory. Generally, multi-echelon theory is increasingly incorporated into the practice of supply chain management.

The foreknowledge that we assume is basic probability theory, basic inventory theory (see e.g. Axsäter [3] and Zipkin [71]), and stochastic dynamic programming (see e.g. Puterman [50] and Porteus [49]). This tutorial is intended to be accessible for anyone with that foreknowledge. It may also serve as a starting point for a PhD course on multi-echelon production/inventory systems, and for starting researchers in this research area.

The organization is as follows. In Section 2, we give a complete treatment of a two-echelon, serial system, and we denote the key features that lead to the optimality of basestock policies, the decomposition result, and Newsboy equations for optimal basestock levels. Next, in Section 3, we describe the generalized results for multi-echelon, serial systems, and we discuss exact and approximate procedures for the computation of an optimal policy and the corresponding optimal costs. In Section 4, we describe a variety of model variants and extended models for which pure or generalized forms of basestock policies are optimal. This includes assembly/convergent systems and systems with a service level constraint, fixed batch sizes, and fixed replenishment intervals. Then, in Section 5, we discuss systems with a distribution/divergent structure and systems with a mixed convergent-divergent structure. After that, we classify multi-echelon systems as nice and complicated systems and we conclude in Section 6.

2. Analysis of the Two-Echelon, Serial System

In this section, we give a complete analysis of the two-echelon, serial system. In §2.1, we describe the model. Next, in §2.2, we derive the optimality of basestock policies under general convex echelon cost functions and we show that the optimal basestock levels follow from the minimization of convex, one-dimensional functions (this is known as the decomposition result). Subsequently, in §2.3, for the common case with linear inventory holding and penalty costs, we derive simpler expressions in terms of so-called shortfalls and backlogs for these convex, one-dimensional functions. These alternative expressions facilitate computational procedures and we use them to derive Newsboy equations for the optimal basestock levels.

2.1 Model

Consider a supply chain consisting of two stages, where a single product is produced to stock. The upstream stage is called stage 2 and the downstream stage is called stage 1. Both stage 1 and stage 2 consists of a production step, a transportation step, or a network of such steps, with a stockpoint at the end of the stage. The stockpoint at the end of stage \(n = 1, 2 \) is called stockpoint \(n \). For
simplicity, we say that stage 2 is fed with raw materials, that an intermediate product is obtained from stage 2 and stored in stockpoint 2, and that a final product is obtained from stage 1 and stored in stockpoint 1. External demand occurs for the final product, i.e., at stockpoint 1.

Time is divided into periods of equal length. W.l.o.g., the length of each period is assumed to be equal to 1. The time horizon that we consider is infinitely long. The periods are numbered 0, 1, . . . , and denoted by the index \(t \) \((t \in \mathbb{N}_0 := \{0\} \cup \mathbb{N})\).

Both stages or stockpoints are allowed to place orders at the beginning of each period. An amount ordered by stage 2 at the beginning of a period \(t \) arrives at stockpoint 2 after a deterministic leadtime \(l_2 \in \mathbb{N} \). We assume that there is always sufficient raw material available, and thus orders by stockpoint 2 are never delayed. An amount ordered by stage 1 at the beginning of a period \(t \) arrives at stockpoint 1 after a deterministic leadtime \(l_1 \in \mathbb{N}_0 \) \((l_1 = 0 \text{ is allowed})\), provided that there is sufficient stock at stockpoint 2 available at the beginning of period \(t \). If the available stock is smaller than the ordered amount, then the available amount is sent into stage 1 and becomes available after \(l_1 \) periods, while the rest is delivered as soon as possible.

The demands in different periods are independent and identically distributed on \([0, \infty)\). The cumulative demand over periods \(t_1, \ldots, t_2, \ 0 \leq t_1 \leq t_2 \), is denoted by \(D_{t_1,t_2} \). \(F \) is the generic distribution function for the demand \(D_{t,t} \) in an arbitrary period \(t \in \mathbb{N}_0 \) \((\mathbb{N}_0 := \{0,1,\ldots\})\). The mean demand per period is \(\mu > 0 \). We implicitly assume that we have a continuous product and that order sizes and inventory levels are real-valued variables. The demand distribution function, however, is not necessarily continuous. There may be positive probability masses at specific points. In the case of a discrete product, it is more natural to limit order sizes and inventory levels to integer values. That case is discussed in §4.2.

A picture of the serial, two-echelon system is given in Figure 1. We have the following events in each period:

(i) At each stage, an order is placed;

(ii) Arrival of orders;

(iii) Demand occurs;

(iv) One-period costs are assessed (these costs are specified below).

The first two events take place at the beginning of the period, and the order of these two events may be interchanged, except for the most downstream stage when its leadtime equals 0. The last event occurs at the end of a period. The third event, the demand, may occur anywhere in between.
2.1.1 Echelon stocks and costs attached to echelons.

The analysis of multi-echelon systems is generally based on the concepts *echelon stock* and *echelon inventory position*, as introduced by Clark [13] in 1958 (see also Zipkin [71], pp. 120-124). Below, we describe these concepts and we define costs attached to echelons.

In general, the echelon stock *(or echelon inventory level)* of a given stockpoint denotes all physical stock at that stockpoint plus all materials in transit to or on hand at any stockpoint downstream minus eventual backlogs at the most downstream stockpoints. The chain under consideration is called the echelon. An echelon stock may be negative, indicating that the total backlog at the most downstream stockpoints is larger than the total physical stock in that echelon. Echelons are numbered according to the highest stockpoint in that echelon. In our two-echelon system, we have two echelons:

- Echelon 1, consisting of stockpoint 1;
- Echelon 2, consisting of stockpoint 2, stockpoint 1, and the pipeline in between.

The echelon stock of echelon 1 is also called *echelon stock 1*, and is the same as the installation stock of stockpoint 1. The echelon stock of echelon 2 is also called *echelon stock 2*.

The *echelon inventory position* of a stockpoint is defined as its echelon stock plus all materials which are in transit to the stockpoint. We assume that a stockpoint never orders more than what is available at the next upstream stockpoint. In our two-echelon system, this implies that stockpoint 1 never orders more than what is available at stockpoint 2. As we study the optimal behavior of the system under centralized control, this assumption can be made w.l.o.g.; instead of creating a backlog position at stockpoint 2, stockpoint 1 will attempt to order that difference at the next period. Under this assumption, the echelon inventory position is also equal to the echelon stock plus all materials on order. The echelon inventory position of echelon *n* is also called *echelon inventory position n*, *n* = 1, 2. The echelon stocks and echelon inventory positions are visualized in Figure 2.

We now define our costs, which are assessed at the *end* of each period, based on the echelon stocks. For *n* = 1, 2, we pay costs *c*_{*n*}(*x*_{*n*}), where *x*_{*n*} denotes echelon stock *n* at the *end* of a period. Notice that, by the above definitions, it holds that *x*₂ ≥ *x*₁. The function *c*_{*n*}(*x*_{*n*}) denotes the *costs attached to echelon n*. We assume that the cost functions *c*_{*n*}(*x*_{*n*}), *n* = 1, 2, are *convex*. In
addition, to avoid mathematical complexities, we assume that these cost functions are such that it is suboptimal to let the backlog grow to infinity. That one-period costs can be expressed as the sum of separable, convex functions based on echelon stocks is a crucial assumption. This was already pointed out by Clark and Scarf [14] (Assumption 3, pp. 478-479).

A special cost structure is obtained when we have linear inventory holding and penalty costs. That structure is often assumed and is as follows. A cost of $h_2 \geq 0$ is charged for each unit that is on stock in stockpoint 2 at the end of a period and for each unit in the pipeline from stockpoint 2 to stockpoint 1. A cost of $h_1 + h_2 \geq 0$ is charged for each unit that is on stock in stockpoint 1 at the end of a period. The inventory holding cost parameters represent interest and storage costs. We assume that the additional inventory holding cost at stage 1 is nonnegative, i.e., $h_1 \geq 0$. A penalty cost p is charged per unit of backordered demand at stockpoint 1 at the end of a period. This represents inconvenience for delayed fulfilment of demand and constitutes the counterpart for the inventory holding costs. We assume that $p > 0$.

Let x_n, $n = 1, 2$, be echelon stock n at the end of a period. Then, the total inventory holding and backordering costs at the end of a period are equal to

$$h_2(x_2 - x_1) + (h_1 + h_2)x_1^+ + px_1^-,$$

where $x^+ = \max\{0, x\}$ and $x^- = \max\{0, -x\} = -\min\{0, x\}$ for any $x \in \mathbb{R}$. These costs may be rewritten as

$$h_2(x_2 - x_1) + (h_1 + h_2)x_1^+ + px_1^- = h_2x_2 + h_1x_1 + (p + h_1 + h_2)x_1^- = c_2(x_2) + c_1(x_1),$$

with

$$c_1(x_1) = h_1x_1 + (p + h_1 + h_2)x_1^-,$$

$$c_2(x_2) = h_2x_2.$$ \hspace{1cm} (1)

This shows that the case with linear inventory holding and penalty costs fits under the general cost structure. In this special case $c_2(x_2)$ is linear and $c_1(x_1)$ is a convex function consisting of two linear segments. In the analysis below (in §2.2), we assume the general cost structure. After that, we derive additional results that hold under linear inventory holding and penalty costs (in §2.3).

2.1.2 Objective.

Let Π denote the set of all possible ordering policies, and let $G(\pi)$ denote the average costs of ordering policy π for all $\pi \in \Pi$. We want to solve the following minimization problem to optimality:

$$(P) : \quad \text{Min} \quad G(\pi)$$

s.t. \quad $\pi \in \Pi$

So, the objective is to find an ordering policy under which the average costs per period are minimized.
2.2 Analysis

In this subsection, we derive the optimality of basestock policies and the decomposition result. These results are due to Clark and Scarf [14], who derived these results via a stochastic dynamic program in a finite-horizon setting. Federgruen and Zipkin [29] extended these results to the infinite-horizon case. Alternative, easier proofs were developed by Langenhoff and Zijm [45] and by Chen and Zheng [12] (see also Chen [10]). We follow the approach of Chen and Zheng, where we add an explicit definition of a relaxed single-cycle problem (cf. [64] for a generalized system; Chen and Zheng have an implicit definition). We distinguish three steps:

1. Definition of cycles and cycle costs;
2. Solution of a relaxed single-cycle problem;

These steps are described in §§2.2.1-2.2.3. The introduction of the relaxed single-cycle problem and the property that the solution of the single-cycle problem also solves the infinite-horizon problem (P) are key in the line of proof. Interestingly, the relaxed single-cycle problem is a stochastic dynamic programming problem with a finite number of stages (two stages in this case). Thus, the solution of problem (P), which is a stochastic dynamic programming problem with an infinite horizon, follows in fact from a finite-horizon stochastic programming problem.

2.2.1 Step 1: Definition of cycles and cycle costs.

We consider the connection between order decisions at the two stages and we describe which costs they affect.

For each \(n = 1, 2 \) and \(t \in \mathbb{N}_0 \), let \(I_L_{t,n} \) and \(I_P_{t,n} \) denote echelon stock \(n \) (= echelon inventory level \(n \)) and echelon inventory position \(n \) at the beginning of period \(t \) (just before the demand occurs), and let \(C_{t,n} \) denote the costs attached to echelon \(n \) at the end of period \(t \).

We now consider the following two connected decisions, starting with an order placed by stage 2 at the beginning of a period \(t_0 \in \mathbb{N}_0 \):

- **Decision 2**: Decision 2 concerns the decision at the beginning of period \(t_0 \) with respect to the order placed by stage 2. Suppose that this order is such that \(I_P_{t_0,2} \) becomes equal to some level \(z_2 \). First of all, this decision directly affects the echelon 2 costs at the end of period \(t_0 + l_2 \). The expected value of these costs equals

\[
E\{C_{t_0+l_2,2} \mid I_P_{t_0,2} = z_2\} = E\{c_2(z_2 - D_{t_0,t_0+l_2})\}.
\]

(3)

Second, by this decision, echelon stock 2 at the beginning of period \(t_0 + l_2 \) becomes equal to \(I_L_{t_0+l_2,2} = z_2 - D_{t_0,t_0+l_2-1} \), and this directly limits the level to which one can increase the echelon inventory position \(I_P_{t_0+l_2,1} \) of echelon 1 at the beginning of period \(t_0 + l_2 \). This is the second decision to consider.

- **Decision 1**: Decision 1 concerns the order placed by stage 1 at the beginning of period \(t_0 + l_2 \). Suppose that by this order \(I_P_{t_0+l_2,1} \) becomes equal to some level \(z_1 \). This decision directly
Figure 3: The consequences of the decisions 1 and 2.

![Diagram showing the consequences of decisions 1 and 2]

Decision 2:
- $IP_{t_0, 2}$ is increased up to z_2
- Determines $EC_{t_0 + l_2, 2}$

Decision 1:
- $IP_{t_0 + l_2, 1}$ is increased up to $z_1 (\leq z_2 - D_{t_0, t_0 + l_2 - 1})$
- Determines $EC_{t_0 + l_2 + l_1, 1}$

affects the echelon 1 costs at the end of period $t_0 + l_2 + l_1$. The expected value of these costs equals

$$E\{C_{t_0 + l_2 + l_1, 1} | IP_{t_0 + l_2, 1} = z_1\} = E\{c_1 (z_1 - D_{t_0 + l_2, t_0 + l_2 + l_1})\}. \quad (4)$$

Figure 3 visualizes the way in which the above decisions affect each other and which costs are determined by them.

In the description above, we have explicitly described for decision 1 how the level z_1 to which $IP_{t_0 + l_2, 1}$ is increased is bounded from above. We will need this in the analysis below. Obviously, for both decisions 2 and 1, it also holds that the levels z_2 and z_1 to which $IP_{t_0, 2}$ and $IP_{t_0 + l_2, 1}$ are increased, are bounded from below (by the level that one already has for its echelon inventory position just before the new order is placed). In the analysis below, this is taken into account too. But, this bounding from below will appear to be less important.

The decisions 2 and 1 start with decision 2 taken in period t_0. These decisions constitute a cycle, and the corresponding expected costs are equal to

$$C_{t_0} := C_{t_0 + l_2, 2} + C_{t_0 + l_2 + l_1, 1}.$$

These costs are defined for each period $t_0 \in N_0$, and we call them the total costs attached to cycle t_0. For each positive recurrent policy $\pi \in \Pi$, the average costs are equal to the average value of the costs C_{t_0} over all cycles t_0:

$$G(\pi) = \lim_{T \to \infty} \frac{1}{T} E\left\{ \sum_{t=0}^{T-1} (C_{t+1} + C_{t, 1}) \right\}$$

$$= \lim_{T \to \infty} \frac{1}{T} E\left\{ \sum_{t=0}^{T-1} C_t + \sum_{t=0}^{T-1} C_{t, 2} + \sum_{t=0}^{T-1} C_{t, 1} - \sum_{t=T}^{T+l_2-l_1-1} C_{t, 2} - \sum_{t=T}^{T+l_2+l_1-1} C_{t, 1} \right\}$$

$$= \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} EC_t. \quad (5)$$

2.2.2 Step 2: Solution of a relaxed single-cycle problem

Consider a cycle t_0. We now consider how the decisions 1 and 2 can be taken such that the expected total costs attached to cycle t_0 ($= EC_{t_0}$) are minimized. Decision n, $n = 1, 2$, is described
by the level \(z_n \), to which echelon inventory position \(n \) is increased at the beginning of period \(t_0 \) and \(t_0 + l_2 \), respectively. The choice for the level \(z_1 \) is limited from above by what is available at stage 2. Further the choice for the level \(z_n, n = 2, 1 \), is bounded from below by the value of echelon inventory position \(n \) just before the order is placed. By neglecting the bounding from below, we obtain the following relaxed problem:

\[
(RP(t_0)) : \quad \text{Min } \mathbb{E}C_{t_0} = \mathbb{E}C_{t_0+l_2,2} + \mathbb{E}C_{t_0+l_2+l_1,1} \\
\text{s.t. } \mathbb{E}C_{t_0+l_2,2} = \mathbb{E}\{c_2(z_2 - D_{t_0,t_0+l_2})\}, \\
\mathbb{E}C_{t_0+l_2+l_1,1} = \mathbb{E}\{c_1(z_1 - D_{t_0+l_2,t_0+l_2+l_1})\}, \\
z_1 \leq IL_{t_0+l_2,2}, \\
IL_{t_0+l_2,2} = z_2 - D_{t_0,t_0+l_2-1}.
\]

Problem \((RP(t_0)) \) is a 2-stage stochastic dynamic programming problem. Decision 2 is described by \(z_2 \) and is not limited at all; we thus may connect this decision to a dummy starting state. The resulting direct expected costs are equal to \(\mathbb{E}\{c_2(z_2 - D_{t_0,t_0+l_2})\} \). Decision 1 is described by \(z_1 \), and, via the constraint \(z_1 \leq IL_{t_0+l_2,2} \), its decision space depends on the echelon stock 2 at the beginning of period \(t_0 + l_2 \), i.e., on \(IL_{t_0+l_2,2} \). Hence, we use \(IL_{t_0+l_2,2} \) to describe the state of the system when decision 1 is taken. This state depends on decision 2 via the relation \(IL_{t_0+l_2,2} = z_2 - D_{t_0,t_0+l_2-1} \).

Decision 1 results in direct expected costs \(\mathbb{E}\{c_1(z_1 - D_{t_0+l_2,t_0+l_2+l_1})\} \).

For Problem \((RP(t_0)) \), we first determine what is optimal for decision 1, and after that we consider decision 2.

Let the function \(G_1(y_1) \) be defined by

\[
G_1(y_1) := \mathbb{E}\{c_1(y_1 - D_{t_0+l_2,t_0+l_2+l_1})\}, \quad y_1 \in \mathbb{R}.
\]

This function denotes the expected costs attached to echelon 1 at the end of a period \(t_0 + l_1 + l_2 \) if echelon inventory position 1 at the beginning of period \(t_0 + l_2 \) (i.e., \(l_1 \) periods earlier) has been increased up to level \(y_1 \).

Lemma 1 (on the optimal choice for \(z_1 \)) It holds that:

(i) \(G_1(y_1) \) is convex as a function of \(y_1, y_1 \in \mathbb{R} \).

(ii) Let \(S_1 (\in \mathbb{R} \cup \{\infty\}) \) be chosen such that

\[
S_1 := \text{argmin}_{y_1 \in \mathbb{R}} G_1(y_1).
\]

Then, for the problem \((RP(t_0)) \), it is optimal to choose the level \(z_1 \) equal to \(S_1 \), or as high as possible if this level can not be reached.

Proof. The formula for \(G_1(y_1) \) may be rewritten as

\[
G_1(y_1) = \int_0^\infty c_1(y_1 - x)dF_{t_1+1}(x),
\]
where F_{l_1+1} is the $(l_1 + 1)$-fold convolution of F. Let $y_1^1, y_1^2 \in \mathbb{R}$, and $\alpha \in [0, 1]$, then, by the convexity of $c_1(\cdot)$,

\[
G_1(\alpha y_1^1 + (1-\alpha)y_1^2) = \int_0^\infty c_1(\alpha(y_1^1 - x) + (1-\alpha)(y_1^2 - x))dF_{l_1+1}(x) \\
\leq \int_0^\infty [\alpha c_1(y_1^1 - x) + (1-\alpha)c_1(y_1^2 - x)]dF_{l_1+1}(x) \\
= \alpha G_1(y_1^1) + (1-\alpha)G_1(y_1^2),
\]

and thus $G_1(y_1)$ is convex. This proves part (i).

Next, S_1 is defined as the point where $G_1(y_1)$ is minimized. If there are multiple points where $G_1(y_1)$ is minimized, then S_1 may be taken equal to any of these points. We can now show how decision 1, i.e., the choice for z_1, may be optimized for Problem (RP(t_0)). This decision is taken at the beginning of period $t_0 + l_2$, and the choice for z_1 is bounded from above by $IL_{t_0+l_2,2}$. This decision only affects the costs $EC_{t_0+l_2,1}$, which, by (6), are equal to $G_1(z_1)$. As the function G_1 is convex, these costs are minimized by choosing z_1 equal to $z_1 = S_1$ if $IL_{t_0+l_2,2} \geq S_1$, and equal to $z_1 = IL_{t_0+l_2,2}$ if $IL_{t_0+l_2,2} < S_1$. This completes the proof of part (ii).

By Lemma 1, for decision 1, it is optimal to apply basestock policy S_1 (i.e., a basestock policy with basestock level S_1). Let $G_2(y_1, y_2)$ be defined as the expected cycle costs when a basestock policy with level $y_2 \in \mathbb{R}$ is applied for decision 2 and a basestock policy $y_1 \in \mathbb{R}$ for decision 1 (notice that we allow that $y_2 < y_1$ and y_1 and y_2 may also be negative). Then $z_2 = y_2$, as the external supplier can always deliver, and for z_1 we find

\[
z_1 = \min\{IL_{t_0+l_2,2}, y_1\} = \min\{y_2 - D_{t_0+t_0+l_2-1}, y_1\}.
\]

Hence,

\[
G_2(y_1, y_2) = \mathbb{E}\{c_2(y_2 - D_{t_0+t_0+l_2}) + c_1(\min\{y_2 - D_{t_0+t_0+l_2-1}, y_1\} - D_{t_0+l_2,0+l_2+l_1})\}, \quad y_1, y_2 \in \mathbb{R}. \quad (7)
\]

Lemma 2 (on the optimal choice for z_2) It holds that:

(i) $G_2(S_1, y_2)$ is convex as a function of y_2, $y_2 \in \mathbb{R}$.

(ii) Let $S_2 \in \mathbb{R} \cup \{\infty\}$ be chosen such that

\[
S_2 := \arg\min_{y_2 \in \mathbb{R}} G_2(S_1, y_2)
\]

Then, for Problem (RP(t_0)), it is optimal to choose the level z_2 equal to S_2.

Proof. Let F_{l_2} be the l_2-fold convolution of F. The formula for $G_2(S_1, y_2)$ may be rewritten as

\[
G_2(S_1, y_2) = \mathbb{E}\{c_2(y_2 - D_{t_0+t_0+l_2})\} + \int_0^\infty \mathbb{E}\{c_1(\min\{y_2 - x, S_1\} - D_{t_0+l_2,0+l_2+l_1})\}dF_{l_2}(x) \\
= \mathbb{E}\{c_2(y_2 - D_{t_0+t_0+l_2})\} + G_1(S_1) + \int_0^\infty [G_1(\min\{y_2 - x, S_1\}) - G_1(S_1)]dF_{l_2}(x) \\
= \mathbb{E}\{c_2(y_2 - D_{t_0+t_0+l_2})\} + G_1(S_1) + \int_0^\infty \tilde{G}_1(y_2 - x)dF_{l_2}(x), \quad (8)
\]
where
\[\tilde{G}_1(y) = G_1(\min\{y, S_1\}) - G_1(S_1) = \begin{cases}
G_1(y) - G_1(S_1) & \text{if } y < S_1; \\
0 & \text{if } y \geq S_1.
\end{cases} \]

As \(G_1(\cdot) \) is convex, with a minimum in \(S_1 \), also the function \(\tilde{G}_1(y) \) is convex. Hence, along the same lines as for part (i) of Lemma 1, the first and third term in (8) may be shown to be convex. This implies that \(G_2(S_1, y_2) \) is convex as a function of \(y_2 \), which completes the proof of part (i).

Next, \(S_2 \) is defined as the point that minimizes \(G_2(S_1, y_2) \) as a function of \(y_2 \). If there are multiple points where \(G_2(S_1, y_2) \) is minimized, then \(S_2 \) may be taken equal to any of these points. We can now show how decision 2, i.e., the choice for \(z_2 \), may be optimized for problem (RP(\(t_0 \))). This decision is taken at the beginning of period \(t_0 \). This decision affects the costs \(EC_{t_0+l_2,2} \) and \(EC_{t_0+l_2+l_1,1} \). Whatever choice is made for \(z_2 \), it is optimal to take decision 1 according to a basestock policy with basestock level \(S_1 \) (by part (ii) of Lemma 1). Hence, by (7),
\[EC_{t_0+l_2,2} + EC_{t_0+l_2+l_1,1} = G_2(S_1, y_2). \]

These costs are minimized by choosing \(z_2 \) equal to \(z_2 = S_2 \). This completes the proof of part (ii).

By Lemmas 1 and 2, for decisions 2 and 1 of Problem (RP(\(t_0 \))), it is optimal to apply a basestock policy with basestock level \(S_2 \) and \(S_1 \), respectively. The corresponding optimal costs are equal to \(G_2(S_1, S_2) \). As this problem was obtained by neglecting the bounding from below when placing orders, the optimal costs \(G_2(S_1, S_2) \) constitute a lower bound for the optimal costs of the original Problem (P).

2.2.3 Step 3: Solution of the infinite-horizon problem (P)

The functions \(G_1(y_1) \) and \(G_2(y_1, y_2) \) as defined above, have alternative interpretations; \(G_1(y_1) \) represents the average costs of a basestock policy \(y_1 \) in a specific single-echelon system, called Subsystem 1, while \(G_2(y_1, y_2) \) represents the average costs of a basestock policy \((y_1, y_2) \) for the full two-echelon system as depicted in Figure 1. This is shown first, and after that we solve the original Problem (P).

Subsystem 1 is defined as the downstream part of the full two-echelon system. It consists of stage 1 only, and it has stockpoint 2 as external supplier with infinite supply. The leadtime for this subsystem is \(l_1 \), the demands are the same as in the full system, and the costs consist of the costs attached to echelon 1; see Figure 4. Under a basestock policy \(y_1 \) \((y_1 \in \mathbb{R})\), at the beginning of each period, nothing is ordered if the current inventory position is already at level \(y_1 \) or higher, and the inventory position is increased up to level \(y_1 \) if the current inventory position is lower than \(y_1 \). That the inventory position before ordering is above the basestock level \(y_1 \) may only happen in a limited number of periods. Hence, in steady state the inventory position is always increased up to level \(y_1 \), and therefore the average costs are equal to \(G_1(y_1) = \mathbb{E}\{c_1(y_1 - D_{t_0+l_2,l_0+l_2+l_1})\} \).

Consider now a basestock policy \((y_1, y_2) \), \(y_1, y_2 \in \mathbb{R} \), for the full two-echelon system. Under this policy, at the beginning of each period, stage 2 orders nothing if the current echelon inventory position 2 is already at level \(y_2 \) or higher, and its echelon inventory position is increased up to level \(y_2 \) if the current position is lower than \(y_2 \). That echelon inventory position 2 before ordering is above the basestock level \(y_2 \) may only happen in a limited number of periods. Hence, in steady
state, echelon inventory position 2 is always increased up to level y_2. Similarly, at the beginning of each period, stage 1 orders nothing if the current echelon inventory position 1 is already at level y_1 or higher, and, one aims to increase up to level y_1 if the current position is lower than y_1. In the latter case, it may not be possible to increase up to y_1 because there is not sufficient material available in stockpoint 2. That echelon inventory position 1 before ordering is above the basestock level y_1 may only happen in a limited number of periods. Hence, in steady state, we obtain that echelon inventory position 1 is increased up to level y_1 if echelon stock 2 is at least y_1 at that moment, and up to echelon stock 2 otherwise. Hence, in steady state, we obtain per cycle that the ordering behavior is precisely as depicted in Figure 3 where basestock policies with levels y_2 and y_1 are applied for decisions 2 and 1, respectively. Hence the average costs of a basestock policy (y_1, y_2) are given by the function $G_2(y_1, y_2)$.

Suppose now that basestock policy (S_1, S_2) is used for the original Problem (P). Then average costs $G_2(S_1, S_2)$ are obtained, and these costs are thus equal to the lower bound. This implies that basestock policy (S_1, S_2) is optimal for the original Problem (P). In fact, if basestock policy (S_1, S_2) is used in all periods, then the lower bounds that were relaxed in Problem (RP(t_0)) are only binding during a transient period (when the echelon inventory positions may be above S_1 and S_2, and nothing should be ordered). In the long run, these lower bounds are not binding and thus the optimal solutions of the relaxed and unrelaxed problem are identical.

Theorem 1 Basestock policy (S_1, S_2) with the S_i as defined in Lemmas 1 and 2 is optimal for Problem (P).

This theorem shows that the class of basestock policies is optimal, and that the optimal basestock levels can be obtained sequentially by the minimization of one-dimensional functions. The latter result is known as the decomposition result.

Notice that it may happen that $S_2 < S_1$. As stated before, for basestock policies (y_1, y_2) in general, we allow that $y_2 < y_1$, i.e., that the basestock level for echelon inventory position 1 is larger than the basestock level for echelon inventory position 2. Nevertheless, in practice, it is more natural to use and communicate a basestock policy (y_1, y_2) with $y_2 \geq y_1$. The following lemma shows that any basestock policy (y_1, y_2) with $y_2 < y_1$ can be translated into a basestock policy (\tilde{y}_1, y_2) with $y_2 \geq \tilde{y}_1$ and equal average costs.

Lemma 3 Let $y_1, y_2 \in \mathbb{R}$, and define $\tilde{y}_1 := \min\{y_1, y_2\}$. Then $G_2(\tilde{y}_1, y_2) = G_2(y_1, y_2)$.

Proof. Let $y_1, y_2 \in \mathbb{R}$, and define $\tilde{y}_1 := \min\{y_1, y_2\}$. That $G_2(\tilde{y}_1, y_2) = G_2(y_1, y_2)$ is trivial in case $y_2 \geq y_1$, since then $\tilde{y}_1 = y_1$. In case $y_2 < y_1$, at the beginning of each period, stage 1 is
confronted with a shortage of material at stockpoint 2 and all available material at stockpoint 2 will be forwarded into stage 2. This implies that stockpoint 2 is a stockless stockpoint. This will still be so if basestock level \(y_1 \) is decreased to \(\tilde{y}_1 = y_2 \). Hence, under basestock policy \((\tilde{y}_1, y_2)\) the orders are identical to the orders generated under basestock policy \((y_1, y_2)\) (at least in the long run; in the first periods of the horizon there may be differences). Thus both policies have the same average costs. An alternative, technical proof is obtained by (7): if \(y_2 < y_1 \), then

\[
G_2(y_1, y_2) = \mathbb{E}\{c_2(y_2 - D_{l_0, l_0+l_2}) + c_1(y_2 - D_{l_0, l_0+l_2-1} - D_{l_0+l_2, l_0+l_2+l_1})\} \\
= G_2(y_2, y_2) = G_2(\tilde{y}_1, y_2).
\]

This completes the whole analysis for the two-echelon serial system. All results are easily extended to serial systems with more than two stages. Proofs go by induction, where the induction step is identical to what we derived for stage 2 in this two-echelon system.

Remark 1 (Induced penalty cost function). Equation (8) for \(G_2(S_1, y_2) \) consists of three terms. The first term denotes the costs attached to echelon 2. The second term, \(G_1(S_1) \), denotes the minimal costs for Subsystem 1. The third term denotes the additional costs when echelon stock 2 is insufficient to increase echelon inventory position 1 to its optimal value \(S_1 \). We defined \(S_2 \) as the point where \(G_2(S_1, y_2) \) is minimized. Obviously, one finds the same optimal basestock level by the minimization of the echelon 2 costs (the first term) plus the third term. This is how Clark and Scarf proceeded and they interpreted the third term as an induced penalty cost function.

2.3 Linear inventory holding and penalty costs

In this subsection, we assume that the echelon cost functions \(c_n(\cdot) \), \(n = 1, 2 \), are given by (1)-(2), i.e., we consider the special, but common cost structure consisting of linear inventory holding and penalty costs. We derive interesting, additional results. First, in §2.3.1, we derive an alternative formula in terms of expected shortfalls and backlogs for the average costs of a basestock policy. That formula facilitates computational procedures, and we exploit that formula to get the partial derivative to the basestock level of echelon 2. For the average costs in Subsystem 1, we obtain also a partial derivative, and the combination of both partial derivatives leads to Newsboy equations for the optimal basestock levels; see §2.3.2.

2.3.1 Alternative cost formulas for basestock policies.

Assume the echelon costs functions as given by (1)-(2) and consider a basestock policy \((y_1, y_2)\), \(y_1, y_2 \in \mathbb{R} \). The average costs \(G_2(y_1, y_2) \) may be obtained by a single-cycle analysis; see Figure 3. The costs consist of the terms \(C_{l_0+l_2,2} \) and \(C_{l_0+l_2+l_1,1} \). The expected value of the costs \(C_{l_0+l_2,2} \) equals

\[
\mathbb{E}C_{l_0+l_2,2} = \mathbb{E}\{c_2(y_2 - D_{l_0, l_0+l_2})\} = \mathbb{E}\{h_2(y_2 - D_{l_0, l_0+l_2})\} = h_2(y_2 - (l_2 + 1)\mu).
\]

Next, we study \(\mathbb{E}C_{l_0+l_2+l_1,1} \). The level \(z_1 \) denotes the actual level to which \(IP_{l_0+l_2,1} \) is increased. The difference with the desired level \(y_1 \) is called the shortfall, which can also be seen as a "backlog" at stockpoint 2 (it would be the backlog at stockpoint 2 if stage 1 would order such that \(IP_{l_0+l_2,1} \) is...
increased up to \(y_1 \), without taking into account how much is available at stockpoint 2. We denote this shortfall by \(B_1 \). This shortfall is equal to

\[
B_1 = y_1 - z_1 = y_1 - \min\{y_2 - D_{t_0,t_0+t_2-1}, y_1\} = y_1 + \max\{-y_2 + D_{t_0,t_0+t_2-1}, -y_1\} = \max\{0, y_1 - y_2 + D_{t_0,t_0+t_2-1}\} = (D_{t_0,t_0+t_2-1} - (y_2 - y_1))^+ \tag{9}
\]

(notice that by definition this shortfall is positive if \(y_1 > y_2 \)). Now, define \(B_0 \) as the backlog at stockpoint 1 at the end of period \(t_0 + l_2 + l_1 \). Given that \(IP_{t_0+l_2,1} \) is increased up to \(z_1 = y_1 - B_1 \), \(B_0 \) becomes equal to

\[
B_0 = (z_1 - D_{t_0+l_2,t_0+l_2+l_1})^- = (D_{t_0+l_2,t_0+l_2+l_1} - z_1)^+ = (D_{t_0+l_2,t_0+l_2+l_1} - (y_1 - B_1))^+ = (B_1 + D_{t_0+l_2,t_0+l_2+l_1} - y_1)^+ . \tag{10}
\]

Then, for the costs attached to echelon 1 at the end of period \(t_0 + l_2 + l_1 \), we obtain

\[
EC_{t_0+l_2+l_1,1} = \mathbb{E}\{c_1(z_1 - D_{t_0+l_2,t_0+l_2+l_1})\} = \mathbb{E}\{h_1(z_1 - D_{t_0+l_2,t_0+l_2+l_1}) + (p + h_1 + h_2)(z_1 - D_{t_0+l_2,t_0+l_2+l_1})^-\} = h_1(y_1 - \mathbb{E}B_1 - (l_1 + 1)\mu) + (p + h_1 + h_2)\mathbb{E}B_0 .
\]

As a result, we find the following theorem. (The formula in this theorem stems from [65], where an equivalent formula has been derived, but with \(\mathbb{E}B_1 \) and \(\mathbb{E}B_0 \) expressed in integral form.)

Theorem 2 Let the echelon cost functions \(c_n(\cdot) \) be given by (1)-(2). Then the average costs of a basestock policy \((y_1, y_2)\), with \(y_1, y_2 \in \mathbb{R} \), are equal to

\[
G_2(y_1, y_2) = h_2(y_2 - (l_2 + 1)\mu) + h_1(y_1 - \mathbb{E}B_1 - (l_1 + 1)\mu) + (p + h_1 + h_2)\mathbb{E}B_0 ,
\]

where the random variables \(B_1 \) and \(B_0 \) are given by (9)-(10).

The formula for the average costs of a basestock policy \((y_1, y_2)\) also shows what the average backlog and average stock levels are. The term \(\mathbb{E}B_0 \) denotes the average backlog at the end of a period. The amount \(y_1 - \mathbb{E}B_1 - (l_1 + 1)\mu + \mathbb{E}B_0 \) is the average physical stock of echelon 1 (= stockpoint 1) at the end of a period; this is the amount for which a cost \(h_1 \) is paid per unit of product. The amount \(y_2 - (l_2 + 1)\mu + \mathbb{E}B_0 \) is the average physical stock of echelon 2 at the end of a period; this is the amount for which a cost \(h_2 \) is paid per unit of product. Further the average stock in the pipeline between stockpoint 2 and stockpoint 1 is \(l_1\mu \) (the throughput of the pipeline.
is equal to the mean demand and each unit of product is \(l_1 \) periods in the pipeline). This implies that the average physical stock in stockpoint 2 at the end of a period is equal to

\[
[y_2 - (l_2 + 1)\mu + \mathbb{E}B_0] - [y_1 - \mathbb{E}B_1 - (l_1 + 1)\mu + \mathbb{E}B_0] - l_1\mu
= y_2 - y_1 - l_2\mu + \mathbb{E}B_1 = \mathbb{E}((y_2 - y_1) - D_{t_0:t_0+l_2-1}^+)\].

(11)

For the average costs in Subsystem 1, under a basestock policy \(y_1, y_1 \in \mathbb{R} \), we find the following alternative expression (via (6)):

\[
G_1(y_1) = h_1(y_1 - (l_1 + 1)\mu) + (p + h_1 + h_2)\mathbb{E}B_0^{(1)},
\]

(12)

where the random variable \(B_0^{(1)} \) represents the backlog in Subsystem 1:

\[
B_0^{(1)} = (D_{t_0+l_2},t_0+l_2+l_1 - y_1)^+.
\]

(13)

Formula (12) shows that \(G_1(y_1) \) is a Newsboy function. Notice that \(B_0^{(1)} \) is related to \(B_1 \) and \(B_0 \) in the following way:

\[
B_0^{(1)} = (B_0\mid B_1 = 0).
\]

2.3.2 Newsboy equations.

We now determine the partial derivatives of \(G_1(y_1) \) and \(G_2(y_1, y_2) \). The derivative of \(G_1(y_1) \) is denoted by \(g_1(y_1) \).

By (12),

\[
g_1(y_1) = h_1 + (p + h_1 + h_2)\frac{\delta}{\delta y_1}\{\mathbb{E}B_0^{(1)}\}.
\]

It is easily seen that

\[
\frac{\delta}{\delta y_1}\{\mathbb{E}B_0^{(1)}\} = -\mathbb{P}\{B_0^{(1)} > 0\}.
\]

Substitution of this property into the previous equation shows that

\[
g_1(y_1) = h_1 - (p + h_1 + h_2)\mathbb{P}\{B_0^{(1)} > 0\},
\]

(14)

where \(B_0^{(1)} \) is given by (13).

For the function \(G_2(y_1, y_2) \), we are interested in the partial derivative with respect to the last component \(y_2 \). Hence, we define

\[
g_2(y_1, y_2) := \frac{\delta}{\delta y_2}\{G_2(y_1, y_2)\}, \quad y_1, y_2 \in \mathbb{R}.
\]

We find that

\[
g_2(y_1, y_2) = h_2 - h_1\frac{\delta}{\delta y_2}\{\mathbb{E}B_1\} + (p + h_1 + h_2)\frac{\delta}{\delta y_2}\{\mathbb{E}B_0\}
= h_2 + h_1\mathbb{P}\{B_1 > 0\} - (p + h_1 + h_2)\mathbb{P}\{B_1 > 0 \text{ and } B_0 > 0\}.
\]

(15)

Here, the second step follows from the following properties:

\[
\frac{\delta}{\delta y_2}\{\mathbb{E}B_1\} = -\mathbb{P}\{B_1 > 0\},
\]

\[
\frac{\delta}{\delta y_2}\{\mathbb{E}B_0\} = -\mathbb{P}\{B_1 > 0 \text{ and } B_0 > 0\}
\]

These properties are easily verified. The result in (15) constitutes the basis for the following lemma.
Lemma 4 Let the echelon cost functions $c_n(\cdot)$ be given by (1)-(2). Then
\[g_2(y_1, y_2) = (h_1 + h_2) - (p + h_1 + h_2)P\{B_0 > 0\} - P\{B_1 = 0\}g_1(y_1), \quad y_1, y_2 \in \mathbb{R}, \]
with B_1 and B_0 given by (9)-(10).

Proof. It holds that
\[
\begin{align*}
P\{B_1 > 0\} &= 1 - P\{B_1 = 0\}, \\
P\{B_1 > 0 \text{ and } B_0 > 0\} &= P\{B_0 > 0\} - P\{B_1 = 0 \text{ and } B_0 > 0\} \\
&= P\{B_0 > 0\} - P\{B_0 > 0|B_1 = 0\}P\{B_1 = 0\}.
\end{align*}
\]
By substitution of these expressions into equation (15), we obtain (use the property that $B_0^{(1)} = (B_0|B_1 = 0)$, and (14)):
\[
g_2(y_1, y_2) = h_2 + h_1(1 - P\{B_1 = 0\}) \\
- (p + h_1 + h_2)(P\{B_0 > 0\} - P\{B_0 > 0|B_1 = 0\}P\{B_1 = 0\}) \\
= (h_1 + h_2) - (p + h_1 + h_2)P\{B_0 > 0\} \\
- P\{B_1 = 0\} [h_1 - (p + h_1 + h_2)P\{B_0 > 0|B_1 = 0\}] \\
= (h_1 + h_2) - (p + h_1 + h_2)P\{B_0 > 0\} \\
- P\{B_1 = 0\} \left[h_1 - (p + h_1 + h_2)P\{B_0^{(1)} > 0\}\right] \\
= (h_1 + h_2) - (p + h_1 + h_2)P\{B_0 > 0\} - P\{B_1 = 0\}g_1(y_1). \quad \square
\]

Things brings us at the point to derive Newsboy equations for the optimal basestock levels S_1 and S_2. Suppose that the demand distribution function F is continuous on $(0, \infty)$, and that there is no probability mass in 0, i.e., $F(0) = 0$. Then $g_1(y_1)$ is a continuous function, and as an optimal basestock level is a minimal point of $G_1(y_1)$, S_1 will be a zero point of $g_1(y_1)$, i.e., $g_1(S_1) = 0$. This leads immediately to a Newsboy equation for S_1; see part (i) of Theorem 3. Next, by Lemma 4,
\[g_2(S_1, y_2) = (h_1 + h_2) - (p + h_1 + h_2)P\{B_0 > 0\}, \quad y_2 \in \mathbb{R}, \]
where B_0 is given by (9)-(10) with y_1 replaced by S_1. One can easily verify that this function is continuous as a function of y_2. As S_2 is a minimizing point of $G_2(S_1, y_2)$, it will be a zero point of $g_2(S_1, y_2)$, i.e., $g_2(S_1, S_2) = 0$. This leads immediately to a Newsboy equation for S_2; see part (ii) of the following theorem. The equation for S_2 is called a Newsboy equation as it constitutes a generalization of the well-known Newsboy equation for a single-stage system. Theorem 3 is stated to hold for a continuous demand distribution F, but in fact it holds if both $g_1(y_1)$ and $g_2(S_1, y_2)$ has a zero point.

Theorem 3 (cf. [65], Section 4) (Newsboy equations for the optimal basestock levels). Let the echelon cost functions $c_n(\cdot)$ be given by (1)-(2), and let F be continuous on $(0, \infty)$ with $F(0) = 0$. Then:
(i) The optimal basestock level S_1 for echelon 1 is such that

$$P\{B_0^{(1)} = 0\} = \frac{p + h_2}{p + h_1 + h_2},$$

with

$$B_0^{(1)} = (D_{t_0+t_2,t_0+t_2+l_1} - S_1)^+.\ $$

(ii) Under a given optimal basestock level S_1 for echelon 1, the optimal basestock level S_2 for echelon 2 is such that

$$P\{B_0 = 0\} = \frac{p}{p + h_1 + h_2},$$

with

$$B_1 = (D_{t_0,t_0+t_2-1} - (S_2 - S_1))^+,\quad B_0 = (B_1 + D_{t_0+t_2,t_0+t_2+l_1} - S_1)^+.\ $$

This theorem says that, when S_1 is determined, then it is pretended that stockpoint 2 can always deliver (i.e., the analysis is limited to Subsystem 1) and the value for S_1 is chosen such that the no-stockout probability at stage 1 is equal to $\frac{p + h_2}{p + h_1 + h_2}$. Next, when S_2 is determined, then the full system is considered, the basestock level for echelon 1 is fixed at S_1, and the value for S_2 is chosen such that the no-stockout probability at the most downstream stage 1 is equal to $\frac{p}{p + h_1 + h_2}$. With this S_2 the demand over a longer leadtime has to be covered, but we are allowed to have a lower no-stockout probability in the full system than in Subsystem 1.

Like for a single-stage system, our generalized Newsboy equations show the effect of the ratios of the parameters for inventory holding and penalty costs on the optimal basestock levels. In addition, they reveal how physical stock is positioned in the chain as a function of the way value is being built up in the chain. This is seen as follows. The echelon holding cost parameters h_1 and h_2 are in general proportional to the values added at the stages 1 and 2, respectively. W.l.o.g., we may norm the total added value such that $h_1 + h_2 = 1$. In that case, $h_n, n = 1, 2$, is equal to the fraction of the added value in stage n over the total added value in the chain. Let us look at the values for S_1 and S_2 as a function of h_2, i.e., the fraction of added value at stage 2. The larger h_2, the closer $\frac{p + h_2}{p + h_1 + h_2} = \frac{p + h_2}{p + h_1 + h_2}$ comes to 1, and thus the larger S_1. The point S_2 is such that we have a no-stockout probability $\frac{p}{p + h_1 + h_2} = \frac{p}{p + h_1 + h_2}$ for the full system. This fraction is independent of h_2. As S_1 is increasing as a function of h_2, S_2 will be decreasing (a larger S_1 implies that a slightly smaller value for S_2 is sufficient to obtain that $P\{B_0 = 0\} = \frac{p}{p + h_1 + h_2}$, and thus the difference $S_2 - S_1$ is decreasing as well. The average physical stock in stockpoint 2 at the end of a period equals $E\{((S_2 - S_1) - D_{t_0+t_2,l_1})^+\}$ (cf. (11)) and is also decreasing as a function of h_2. The average physical stock in stockpoint 1 is likely to be increasing (because of the increased S_1 and only slightly decreased S_2; however, we have no proof for this property). In the extreme case that $h_2 = 1$, and thus $h_1 = 0$, there is no added value at all at stage 1. Then we may choose $S_1 = \infty$, in which case there is no safety stock held in stockpoint 2. This property holds in general when $h_1 = 0$.

17
Corollary 1 There exists an optimal basestock policy under which no safety stock is held in stockpoint 2 in case \(h_1 = 0 \).

Proof. Suppose that \(h_1 = 0 \). Then, by part (i) of Theorem 3, \(S_1 \) may be chosen equal to \(S_1 = \infty \). This implies that in each period all goods arriving in stockpoint 2 are immediately forwarded to stockpoint 1, and thus there is never stock present in stockpoint 2 at the end of a period. \(\square \)

3. Multi-Echelon, Serial Systems and Computational Procedures

The whole analysis of Section 2 is easily generalized to serial systems with \(N \geq 2 \) stages. For the generalization of the optimality of basestock policies and the decomposition result, see the remarks at the end of Section 2.2 (just before Remark 1). In this section, we present the cost formulas and Newsboy equations as obtained for the \(N \)-stage system under linear inventory holding and penalty costs; see §3.1. After that, in §3.2, we describe both exact and efficient approximate computational procedures for the optimal basestock levels and optimal costs.

3.1 Analytical results

We first describe our model for the multi-echelon, serial system, and introduce additional notation. We make the same assumptions as in Section 2, however, we now have \(N \geq 2 \) stages, which are numbered from downstream to upstream as stages 1, 2, \ldots, \(N \). Leadtimes are deterministic and the leadtime for stage \(n \) is denoted by \(l_n \). The cumulative leadtime for stages \(i, n \leq i \leq N \), together is denoted by \(L_n = \sum_{i=n}^{N} l_i \), and, for notational convenience, \(L_{N+1} := 0 \). The cumulative demand over periods \(t_1, \ldots, t_2, 0 \leq t_1 \leq t_2 \), is denoted by \(D_{t_1,t_2} \). For the costs we assume linear inventory holding and penalty costs. A cost of \(H_n \) is charged for each unit that is in stock in stockpoint \(n \) at the end of a period, and a penalty \(\mu > 0 \) is charged per unit of backlog at stockpoint 1 at the end of a period. We assume that \(H_1 \geq H_2 \geq \cdots \geq H_N \geq 0 \); for notational convenience, \(H_{N+1} = 0 \). Next, we define \(h_n := H_n - H_{n+1}, n = 1, \ldots, N \), as the additional inventory holding cost parameters. Notice that \(h_n \geq 0 \) for all \(n \). Under this cost structure and given levels \(x_n \) for the echelon stocks at the end of a period, the total inventory holding and backordering costs at the end of that period are equal to \(\sum_{n=1}^{N} c_n(x_n) \), where \(c_n(x_n) \) denotes the costs attached to echelon \(n \) (cf. (1)-(2) for \(N = 2 \)):

\[
\begin{align*}
c_1(x_1) & = h_1 x_1 + (p + H_1)x_1, \\
c_n(x_n) & = h_n x_n, \quad 2 \leq n \leq N.
\end{align*}
\]

Optimal basestock levels follow from the minimization of average costs of a basestock policy in subsystems. Subsystem \(n, n = 1, \ldots, N \), is defined as the system consisting of the stages 1, \ldots, \(n \), and with infinite supply at stage \(n + 1 \) (= external supplier of raw materials in case \(n = N \)). As
costs we have the echelon cost functions $c_i(\cdot)$ for the echelons $i = 1, \ldots, n$. Notice that Subsystem N is identical to the full system. A basestock policy for Subsystem n is denoted by (y_1, \ldots, y_n), with $y_i \in \mathbb{R}$ for all $i = 1, \ldots, n$, and the corresponding average costs are denoted by $G_n(y_1, \ldots, y_n)$. For this function, a similar expression may be derived as for the average costs of a two-echelon system in Theorem 2. We define $B_i^{(n)}$ as the shortfall as faced by stockpoint i, $1 \leq i \leq n$, and $B_0^{(n)}$ as the backlog at the end of an arbitrary period. For these variables, one easily derives similar recursive expressions as in (9)-(10). This leads directly to the following theorem.

Theorem 4 (cf. [65, 63]) Let $1 \leq n \leq N$. For Subsystem n, the average costs of a basestock policy (y_1, \ldots, y_n), with $y_i \in \mathbb{R}$ for all $i = 1, \ldots, n$, are equal to

$$G_n(y_1, \ldots, y_n) = \sum_{i=1}^{n} h_i(y_i - EB_i^{(n)} - (l_i + 1)\mu) + (p + H_1)EB_0^{(n)},$$

with

$$B_i^{(n)} = 0, \quad 1 \leq i \leq n - 1, \quad (16)$$

$$B_i^{(n)} = (B_{i+1}^{(n)} + D_{i_0} + L_{i+2,i_0} + L_{i+1}-1 - (y_{i+1} - y_i))^+, \quad 1 \leq i \leq n - 1, \quad (17)$$

$$B_0^{(n)} = (B_1^{(n)} + D_{i_0} + L_{2,i_0} + L_1 - y_1)^+ \quad (18)$$

(the equation for $B_i^{(n)}$, $1 \leq i \leq n - 1$, vanishes in case $n = 1$).

An optimal basestock level S_1 for stage 1 is obtained as a minimizer of the convex function $G_1(y_1)$. Next, under a given S_1, an optimal basestock level S_2 for stage 2 is obtained as a minimizer of the function $G_2(S_1, y_2)$, which is known to be convex as a function of y_2; and so on. The optimal basestock levels may also be obtained from partial derivatives. Define

$$g_n(y_1, \ldots, y_n) := \frac{\delta}{\delta y_n} \{G_n(y_1, \ldots, y_{n-1}, y_n)\}, \quad 1 \leq n \leq N, \quad y_i \in \mathbb{R} \text{ for all } i = 1, \ldots, n.$$

Similar to Lemma 4, one can derive that

$$g_n(y_1, \ldots, y_n) = \sum_{i=1}^{n} h_i - (p + H_1)P\{B_0^{(n)} > 0\} - \sum_{i=1}^{n-1} P\{B_i^{(n)} = 0\}g_i(y_1, \ldots, y_i), \quad (19)$$

where the $B_i^{(n)}$ are given by (16)-(18) (in this formula the last sum vanishes in case $n = 1$). Under a continuous demand distribution F, $g_1(y_1)$ has a zero point, $g_2(S_1, y_2)$ has a point S_2 such that $g_2(S_1, S_2) = 0$, and so on. Then the last sum in (19) becomes equal to 0, and we get the following Newsboy equations:

Theorem 5 (cf. [65], Theorem 5.1) (Newsboy equations for the optimal basestock levels). Let F be continuous on $[0, \infty)$ with $F(0) = 0$. For $n = 1, 2, \ldots, N$, under given optimal basestock levels S_1, \ldots, S_{n-1} for the stages $1, \ldots, n - 1$, S_n is such that

$$P\{B_0^{(n)} = 0\} = \frac{p + H_{n+1}}{p + H_1},$$

where $B_0^{(n)}$ is given by the recursive formulas (16)-(18) with y_i replaced by S_i for all i.

19
3.2 Computational procedures

In case of a continuous demand distribution F with $F(0) = 0$, an optimal basestock policy (S_1, \ldots, S_N) and the corresponding average costs can be determined as follows. First, for $n = 1, \ldots, N$, S_n may be determined by the Newsboy equation in Theorem 5. In general, this Newsboy equation cannot be solved analytically. Computational procedures can be developed, however. Suppose one has a computational procedure to compute $P\{B_0^{(n)} = 0\}$ for a given arbitrary S_n. Then an S_n that solves the Newsboy equation is easily computed via bisection search. Once optimal basestock levels have been determined for all stages, the optimal average costs $G_N(S_1, \ldots, S_N)$ follow from Theorem 4. Here, one needs a method to obtain the expected values of the $B_i^{(N)}$, $0 \leq i \leq N$. For both the computation of the optimal basestock levels and the corresponding optimal costs, it suffices if one is able to evaluate the shortfalls/backlogs $B_i^{(n)}$ as given by (16)-(18). That is what we focus on in the rest of this subsection.

The shortfalls/backlogs $B_i^{(n)}$ may be determined recursively after a sufficiently fine discretization of the one-period demand distribution F. This is a first method. However, this method will be computationally inefficient in many cases, in particular as N grows large. Therefore alternative procedures are desired. In §3.2.1, we describe an efficient, exact procedure for mixed Erlang demand, i.e., for the case that the one-period demand is a mixture of Erlang distributions with the same scale parameter. Such mixtures are relevant as the class of these mixtures is dense in the class of all distributions on $[0, \infty)$ (cf. Schassberger [53]). In §3.2.2, we describe a procedure based on two-moment fits. This is a fast, approximate procedure that is known to be accurate.

If the demand distribution F is not continuous, then Theorem 5 does not apply anymore, but equation (19) still does. An optimal basestock level for stage n is then found at the first point S_n where $g_n(S_1, \ldots, S_{n-1}, S_n) \geq 0$. Similar computations apply as described above, and the same methods may be used for the computation of the shortfalls/backlogs $B_i^{(n)}$. Via discretization one still obtains an exact approach. The method of §3.2.1 is also applicable without further changes. The method of §3.2.1 may be applied after a (two-moment) fit of a mixed Erlang distribution on the one-period demand. That step is an approximate step, and for the rest the method is exact. A special case of non-continuous demand is obtained in the case of a discrete product. Then the demand distribution F is discrete as well, and basestock and inventory levels may be limited to discrete values, in which case Theorem 4 and equation (19) are still valid. In this case, a direct recursive computation of the distributions of the shortfalls/backlogs $B_i^{(n)}$ may be efficient. For further details on this discrete product case, see §4.2.

3.2.1 Exact procedure for mixed Erlang demands.

The exact procedure as described here stems from [64], where for a generalized system with fixed replenishment intervals per stage, evaluation of shortfalls/backlogs of the same form as in (16)-(18) is needed. This procedure is closely related to the exact procedure described in [66], but the procedure as described here leads to simpler formulas and is easier to implement. The key idea behind the procedure is that we define a class of mixed Erlang distributions that is closed under the two basic operations in the expressions for the shortfalls/backlogs: convolution and the so-called truncated shift.

Let us first define the class of mixed Erlang distributions that we use. We take $\lambda > 0$ as a
given, and define a class of mixed Erlang random variables \(C_\lambda \). Let \(X_{k,\lambda} \) be an Erlang distribution with \(k \in \mathbb{N}_0 \) phases and scale parameter \(\lambda \). \(X_{k,\lambda} \) may be interpreted as the sum of \(k \) independent, exponentially distributed random variables with parameter \(\lambda \). Notice that we allow that \(k = 0 \). The distribution function of \(X_{k,\lambda} \) is denoted by \(E_{k,\lambda} \). For \(k \in \mathbb{N}_0 \),

\[
E_{k,\lambda}(x) = 1 - \sum_{j=0}^{k-1} \frac{(\lambda x)^j}{j!} e^{-\lambda x}, \quad x \geq 0,
\]

and \(E_{k,\lambda}(x) = 0 \) for all \(x < 0 \) (the sum \(\sum_{j=0}^{k-1} \) is empty for \(k = 0 \)). Let \(X \) be a pure mixture of the random variables \(X_{k,\lambda} \), described by a discrete distribution \(\{q_k\}_{k \in \mathbb{N}_0} \) on \(\mathbb{N}_0 \). I.e., \(X = X_{k,\lambda} \) with probability \(q_k \) for all \(k \in \mathbb{N}_0 \). The distribution function of \(X \) is given by \(F_X(x) = \sum_{k=0}^{\infty} q_k E_{k,\lambda}(x), \ x \in \mathbb{R} \). Finally, we define random variable \(Y \) as the sum of a deterministic variable \(d \geq 0 \) and a pure mixture \(X \). I.e., \(Y = d + X \), and its distribution function is given by \(F_Y(x) = P\{d + X \leq x\} = F_X(x-d), \ x \in \mathbb{R} \); this distribution is obtained by a shift of \(F_X \) to the right over a distance \(d \). The class \(C_\lambda \) consists of all \(Y \)-s that can be constructed in this way. Each \(Y \in C_\lambda \) is uniquely determined by \(d \geq 0 \) and a discrete distribution \(\{q_k\}_{k \in \mathbb{N}_0} \).

The first operation that we recognize in (16)-(18) is a convolution. I.e., \(B_{i+1}^{(n)} + D_{t_0 + L_{i+2}, t_0 + L_{i+1}} \) is a convolution of the random variables \(B_{i+1}^{(n)} \) and \(D_{t_0 + L_{i+2}, t_0 + L_{i+1}} \), and \(D_{t_0 + L_{i+2}, t_0 + L_{i+1}} \) itself is a convolution of \(L_{i+1} \) one-period demands; and similarly for \(B_1^{(n)} + D_{t_0 + L_2, t_0 + L_1} \). Let \(Y \in C_\lambda \) with parameters \(d \) and \(\{q_k\}_{k \in \mathbb{N}_0} \). Then, \(\hat{Y} := \sum_{j=0}^{k} q_j \). The sum \(\hat{Y} \) may be written as \(\hat{Y} = \hat{d} + \hat{X} \), where \(\hat{d} = d + \hat{d} \) and \(\hat{X} = X + \hat{X} \). Here, \(X \) is the pure mixture of Erlangs with discrete distribution \(\{q_k\}_{k \in \mathbb{N}_0} \) and \(\hat{X} \) is the pure mixture given by \(\{\tilde{q}_k\}_{k \in \mathbb{N}_0} \). It is easily seen that \(\hat{X} \) is also a pure mixture of Erlangs; its distribution \(\{\tilde{q}_k\}_{k \in \mathbb{N}_0} \) is obtained via the convolution of \(\{q_k\}_{k \in \mathbb{N}_0} \) and \(\{\tilde{q}_k\}_{k \in \mathbb{N}_0} \). Hence, \(\tilde{Y} \in C_\lambda \). So, \(C_\lambda \) is closed under convolutions, and we have expressions to compute the parameters of an element that is obtained via a convolution.

The second operation that we recognize in (16)-(18) is a so-called truncated shift. Let \(Y \) be an arbitrary random variable (i.e., not necessarily an element of \(C_\lambda \)), \(a \in \mathbb{R} \), and \(\hat{Y} := (Y - a)^+ \). If \(a \leq 0 \), then \(\hat{Y} = -a + Y \), and thus the distribution of \(\hat{Y} \) is obtained by a shift to the right of the distribution of \(Y \) over a distance \(-a \). If \(a > 0 \), then the distribution of \(\hat{Y} \) is obtained by a shift to the left of the distribution of \(Y \) over a distance \(a \), where the probability mass that would arrive in the negative range is absorbed in 0. Therefore, \(\hat{Y} \) is said to be a truncated shift of \(Y \). Suppose, now that \(Y \in C_\lambda \) with parameters \(d \) and \(\{q_k\}_{k \in \mathbb{N}_0} \), let \(a \in \mathbb{R} \), and define \(\hat{Y} := (Y - a)^+ \). Let \(X \) be the pure mixture of Erlangs given by \(\{q_k\}_{k \in \mathbb{N}_0} \) (so, \(Y = d + X \)). We distinguish two cases: \(a \leq d \) and \(a > d \). If \(a \leq d \), then \(\hat{Y} = (Y - a)^+ = (d + X - a)^+ = (d - a) + X \), and thus \(\hat{Y} \in C_\lambda \) with parameters \(d - a \) and \(\{q_k\}_{k \in \mathbb{N}_0} \). Suppose now that \(a > d \). Then

\[
\hat{Y} = (X - (a - d))^+ = (X_{k,\lambda} - (a - d))^+ \text{ with probability } q_k, \ k \in \mathbb{N}_0.
\]

For each \(k \in \mathbb{N}_0 \), the \(k \) phases of \(X_{k,\lambda} \) are equivalent to the first \(k \) interarrival times of a Poisson process with parameter \(\lambda \), and \((X_{k,\lambda} - (a - d))^+ \) depends on how many interarrival times have been completed at time instant \(a - d \). With probability \(\frac{(\lambda(a-d))^i}{i!} e^{-\lambda(a-d)} \), \(j \) phases of the Poisson process have been completed at time \(a - d \), \(j \in \mathbb{N}_0 \). If \(j < k \) phases have been completed, then there still are \(k - j \) phases to go at time instant \(a - d \), and thus then \((X_{k,\lambda} - (a - d))^+ = X_{k-j,\lambda} \). If, \(j \geq k \),
then no phases are left and \((X_{k,\lambda} - (a-d))^+ = 0\). Hence
\[
(X_{k,\lambda} - (a-d))^+ = \begin{cases}
X_{j,\lambda} & \text{with prob. } r_{k,j} = \frac{(\lambda(a-d))^{k-j}}{(k-j)!} e^{-\lambda(a-d)}, \ j = 1, \ldots, k; \\
0 & \text{with prob. } r_{k,0} = 1 - \sum_{j=0}^{k-1} \frac{(\lambda(a-d))^j}{j!} e^{-\lambda(a-d)}. \end{cases} \tag{21}
\]
Combining this result and (20) shows that
\[
\hat{Y} = X_{j,\lambda} \text{ with probability } \hat{q}_j = \sum_{k=0}^\infty q_k r_{k,j}, \ j \in \mathbb{N}_0.
\]

As we see, \(\hat{Y} \in C_\lambda\). So, \(C_\lambda\) is also closed under truncated shifts, and we have expressions to compute an element of an aspect that is obtained via a truncated shift.

Suppose now that the one-period demand \(D_{t_0,t_0}\) belongs to \(C_\lambda\) for some \(\lambda > 0\), i.e., that \(F = \sum_{k=0}^\infty q_k E_{k,\lambda}(x-d), x \in \mathbb{R}\), where \(d\) is a non-negative, real-valued constant and \(\{q_k\}_{k \in \mathbb{N}_0}\) is a discrete distribution on \(\mathbb{N}_0\). To obtain a continuous \(F\) with \(F(0) = 0\), we require that \(q_0 = 0\). Then each of the demand variables \(D_{t_0+L_{i+2},t_0+L_{i+1}-1}\) and \(D_{t_0+L_{2i},t_0+L_1}\) in (17)-(18) belongs to \(C_\lambda\) as they are convolutions of one-period demands. The shortfall \(B^{(n)}_i\) in (18) is equal to \(X_{0,\lambda}\) (and thus belongs to \(C_\lambda\)). Next, for each \(i = n-1, n-2, \ldots, 1\), the distribution of \(B^{(n)}_i\) is obtained via a convolution, leading to the distribution of \(B^{(n)}_{i+1} + D_{t_0+L_{i+2},t_0+L_{i+1}-1}\), followed by a truncated shift. Finally, \(B^{(n)}_0\) is obtained via a convolution, leading to the distribution of \(B^{(n)}_1 + D_{t_0+L_{2i},t_0+L_1}\), followed by a truncated shift. In addition to these computations, it is simple to obtain the no-stockout probability \(P\{B^{(n)}_0 = 0\}\) and/or expected values of the shortfalls/backlogs.

This completes the description of the exact computational procedure for the mixed Erlang demand case. Such a mixture is assumed to be given for this procedure. In practice, however, often only the first two moments of the one-period demand are given, and then a two-moment fit may be applied first: a so-called Erlang \((k-1, k)\) distribution can be fitted if the coefficient of variation of the demand is smaller than or equal to one, and a so-called Erlang \((1, k)\) distribution otherwise (these fits are further explained in §3.2.2). In principle, more moments may be fitted as desired, yielding a larger mixture.

The more general class of phase-type distributions is likewise closed under convolutions and truncated shifts. So, an exact procedure can also be derived for phase-type distributions, although computations become much more complicated.

Finally, it is relevant to note that the shortfalls/backlogs \(B^{(n)}_i\) are equivalent to waiting times in a so-called appointment system ([61, 68]). Suppose you have a single server, where \(n+1\) customers arrive. The customers are numbered \(n, n-1, \ldots, 1, 0\), and they arrive at predetermined arrival times \(0, y_n - y_{n-1}, \ldots, y_2 - y_1, y_1\). The service times for the customers \(n, n-1, \ldots, 2, 1\) are given by the random variables \(D_{t_0+L_{n+1},t_0+L_n-1}, D_{t_0+L_{n},t_0+L_{n-1}-1}, \ldots, D_{t_0+L_3,t_0+L_2-1}, D_{t_0+L_2,t_0+L_1}\). Then \(B^{(n)}_i\) is the waiting time of customer \(i\), \(0 \leq i \leq n\) (cf. [66]). In fact, the exact procedure of this section may also be applied for the evaluation of waiting times in an appointment system if all service times belong to \(C_\lambda\) for a given \(\lambda > 0\). The shortfalls/backlogs \(B^{(n)}_i\) are also equivalent to waiting times in a multi-stage serial production system with planned leadtimes. For those systems even a similar structure for the optimal policy and a decomposition result for the optimal planned leadtimes is obtained; see [38].
3.2.2 Efficient, approximate procedure based on two-moment fits.

If one is satisfied with accurate approximations, then one may use the simple approximate procedure based on two-moment fits as described and tested in [65].

A two-moment fit may be applied to any nonnegative random variable X as follows. Let its mean μ_X and coefficient of variation c_X be given. Then a mixture of two Erlangs may be fitted on X such that this mixture has the same first two moments as X (i.e., also the mean and coefficient of variation of this mixture are equal to μ_X and c_X, respectively). Let this mixture be denoted by \tilde{X}. Then $\tilde{X} = X_{k_1, \lambda_1}$ with probability q_1 and $\tilde{X} = X_{k_2, \lambda_2}$ with probability $q_2 = 1 - q_1$.

The type of mixture that may be fitted on X depends on the value of c_X. We give three types of mixtures as described by Tijms [60]. If $c_X \leq 1$, then we may fit an Erlang$(k-1, k)$ distribution, in which case $k_1 = k - 1$ and $k_2 = k$ for some $k \geq 2$ and $\lambda_1 = \lambda_2 = \lambda$. The Erlang$(k-1, k)$ distribution is a mixture of two Erlang distributions with the same scale parameter. The $k \geq 2$ is chosen such that $\frac{1}{k} < \frac{c_X^2}{k^2} \leq \frac{1}{k-1}$. Next, q_1 and λ are taken equal to

$$q_1 = \frac{1}{1 + c_X^2} \left[k c_X^2 - \sqrt{k (1 + c_X^2) - k^2 c_X^2} \right], \quad \lambda = \frac{k - q_1}{\mu_X}.$$

If $c_X \geq 1$, then we may fit a hyperexponential or an Erlang$(1, k)$ distribution. Which of these two distributions is used may depend on further information that is available on X, e.g., on the shape of its probability density function (see also [60]). A hyperexponential distribution is a mixture of two exponential distributions, i.e., $k_1 = k_2 = 1$. In this case multiple choices for $\lambda_1, \lambda_2, q_1$ are possible, and one choice that works is given by:

$$\lambda_1 = \frac{2}{\mu_X} \left(1 + \sqrt{\frac{c_X^2 - \frac{1}{2}}{c_X^2 + 1}} \right), \quad \lambda_2 = \frac{4}{\mu_X} - \lambda_1, \quad q_1 = \frac{\lambda_1 (\lambda_2 \mu_X - 1)}{\lambda_2 - \lambda_1}.$$

An Erlang$(1, k)$ distribution is a mixture of an exponential distribution and an Erlang distribution with the same scale parameter. Then $k_1 = 1$ and $\lambda_1 = \lambda_2 = \lambda$. The k_2 is set as the smallest $k_2 \geq 3$ for which $\frac{k_2^2 + 4}{4k_2} \geq c_X^2$. Next, q_1 and λ are taken equal to

$$q_1 = \frac{2k_2 c_X^2 + k_2 - 2 - \sqrt{k_2^2 + 4 - 4k_2 c_X^2}}{2(k_2 - 1)(1 + c_X^2)}, \quad \lambda = \frac{q_1 + k_2 (1 - q_1)}{\mu_X}.$$

To approximate the shortfalls/backlogs $B_i^{(n)}$ in (16)-(18), we take the following steps. First we determine the first two moments of $B_i^{(n)} + D_{t_0 + L_{n+1}, t_0 + L_n} = D_{t_0 + L_{n+1}, t_0 + L_n}$ and we fit a mixture of two Erlangs on these first two moments. Given this fit, $B_{n-1}^{(n)}$ is a truncated shift of $D_{t_0 + L_{n+1}, t_0 + L_n}$, and via the observations made in §3.2.1 (among others, equation (21)), it is straightforward to obtain the first two moments of $B_{n-1}^{(n)}$. Next, the first two moments of $B_{n-1}^{(n)} + D_{t_0 + L_{n+1}, t_0 + L_{n-1}}$ can be determined and a mixture of two Erlangs may be fitted on these first two moments. This process is continued until a mixed Erlang distribution is obtained for $B_1^{(n)} + D_{t_0 + L_2, t_0 + L_1}$. From that last fit, it is straightforward to determine $\mathbb{E}B_0^{(n)}$ or $P\{B_0^{(n)} = 0\} = P\{B_1^{(n)} + D_{t_0 + L_2, t_0 + L_1} \leq y_1\}$. (In this procedure, in case the two-moment fit is applied to a nonnegative random variable X that consists of a deterministic part $d > 0$ and a nonnegative variable \tilde{X}, i.e., $X = d + \tilde{X}$, one may consider to take this deterministic part explicitly into account. I.e., one can apply the fit on \tilde{X} instead of X.)
In [65], the optimal policy and optimal costs of a multi-echelon, serial system have been computed by both the approximate method based on two-moment fits and an exact method that is equivalent to the method of §3.2.1. A test bed has been defined in which holding cost parameters, leadtimes, the standard deviation of one-period demand, and the number of stages were varied, and an Erlang\((k - 1, k)\) distribution has been assumed for the one-period demand (so that the exact method is applicable). The approximate method has appeared to be very accurate. The approximate procedure had a relative accuracy of 1% for the optimal basestock levels and a relative accuracy of 2% for the optimal costs.

In case a higher accuracy is desired, the approximate method may be further improved by applying fits on the first three or even more moments; for three-moment fits, see Osogami and Harchol-Balter [47]. In the discrete product case (see also §4.2), one can use two-moments fits of discrete distribution as developed by Adan et al. [1].

4. Exact Solutions for Serial and Assembly Systems

In this section, we describe several generalizations/extensions of the multi-echelon, serial system for which the optimal solution is known. First, in §4.1-4.4, we describe modelling variants that we can easily deal with: continuous review (and time) instead of periodic review, a discrete instead of continuous product, discounted instead of average costs, and the case with a \(\gamma\)-service level constraint instead of backordering costs. After that, in §4.5, we discuss the reduction of general assembly systems to serial systems. Next, in §4.6-4.7, we describe the main results for serial systems with two different forms of batching: a fixed batch size per stage and a fixed replenishment interval per stage. Finally, some other extensions are discussed in §4.8.

4.1 Continuous review

In Sections 2 and 3, we have assumed periodic review, but there is (almost) a full equivalence between periodic-review and continuous-review multi-echelon systems; see [12, 10, 33]. Here, we demonstrate that equivalence for the two-echelon, serial system of Section 2.

Suppose we have the same two-echelon system as in Section 2, but now with continuous time and continuous review, i.e., we consider a time interval \([0, \infty)\) and ordering decisions may be taken at any time instant \(t \in [0, \infty)\). Demands are assumed to occur according to a compound Poisson process. Hence the demand process is memoryless, which is similar to i.i.d. demands in the periodic-review case. The total demand in an interval \((t_1, t_2]\) is denoted by \(D_{t_1,t_2}\). So, \(D_{t_1,t_2}\) denotes the demand over a time interval with length \(t_2 - t_1\); this is slightly different from the periodic-review case, where \(D_{t_1,t_2}\) was used to denote total demand over the periods \(t_1, \ldots, t_2\) and thus corresponds to a length \(t_2 - t_1 + 1\). The leadtimes \(l_1\) and \(l_2\) for the stockpoints 1 and 2 may be arbitrary, positive, real-valued numbers. Finally, the echelon cost functions \(c_1(x_1)\) and \(c_2(x_2)\) are now assumed to be cost rate functions.

For the continuous-review system, we define a cycle for each time instant \(t_0 \in [0, \infty)\) in a similar way as for the periodic-review case. We get a similar picture as in Figure 3, but now decision 2 is taken at time instant \(t_0\), and decision 1 is taken at time instant \(t_0 + l_2\), where the level \(z_1\) is limited from above by \(z_2 - D_{t_0,t_0+l_2}\) (in the periodic-review case \(z_1\) was bounded from above by
$z_2 - D_{t_0,t_0+l_2-1}$; the change in this expression is due to the change in the definition of demands D_{t_1,t_2}. Decision 2 directly affects the echelon 2 cost rate at time instant $t_0 + l_2$, and decision 1 directly affects the echelon 1 cost rate at time instant $t_0 + l_2 + l_1$. These costs are given by exactly the same formulas as in the periodic-review case, i.e., by (3) and (4), respectively (notice, however, that the interpretation of D_{t_0,t_0+l_2} and $D_{t_0+l_1,t_0+l_2+l_1}$ is slightly different now).

Next, for each $t_0 \in [0, \infty)$, we define the same relaxed single-cycle problem as in the periodic-review case; the only difference is that in the definition of Problem (RP_{t_0}) the demand variable D_{t_0,t_0+l_2-1} is replaced by D_{t_0,t_0+l_2}. This relaxed single-cycle problem is solved in the same way as before. Therefore we again find that there is an optimal basestock policy (S_1, S_2) for Problem (RP_{t_0}), and the optimal basestock levels follow from the minimization of convex functions $G_1(y_1)$ and $G_2(S_1, y_2)$; these functions are defined by (6) and (7), with D_{t_0,t_0+l_2-1} replaced by D_{t_0,t_0+l_2} in (7). Subsequently, for the infinite-horizon problem it is optimal to follow basestock policy (S_1, S_2) at each time instant, and thus basestock policy (S_1, S_2) is also optimal for that problem. Finally, under linear holding and penalty costs, we obtain the same formulas as in the periodic-review case, but with D_{t_0,t_0+l_2-1} replaced by D_{t_0,t_0+l_2} in equation (9) for B_1. Theorem 2 is still valid, and the Newsboy equations of Theorem 3 hold as long as zero points exist for the functions $g_1(y_1)$ and $g_2(S_1, y_2)$. As the demand process is a compound Poisson process, the distribution functions for D_{t_0,t_0+l_2} and $D_{t_0+l_1,t_0+l_2+l_1}$ have a positive probability mass in 0 and thus it is not guaranteed that zero points exist for $g_1(y_1)$ and $g_2(S_1, y_2)$. This last issue constitutes a minor difference between the continuous-review and the periodic-review case. For the rest, all results are essentially the same.

4.2 Discrete product

In Sections 2 and 3, we assumed that ordered amounts and inventory levels are continuous variables, mainly because that smooths the analysis. This assumption is natural for a continuous product for which customers may demand any real-valued amount. Further, the assumption makes sense for a discrete products with a sufficiently high mean demand and customers that may demand any integer-valued amount. However, for a discrete product with a low mean demand, it is more logical to limit order sizes and inventory levels to integer values. The analysis and results for the two-echelon system then change as follows. All cost functions, such as $G_1(y_1)$ in (6) and $G_2(y_1, y_2)$ in (7) are limited to discrete domains \mathbb{Z} and \mathbb{Z}^2, respectively. All results in the Lemmas 1-4 and Theorems 1-2 are still valid, where now the discrete variant of the definition of a convex function has to be taken, and the optimal basestock levels S_1 and S_2 are obtained by the minimization of one-dimensional functions on \mathbb{Z}: $S_1 = \arg \min_{y_1 \in \mathbb{Z}} G_1(y_1)$ and $S_2 = \arg \min_{y_2 \in \mathbb{Z}} G_2(S_1, y_2)$. The Newsboy equations of Theorem 3, which hold under linear inventory holding and penalty costs, become Newsboy inequalities in this case (cf. [23]). An optimal basestock level S_1 for echelon 1 is obtained at the lowest $y_1 \in \mathbb{Z}$ for which

$$P\{B_0^{(1)} = 0\} \geq \frac{p + h_2}{p + h_1 + h_2},$$

with $B_0^{(1)} = (D_{t_0+l_2,t_0+l_2+l_1} - y_1)^+$. Define $\varepsilon(S_1)$ as the difference between the lefthand and righthand side of this inequality at the point S_1. Then, $\varepsilon(S_1) \geq 0$ and in general $\varepsilon(S_1)$ will be small. Next, an optimal basestock level S_2 for echelon 2 is obtained at the lowest $y_2 \in \mathbb{Z}$ for which

$$P\{B_0 = 0\} \geq \frac{p}{p + h_1 + h_2} + P\{B_1 = 0\}\varepsilon(S_1),$$

(22)
with

\[B_1 = (D_{t_0,t_0+l_2-1} - (y_2 - S_1))^+, \]
\[B_0 = (B_1 + D_{t_0+l_2,t_0+l_2+l_1} - S_1)^+. \]

The second term on the righthand side of (22) is nonnegative and thus, under the optimal basestock policy \((S_1, S_2)\), the no-stockout probability in the full system is at least equal to \(\frac{p}{p + h_1 + h_2}\). (For the generalization of these Newsboy inequalities to serial systems with two or more stages, see [23].)

4.3 Discounted costs

Instead of minimizing average costs, one may be interested in minimizing discounted costs with a discount factor \(\beta, 0 < \beta < 1\). In practice, using discounted costs becomes relevant if the total leadtime of a multi-echelon system is long. The analysis hardly changes under discounted costs, as we can show on the basis of the two-echelon system of Section 2. Cycles are defined in precisely the same way as under average costs. For the cycle costs \(C_{t_0}\), however, the echelon 2 costs \(C_{t_0+l_2,2}\) have to be multiplied by a factor \(\beta^2\) and the echelon 1 costs \(C_{t_0+l_2+l_1,1}\) by a factor \(\beta^{l_2+l_1}\) as they are charged \(l_2\) and \(l_2 + l_1\) periods after period \(t_0\). Equivalently, in the single-cycle analysis, one may replace the echelon cost functions \(c_1(x_1)\) and \(c_2(x_2)\) by the modified functions \(\tilde{c}_1(x_1) = \beta^{l_2+l_1}c_1(x_1)\) and \(\tilde{c}_2(x_2) = \beta^{l_2}c_2(x_2)\). Under the presence of the discount factor, all convexity properties remain valid, and thus all main results hold again. Basestock policies are optimal again. Under linear inventory holding and penalty costs, again Newsboy equations are obtained. For the optimal basestock level \(S_1\), the Newsboy equation in Theorem 3(i) is still valid. For the optimal basestock level \(S_2\), we obtain the same Newsboy equation as in Theorem 3(ii), but with the Newsboy fractile \(p/(p + h_1 + h_2)\) replaced by \((p - 1 - \beta^{l_1} h_2)/(p + h_1 + h_2)\). Hence, the presence of the discount factor \(\beta\) has no effect on \(S_1\), and it has a decreasing effect on \(S_2\) (this is due to the decreased importance of echelon 1 costs \(C_{t_0+l_2+l_1,1}\) relative to echelon 2 costs \(C_{t_0+l_2,2}\) in a cycle).

4.4 \(\gamma\)-service level constraint

As stated before, when analyzing multi-echelon systems often linear inventory holding and penalty costs are assumed for the costs. The penalty costs are the counterpart for inventory holding costs and optimal policies find a balance between these two types of costs. As an alternative for the penalty costs, one may assume a target service level, and then the objective is to minimize the inventory holding costs subject to a service level constraint. Both types of model are related as models with penalty costs are Lagrange relaxations of models with penalty costs; see [67] for an exposition of this relationship. The penalty costs that we have assumed in \(\S 2.3\) and \(\S 3.1\) are of the so-called \(\gamma\)-type, and therefore the results of these sections can be extended to models with a so-called \(\gamma\)-service level constraint. This is described below.

Consider the multi-echelon serial system of \(\S 3.1\). We still assume linear inventory holding costs, but we assume a \(\gamma\)-service level constraint (which is equivalent to an average backlog constraint) instead of the linear penalty costs. The \(\gamma\)-service level is also known as the modified fill rate, and is closely related to the regular fill rate (= \(\beta\)-service level). For high service levels (more precisely, as long as demand is very rarely backordered for more than one period), both measures are virtually
identical. Let \(\gamma_0 \) be the target \(\gamma \)-service level. We make the additional assumption that the demand distribution \(F \) has a connected support, i.e., \(F \) is strictly increasing from 0 to 1 on an interval \([a, b)\), with \(0 \leq a < b \) (\(b \) is allowed to be \(\infty \)). Under a basestock policy \((y_1, \ldots, y_N)\), the average backlog at the end of a period equals \(E B_0^{(N)} \) (see Theorem 4), and the \(\gamma \)-service level is equal to

\[
\gamma(y_1, \ldots, y_N) = 1 - \frac{E B_0^{(N)}}{\mu};
\]

\(B_0^{(N)} \) is given by (16)-(18). An optimal policy for the model with the \(\gamma \)-service level model is obtained as follows. First, if the optimal policy \((S_1, \ldots, S_N)\) for the penalty cost model (with penalty cost parameter \(p \)) has a \(\gamma \)-service level \(\gamma(S_1, \ldots, S_N) = \gamma(p) = \gamma_0 \), then \((S_1, \ldots, S_N)\) is optimal for the service level problem with target service level \(\gamma_0 \) (cf. Everett [27]; see also [49], Appendix B, and [67]). Second, the function \(\gamma(p) \) is nondecreasing in \(p \) (cf. [27, 67]). Third, under the assumption that \(F \) has connected support, one can show that the optimal basestock levels \(S_1, \ldots, S_N \) are continuous in \(p \); thus, \(\gamma(p) \) is also continuous in \(p \). Moreover, \(\gamma(p) \uparrow 1 \) as \(p \to \infty \). Therefore the service level problem with target \(\gamma_0 < 1 \) may be solved by repeatedly solving the penalty cost problem, tuning the penalty cost \(p \) until the \(\gamma \)-service level \(\gamma(p) \) of the optimal policy equals \(\gamma_0 \). This solves the service level problem and implies that the class of basestock policies is also optimal for the service level problem with a \(\gamma \)-service level constraint.

For a multi-echelon models with a target \(\beta \)-service level (= fill rate) or a target \(\alpha \)-service level (= no-stockout probability), the relaxed model is a model with \(\beta \)-type or \(\alpha \)-type penalty costs, respectively. Then the resulting echelon cost functions \(c_n(x_n) \) are not convex anymore and the approach of §2.2 does not work anymore to prove the optimality of basestock policies. In fact, it is likely that the structure of optimal policies is more complicated for these types of service level constraints. Nevertheless, it still may make sense to take the class of basestock policies as a given and to optimize within this class; see e.g. Boyaci and Gallego [6].

4.5 Assembly systems

All results and insights presented so far are for serial multi-echelon systems. They also apply to multi-echelon systems with a pure assembly/convergent structure, where each stage has one or more predecessors and uses input materials of all predecessors to assemble/produce one output product. This is due to Rosling [51], who showed that the analysis of pure assembly systems is equivalent to the analysis of a serial system (independently, in [45], this result has been obtained for a two-echelon assembly system). We show this equivalence for a system where a final product is obtained by the assembly of 2 components that are made from raw material; see Figure 5. The components are numbered 1 and 2 and the leadtime for component \(n = 1, 2 \) is \(l_n \in \mathbb{N} \). The final product has index 0 and a leadtime \(l_0 \in \mathbb{N}_0 \). W.l.o.g., we assume that one unit of the final product is made from one unit of component 1 and one unit of component 2. For the demand process we have the same assumptions and notation as for the serial system in Section 2. For the costs we assume convex echelon cost functions \(c_n(x_n), n = 0, 1, 2; \) in addition, we assume that \(c_1(x_1) \) is nondecreasing.

If both components have equal leadtimes, i.e., if \(l_1 = l_2 \), then the two components may be replaced by one new virtual component of which each unit consist of one unit of component 1 and one unit of component 2, and the assembly system reduces to a two-echelon serial system.
Figure 5: An assembly system with 2 components.

From now on we assume that the component leadtimes are different; w.l.o.g., assume that $l_2 > l_1$. For the resulting assembly system, an optimal policy may be derived along the same lines as in §2.2 for the two-echelon, serial system. At the beginning of each period $t_0 \in \mathbb{N}_0$, a single cycle starts and consists of the following three connected decisions:

- **Decision 2**: This decision concerns the order placed for component 2 at the beginning of period t_0, by which echelon inventory position 2 is increased up to z_2. This decision leads to echelon 2 costs $c_2(z_2 - D_{t_0,t_0+l_2})$ at the end of period $t_0 + l_2$ and the resulting echelon stock 2 at the beginning of period $t_0 + l_2$ is $z_2 - D_{t_0,t_0+l_2-1}$.

- **Decision 1**: This decision concerns the order placed for component 1 at the beginning of period $t_0 + l_2 - l_1$, by which echelon inventory position 2 is increased up to z_1. This decision leads to echelon 1 costs $c_1(z_1 - D_{t_0+l_2-l_1,t_0+l_2})$ at the end of period $t_0 + l_2$ and the resulting echelon stock 1 at the beginning of period $t_0 + l_2$ is $z_1 - D_{t_0+l_2-l_1,t_0+l_2-1}$.

- **Decision 0**: This decision concerns the order placed for the final product at the beginning of period $t_0 + l_2$, by which echelon inventory position 0 is increased up to z_0. When this decision is taken, we are limited from above by the echelon stocks of the two components at that moment, i.e., $z_0 \leq \min\{z_2 - D_{t_0,t_0+l_2-1}, z_1 - D_{t_0+l_2-l_1,t_0+l_2-1}\}$. Decision 0 leads to echelon 0 costs $c_0(z_0 - D_{t_0+l_2,t_0+l_2})$ at the end of period $t_0 + l_2$.

We may now introduce an additional constraint based on the observation that it is never useful to order more for component 1 than what is available in the parallel pipeline for component 2. More precisely, the level z_1 to which echelon inventory position 1 is increased by decision 1 may be limited by the echelon stock 2 at that moment plus the amounts that will arrive at stockpoint 2 at the beginning of the periods $t_0 + l_2 - l_1, \ldots, t_0 + l_2$, i.e., by $z_2 - D_{t_0,t_0+l_2-l_1-1}$. If we take z_1 equal to $z_2 - D_{t_0,t_0+l_2-l_1-1}$, then echelon stock 2 and echelon stock 1 are both equal to $z_2 - D_{t_0,t_0+l_2-1}$ at the beginning of period $t_0 + l_2$. If we would take z_1 larger than $z_2 - D_{t_0,t_0+l_2-l_1-1}$, we would know beforehand that at the beginning of period $t_0 + l_2$ a portion of the arriving order at stockpoint 1 has to wait one or more periods for companion units in stockpoint 2. That portion would only lead to a larger echelon stock 1, and thus to equal or increased costs because $c_1(x_1)$ is nondecreasing. Hence, for decision 1, we introduce the additional constraint $z_1 \leq z_2 - D_{t_0,t_0+l_2-l_1-1}$. As a result,
the constraint for decision 0 simplifies to $z_0 \leq z_1 - D_{t_0+l_2-l_1,t_0+l_2-1}$, and the decision structure for our assembly system becomes identical to the decision structure for a serial system with 3 stages and leadtimes $l_0, l_1, l_2 - l_1$. Therefore the optimal policy for our assembly system can be derived along the same lines as for that equivalent serial system (the cost structure in our assembly system is slightly different from the standard cost structure in a three-stage serial system, but it is still such that we have convex direct expected costs in the relaxed single-cycle problem). We again find that basestock policies are optimal, and the optimal basestock levels follow from the minimization of convex cost functions. In the special case of linear inventory holding and penalty costs, we obtain Newsboy equations that are identical to the Newsboy equations for a three-stage serial system with leadtimes $l_0, l_1, l_2 - l_1$, additional holding cost parameters h_0, h_1, h_2, and penalty cost parameter p.

The description above shows that the reduction of an assembly system to a serial system follows from a basic observation. Hence, this reduction is easily applied to many extensions of the Clark-Scarf system, among which the extensions in §§4.6-4.8.

4.6 Fixed batch size per stage

In many supply chains, there may be setup times and costs involved each time that an order is placed. Setup costs may be modelled directly by fixed ordering costs. This leads to a serial system with a fixed ordering cost per stage, as studied by Clark and Scarf [15]. These fixed ordering costs cannot be captured by convex cost functions $c_n(x_n)$, and thus the analysis of Section 2 does not work anymore. In fact, an optimal solution seems to be complicated in this case; an exception is the case with a fixed ordering cost at the most upstream stage only (see also §4.8).

An alternative way to limit the number of orders per stage is by the introduction of a fixed batch size per stage, a fixed replenishment interval per stage, or a combination of both. These limitations may be determined at the first decision level of the hierarchical approach as discussed at the beginning of Section 1. In this subsection, we discuss the case with a fixed batch size per stage.

Consider the multi-echelon, serial system as described in Section 3, and assume that a fixed batch size Q_n applies for stage n, $n = 1, \ldots, N$. This means that stage n is allowed to order at the beginning of each period, but the size of each order has to be an integer multiple of Q_n. There are no fixed ordering costs. The fixed batch size Q_{n+1} for stage $n + 1$ is assumed to be an integer multiple of the fixed batch size for stage n, $n = 1, \ldots, N - 1$. This is known as the integer-ratio constraint. This constraint facilitates the analysis and reflects that the further upstream we are in a supply chain, the higher setup times and costs tend to be, and thus larger batch sizes are desired. We also assume that at time 0 the physical stock in stage n is an integer multiple of Q_{n-1}, $n = 2, \ldots, N$. For this system, Chen [10] (see also [9]) derived the following optimal policy structure, via the approach that we used in §2.2. Each stage n, $n = 1, \ldots, N$, has to control its echelon inventory position by an (s, Q_n)-policy with fixed batch size Q_n and a reorder level s_n that follows from the minimization of a one-dimensional convex function. This policy is called a multi-echelon (s, Q)-policy, and is a generalized form of a basestock policy. Under a basestock policy, each stage aims to bring its echelon inventory position back to the same point at the beginning of each period, while each stage aims to bring its echelon inventory position back to the interval $(s, s + Q]$ under a multi-echelon (s, Q)-policy. For the case with linear inventory holding and penalty
costs, Doğru et al. [24] generalized the cost formulas of Theorem 4 and the Newsboy equations of Theorem 5, which now hold for the reorder levels s_n. In fact, for each $n = 1, \ldots, N$, the Newsboy equation itself as given in Theorem 5 does not change; there are only a few changes in the recursive formulas (16)-(18) for the backlogs $B_0^{(n)}$.

4.7 Fixed replenishment interval per stage

An alternative way to limit the number of orders per stage is by fixed replenishment intervals. Fixed replenishment intervals facilitate freight consolidations and logistics/production scheduling and are therefore often observed in practice (cf. [39]). In this subsection, we summarize the main results for such systems.

Consider the multi-echelon, serial system as described in Section 3, and assume that a fixed replenishment interval T_n is specified for stage n, $n = 1, \ldots, N$. In this case, orders may have any size, but stage n is only allowed to order at the beginning of every T_n periods. The replenishment interval T_{n+1} of stage $n+1$ is assumed to be an integer multiple of the replenishment interval T_n of stage n, $n = 1, \ldots, N - 1$ (integer-ratio constraint). In addition, we assume that the replenishment epochs are timed such that arriving materials at one stockpoint can be forwarded immediately to the next stockpoint if desired (synchronization constraint). This system has been analyzed in [64], along essentially the same lines as in §2.2. The main difference is constituted by the definition of a cycle. Consider e.g. a system with $N = 2$ stages. Then a cycle is defined for each period t_0 in which stage 2 is allowed to order. An order by stage 2 in such a period t_0 directly affects the echelon 2 costs in the periods $t_0 + l_2, t_0 + l_2 + 1, \ldots, t_0 + l_2 + T_2 - 1$, and it limits the levels to which echelon inventory position 1 may be increased in the periods $t_0 + l_2, t_0 + l_2 + T_1, \ldots, t_0 + l_2 + kT_1$, where $k = T_2/T_1$.

Further, each order by stage 1 in one of these periods $t' = t_0 + l_2, t_0 + l_2 + T_1, \ldots, t_0 + l_2 + kT_1$ has a direct affect on the echelon 1 costs in the periods $t' + l_1, t' + l_1 + 1, \ldots, t' + l_1 + T_1 - 1$. A cycle now consists of $k + 1$ decisions, one decision for stage 2 and k decisions for stage 1, and the cycle costs consist of the echelon 2 costs in the periods $t_0 + l_2, t_0 + l_2 + 1, \ldots, t_0 + l_2 + T_2 - 1$ and the echelon 1 costs in the periods $t_0 + l_2 + l_1, t_0 + l_2 + l_1 + 1, \ldots, t_0 + l_2 + l_1 + T_2 - 1$. Based on this definition of a cycle all main results of the Clark-Scarf model have been generalized in [64]. In this case, we find a multi-echelon (T, S)-policy as optimal policy; i.e., at the beginning of every T_n periods, stage n orders according to a basestock policy with level S_n. For the Newsboy equations we now have to look at the average no-stockout probability over multiple periods, but we keep the same Newsboy fractiles.

It is also possible to use both fixed batch sizes and fixed replenishment intervals. Serial systems with that combination have been analyzed by Chao and Zhou [8]. They combined the insights of [10] and [64], and showed that the structure of the optimal policy is obtained by the combination of multi-echelon (s, Q)- and (T, S)-policies.

For a cost comparison between serial systems with fixed batch sizes and serial systems with fixed replenishment intervals, we refer to Feng and Rao [32]. For a system with linear inventory holding costs, linear penalty costs, and fixed ordering costs, they compared the optimal multi-echelon (T, S)-policy to the optimal multi-echelon (s, Q)-policy. Multi-echelon (s, Q)-policies lead to lower costs in general, but the differences in costs are relatively small. Hence, multi-echelon (T, S)-policies are easily more attractive in situations where freight consolidations and other coordination issues are
important.

4.8 Other extensions

There are a few more multi-echelon, serial systems for which the structure of the optimal policy has been derived. Chen and Song [11] derived the optimal policy for a serial system with Markov-modulated demand, and Gallego and Özer [34] for a serial system with a specific form of advance demand information. In both cases, generalized forms of basestock policies are optimal. Generalized basestock policies may also be optimal for serial systems with an additional feature for the most upstream case.

Consider e.g. the two-echelon, serial system of Section 2 with a fixed capacity C for the upstream stage. Due to this fixed capacity, the upstream stage is never allowed to order more than C units in any period. For this system, a (modified) basestock policy with parameters (S_1, S_2) is optimal (cf. [69]). This result is obtained as follows. Define cycles, cycle costs, and the relaxed single-cycle problem in a similar way as in §2.2. For the downstream stage of the relaxed single-cycle problem, one can show that a basestock policy with a level S_1 is optimal. Next, one can conclude that it is optimal for stage 1 to follow this basestock policy in all periods. What remains is an infinite-horizon problem for stage 2 with a convex cost function $G_2(S_1, y_2)$ that denotes the costs attached to a period t_0 if the inventory position of echelon 2 in that period is increased to level y_2. This problem fits in the single-stage, capacitated inventory model as analyzed by Federgruen and Zipkin [30, 31]. Hence, for echelon 2, a so-called modified basestock policy is optimal, i.e., at the beginning of each period echelon 2 has to increase its echelon inventory position to a level S_2 if the fixed capacity allows this, and otherwise the echelon inventory position is increased as far as possible by an order of size C. The difference between S_2 and the actual level to which echelon inventory position 2 is increased is called a shortfall and its steady-state distribution is identical to the steady-state waiting time in an equivalent $D|G|1$ queue (cf. [58, 69]). By exploiting this observation, the results in Theorems 2 and 3 are easily generalized. For a multi-echelon, serial system with a fixed capacity constraint at the most upstream stage, the optimality of basestock policies is obtained in the same way.

Similarly, the optimal policy for a multi-echelon, serial system with a fixed ordering cost for the upstream stage is obtained. In this case, all stages except the most upstream one has to follow a basestock policy, and for the most upstream stage it is optimal to follow an (s, S)-policy (cf. Clark and Scarf [15]). The policy for the most upstream stage follows from the fact that an (s, S)-policy is optimal for a single-stage inventory system with fixed ordering costs (cf. Scarf [52]).

Finally, Shang and Song [54] (see also [7]) obtained interesting results for the multi-echelon, serial system by the definition of lower and upper bound subsystems for the Subsystems $1, \ldots, N$ for the case with linear inventory holding and penalty costs. The upper bound subsystems have a Newsboy solution and have been shown to lead to lower bounds S_n^l for the optimal basestock levels S_n. The lower bound subsystems also have a Newsboy solution and lead to upper bounds S_n^u for the optimal basestock levels S_n. The weighted averages $(S_n^l + S_n^u)/2$ have appeared to be rather accurate approximations for the optimal basestock levels S_n. An advantage of these approximations is that they are easy to compute. An alternative Newsboy-type approximation has been developed by Gallego and Özer [35]. In [55], the bounds of [54] have been generalized to serial systems with
5. Distribution and General Systems

The theory presented in the previous sections shows that generalized basestock policies are optimal for a variety of multi-echelon systems with a pure serial or assembly/convergent structure, that optimal basestock levels follow from the minimization of convex, one-dimensional functions, and that optimal basestock levels satisfy Newsboy equations for many systems. In §5.1 and §5.2, we discuss systems with a pure distribution/divergent structure. Nice results may be derived for such systems under the so-called balance assumption. Without the balance assumption, however, the structure of the optimal policy may be complicated, and alternative approaches have to be taken in that case. In §5.3, we discuss general systems, with a mixed convergent-divergent structure. That are the systems that often occur in practice. We briefly discuss the approaches that have been developed for such systems.

5.1 A basic distribution system

In this subsection, we first extend the analysis of the two-echelon, serial system to a very basic distribution system. While doing that, we will introduce the balance assumption. As we shall see, the balance assumption, or, better, imbalance between inventories of different local stockpoints, is the key problem in the analysis of distribution systems.

Consider the distribution/divergent system depicted in Figure 6. In this system there is one central stockpoint that is supplied by an external supplier and there are two successive stockpoints that are supplied by this central stockpoint. Such a system may occur in a production environment, where an intermediate product is used in two different final products. Alternatively, we obtain such a structure in a distribution network where a product is kept on stock in a central warehouse and two different local warehouses. From now on, we use the terminology that is common for the latter environment.

For our distribution system, we make similar assumptions as for the two-echelon, serial system of Section 2. The local warehouses are numbered 1 and 2 and we also denote them as stockpoints 1 and 2. The central warehouse is denoted as stockpoint 0. We have periods that are numbered $0, 1, \ldots$. The central warehouse has a deterministic leadtime $l_0 \in \mathbb{N}$, and local warehouse n has a deterministic leadtime $l_n \in \mathbb{N}_0$, $n = 1, 2$. Demands at local warehouse $n = 1, 2$ in different periods are independent and identically distributed on $[0, \infty)$, and the demands at one local warehouse are independent of the demands at the other local warehouse. The cumulative demand at local warehouse n over periods t_1, \ldots, t_2, $0 \leq t_1 \leq t_2$, is denoted by $D_{t_1, t_2}^{(n)}$, and the total demand at both warehouses together over those periods is denoted by $D_{t_1, t_2} = D_{t_1, t_2}^{(1)} + D_{t_1, t_2}^{(2)}$.

The costs are described by convex echelon cost functions $c_n(x_n)$. A special cost structure is constituted by linear inventory holding and penalty costs. Under that structure a cost $h_0 (\geq 0)$ is charged for each unit that is on stock in the central warehouse at the end of a period and for each unit that in the pipelines from the central warehouse to the local warehouses. A cost $h_0 + h_n$ ($h_n \geq 0$) is charged for each unit that is on stock in local warehouse n at the end of a period, and
a penalty cost p_n is charged per unit of backordered demand at local warehouse n at the end of a period, $n = 1, 2$. Let x_n be echelon stock n at the end of a period. Then, the total inventory holding and penalty costs at the end of a period can be shown to be equal to $\sum_{n=0}^{2} c_n(x_n)$ with

$$
c_0(x_0) = h_0x_0,
$$

$$
c_n(x_n) = h_nx_n + (p_n + h_n + h_0)x_n^-, \quad n = 1, 2.
$$

The objective is to minimize the average costs over the infinite horizon. We denote this problem as Problem (P).

For the analysis, we follow the same steps as in §2.2. We start with the definition of cycles and cycle costs. Let $I_{L_{t,n}}$ and $I_{P_{t,n}}$ denote echelon stock n and echelon inventory position n at the beginning of period t (just before demand occurs), and let $C_{t,n}$ be the costs attached to echelon n at the end of period t. A cycle starts with an order placed by the central warehouse at the beginning of a period $t_0 \in \mathbb{N}_0$. This decision is called decision 0. By this decision, $I_{P_{t_0,0}}$ becomes equal to some level z_0. First of all, this decision determines the echelon 0 costs at the end of period $t_0 + l_0$:

$$
E\{C_{t_0+l_0,0} | I_{P_{t_0,0}} = z_0\} = E\{c_0(z_0 - D_{t_0,t_0+l_0})\}.
$$

Second, by this decision, echelon stock 0 at the beginning of period $t_0 + l_0$ becomes equal to $I_{L_{t_0+l_0,0}} = z_0 - D_{t_0,t_0+l_0-1}$, and this directly limits the levels to which one can increase the echelon inventory positions $I_{P_{t_0+l_0,n}}$, $n = 1, 2$, of the local warehouses at that moment. The latter decision is denoted as decision 1-2. Suppose that by this decision $I_{P_{t_0+l_0,n}}$ becomes equal to z_n, $n = 1, 2$. The sum $z_1 + z_2$ of these levels is limited from above by $z_0 - D_{t_0,t_0+l_0-1}$. Decision 1-2 directly affects the echelon n costs at the end of period $t_0 + l_0 + l_n$:

$$
E\{C_{t_0+l_0+l_n,n} | I_{P_{t_0+l_0,n}} = z_n\} = E\{c_n(z_n - D_{t_0+l_0+l_0+l_n})\}, \quad n = 1, 2.
$$

The cycle costs C_{t_0} are equal to $C_{t_0+l_0,0} + \sum_{n=1}^{2} C_{t_0+l_0+l_n,n}$. When the decisions 0 and 1-2 are taken, there is also bounding from below, but this is ignored for the moment. For a visualization of these decisions and the cycle costs, see Figure 7.
The second step of the analysis consists of the definition of the relaxed single-cycle problem. We obtain the following relaxed problem:

\[
\begin{align*}
\text{(RP}(t_0)) : & \quad \text{Min } & \mathbb{E}C_{t_0} = \mathbb{E}C_{t_0+l_0,0} + \sum_{n=1}^{2} \mathbb{E}C_{t_0+l_0+l_n,n} \\
\text{s.t.} & & \mathbb{E}C_{t_0+l_0,0} = \mathbb{E}\{c_0(z_0 - D_{t_0+l_0,0})\}, \\
& & \mathbb{E}C_{t_0+l_0+l_n,n} = \mathbb{E}\{c_n(z_n - D_{t_0+l_0+l_n,0})\}, \quad n = 1, 2, \\
& & z_1 + z_2 \leq IL_{t_0+l_0,0}, \\
& & IL_{t_0+l_0,0} = z_0 - D_{t_0+l_0,0-1}.
\end{align*}
\]

Problem (RP}(t_0)) is a 2-stage stochastic dynamic programming problem. Decision 0 is described by \(z_0\) and is not limited at all. The resulting direct expected costs are equal to \(\mathbb{E}\{c_0(z_0 - D_{t_0+l_0,0})\}\). Decision 1-2 is described by \(z_1\) and \(z_2\), and, via the constraint \(z_1 + z_2 \leq IL_{t_0+l_0,0}\), its decision space depends on \(IL_{t_0+l_0,0}\). Hence, we use \(IL_{t_0+l_0,0}\) to describe the state of the system when decision 1-2 is taken. This state depends on decision 2 via the relation \(IL_{t_0+l_0,0} = z_0 - D_{t_0+l_0-1}\). Decision 1-2 results in direct expected costs \(\sum_{n=1}^{2} \mathbb{E}\{c_n(z_n - D_{t_0+l_0+l_n,0})\}\).

We see decision 1-2 as a decision that decides on two issues simultaneously:

- the aggregate level \(z_{\text{loc}} = z_1 + z_2\) to which the echelon inventory positions \(IP_{t_0+l_0,n}, n = 1, 2\), together are increased;
- the allocation of this total amount \(z_{\text{loc}}\) to the echelons 1 and 2, which is described by \(z_1\) and \(z_2\).

Let us first look at the allocation part. Suppose that a total amount \(z_{\text{loc}} = x, x \in \mathbb{R}\), is being allocated. Then \(z_1\) and \(z_2\) are obtained by the following allocation problem:

\[
\text{(AP}(x)) : \quad \text{Min } \sum_{n=1}^{2} \mathbb{E}\{c_n(z_n - D_{t_0+l_0+l_n,0})\} \\
\text{s.t. } z_1 + z_2 = x.
\]

The optimal solution of Problem (AP}(x)) is denoted by \(z_n^*(x), n = 1, 2\), and the optimal costs are denoted by \(G_{\text{loc}}(x)\). The functions \(z_n^*(x)\) are called optimal allocation functions. Because \(c_n(\cdot)\) is convex, also \(\mathbb{E}\{c_n(z_n - D_{t_0+l_0+l_n,0})\}\) is convex as a function of \(z_n\), and one can show that the
optimal costs $G_{loc}(x)$ are convex as a function of x. Let S_{loc} be a point where $G_{loc}(x)$ is minimized; this point is such that $S_n = z_n^*(S_{loc})$ minimizes $E\{c_n(z_n - D_{t_0,t_0+0}^{(n)})\}, n = 1, 2$ (we allow that S_{loc} and the S_n-s are infinite). Decision 1-2 is taken optimally by increasing the sum of the echelon inventory positions $n = 1, 2$ to level $x = \min\{IL_{t_0,t_0,0}, S_{loc}\}$, i.e., according to a basestock policy with level S_{loc} and by allocating according to the optimal allocations $z_n^*(x), n = 1, 2$.

Given the optimal solution for decision 1-2, we obtain total cycle costs

$$G_0(z_0) = E\{c_0(z_0 - D_{t_0,t_0+4}) + G_{loc}(\min\{z_0 - D_{t_0,t_0+0}, S_{loc}\})\}$$

as a result of the level z_0 to which $IP_{t_0,0}$ is increased. Also this function may be shown to be convex. Hence, for decision 0 it is optimal to follow a basestock policy with level S_0, where S_0 is an minimizing point of $G_0(z_0)$. The optimal costs of Problem (RP(t_0)) are given by $G_0(S_0)$. Notice that the optimal policy for Problem (RP(t_0)) is described by the basestock levels S_{loc} and S_0 and the optimal allocation functions $z_n^*(x), n = 1, 2$.

We now arrive at the third step of the analysis. The optimal costs $G_0(S_0)$ constitute a lower bound LB for the optimal costs C_P of the infinite-horizon Problem (P). Next suppose that we apply the optimal policy of Problem (RP(t_0)) in each period of Problem (P). Then for echelon inventory position 0 and the sum of the echelon inventory positions $n = 1, 2$, we can follow basestock policies with levels S_0 and S_{loc}, respectively. I.e., for these echelon inventory positions, the ordering behavior is precisely as in Problem (RP(t_0)). However, the allocation of the amount $x = \min\{IL_{t,0}, S_{loc}\}$ to the echelons 1 and 2 at the beginning of period t may be problematic for some $t \in \mathbb{N}_0$. We would like to allocate $z_1^*(x)$ and $z_2^*(x)$, respectively, but it may happen that one of these levels is below the current echelon inventory position. We demonstrate this by a possible sample path.

First of all, suppose that our distribution system is such that we have strictly increasing functions $z_n^*(x), n = 1, 2$. Next, suppose that at the beginning of some period t, the echelon stock of the central warehouse is precisely equal to S_{loc}, i.e., $IL_{t,0} = S_{loc}$. Then, at the beginning of period t, the echelon inventory positions 1 and 2 are increased to levels $z_1^*(S_{loc}) = S_1$ and $z_2^*(S_{loc}) = S_2$, respectively, and no physical stock is left in central warehouse. Next, suppose, that in period t zero demand occurred at local warehouse 1, and a positive demand d_2 occurs at local warehouse 2. Then, at the beginning of period $t+1$, the echelon inventory positions of echelons 1 and 2 before ordering are equal to $IP_{t+1,1} = S_1$ and $IP_{t+1,1} = S_2 - d_2$, respectively. Next, suppose that the order placed by the central warehouse in period $t+1,1$ is $S_1 + d_1$, then nothing arrives in the central warehouse in period $t+1$ and thus $IL_{t+1,0} = S_{loc} - d_2$. We now would like to allocate $z_1^*(IL_{t+1,0})$ and $z_2^*(IL_{t+1,0})$ to the echelons 1 and 2, respectively. But,

$$z_1^*(IL_{t+1,0}) < z_1^*(S_{loc}) = S_1 = IP_{t+1,1},$$

i.e., echelon inventory position 1 before ordering is larger than the level to which echelon inventory position 1 should be increased according to the optimal policy for Problem (RP(t_0)). We say that there is imbalance between the echelon inventory positions 1 and 2. Here, we described one situation that leads to imbalance. In general, it may occur if there is a big demand in one local warehouse, while there is a small demand in the other local warehouse and there is not much stock available at the central warehouse to balance the inventories again.

Because of a possible imbalance, the allocation cannot be executed according to the functions $z_n^*(x), n = 1, 2$ in all periods. In the periods with imbalance one can balance the echelon inventory
positions as much as possible. If for local warehouse 1 the current inventory position is above
the desired level according to the functions $z^*_n(x)$, then this is done by keeping echelon inventory
position 1 at the current level and allocating the rest to echelon 2, and vice versa. This is known
as myopic allocation. By following this rule, we obtain a feasible policy for Problem (P) that leads
to an upper bound UB for CP; this UB may be determined via simulation. We call this policy the
LB heuristic. The distance between UB and CP denotes how well the LB heuristic performs. This
distance $UB - CP$, and also the distance $UB - LB$, will be small if imbalance occurs in relatively
few periods only and if the imbalance is rather limited in those periods.

Clearly, due to the phenomenon of imbalance, the analysis of §2.2 for the two-echelon, serial
system cannot be directly generalized to our basic distribution system. However, the generalization
is possible if we assume that the echelon inventory positions $n = 1, 2$ are always balanced after
allocation in all periods. This is equivalent to allowing that an echelon inventory position $n = 1, 2$
is decreased by the allocation, i.e., the corresponding local warehouse receives a negative shipment
from the central warehouse. This assumption is called the balance assumption. Under the balance
assumption the optimal policy of Problem (RP(t_0)) is also optimal for Problem (P). This implies
that then a basestock policy, in combination with the optimal allocation functions $z^*_n(x)$, $n = 1, 2$,
is optimal, and the optimal basestock levels and the functions $z^*_n(x)$ can be determined sequentially
(cf. [28, 29]). The latter property generalizes the decomposition result. In addition, under linear
inventory holding and penalty costs, the Newsboy equations for the optimal basestock levels can
be generalized (cf. [19, 23]).

5.2 Literature on distribution systems

The research on distribution systems has a long history. Clark and Scarf [14] recognized already
that basestock policies are not optimal in general (i.e., without the balance assumption). Eppen
and Schrage [25] introduced the balance assumption for a two-echelon, distribution system consist-
ing of a stockless central warehouse and multiple local warehouses (they called that assumption
the 'allocation assumption'). For a two-echelon, distribution system with a stock-keeping central
warehouse, the optimality of basestock policies under the balance assumption and the decomposi-
tion result were derived by Federgruen and Zipkin [28, 29]. Diks and De Kok [19] extended these
results to multi-echelon, distribution systems. In this literature, mainly linear inventory holding
and penalty costs were considered; it is straightforward to extend these results to general convex
cost functions $c_n(\cdot)$. Under linear inventory holding and penalty costs, Newsboy equations for the
optimal basestock levels have been derived for a general distribution system with continuous de-
mand by Diks and De Kok [19] and for a two-echelon distribution system with discrete demand by
Doğru et al. [23].

The above results give useful insights, however the balance assumption is not always justified.
Hence, it is relevant to know how well basestock policies with optimal allocation functions perform
if the balance assumption is not made, i.e., how well the LB heuristic as defined above performs. In
Doğru et al. [22], the performance of the LB heuristic has been evaluated in a very large test bed of
more than 5000 instances for two-echelon distribution systems with symmetric and asymmetric local
warehouses and with linear inventory holding and penalty costs. Notice that the optimal costs CP
can be determined by stochastic dynamic programming, but because of the curse of dimensionality,
this is only possible for small-size instances with discrete demand. For that reason, \((UB - LB)/LB\) instead of \((UB - CP)/CP\) was used as the measure for the performance of the LB heuristic. It appeared that the LB heuristic performs well in many instances, but a large gap \((UB - LB)/LB\) may also easily occur, and even large gaps of more than 100% were found for some instances. Large gaps mainly occur if the demands at the local warehouses have high coefficients of variation, if the central warehouse has a long leadtime (which limits the speed to react on an imbalance situation), and if there is one local warehouse with a low mean demand and a very low additional holding cost parameter and another local warehouse with a higher mean demand and a much larger additional holding cost parameter. These results extend earlier results by Zipkin [70].

In a subsequent study, Doğru [21] (Chapter 4) computed the optimal policy via stochastic dynamic programming for a two-echelon distribution system with discrete demand distributions on small, finite supports. He compared the decisions taken under the optimal policy to the decisions taken under the LB heuristic for instances with large \((UB - CP)/CP\) ratios. This showed that in these instances the allocation functions \(z^*_n(\cdot)\) as used by the LB heuristic are fine, but that the aggregate basestock level \(S_{loc}\) is too high or the \(S_0\) is somewhat too low (both lead to a too low average physical stock in the central warehouse). This suggest that for instances for which the LB heuristic performs poorly, a much better heuristic may be obtained by slightly adapting the basestock levels \(S_0\) and \(S_{loc}\). One may even go further, and enumerate over all possible values of \(S_0\) and \(S_{loc}\) and pick the combination with the lowest costs. That results in the DS heuristic as proposed by Gallego et al. [36], in a continuous review setting with Poisson demand processes. For this DS heuristic, small gaps between the average costs of the DS heuristic and the lower bound \(LB\) were found. The experiments in both [21] and [36] show that it makes sense to use basestock policies in combination with the optimal allocation functions \(z^*_n(\cdot)\). However, in several cases, we cannot use the levels of the LB heuristic, and we have to try other combinations. The latter increases the computational complexity, especially for systems with multiple echelon levels and many stockpoints.

Another way to cope with possible imbalance problems is by the assumption of alternative allocation rules. One such rule is FCFS allocation in distribution systems with continuous review, as used by e.g. Sherbrooke [56] and Axssäter [2]. In addition, one assumes basestock policies. Then the problem is to evaluate the system under a given basestock policy and to optimize the basestock levels. There has been a lot of research in this direction; for an overview, see Axssäter [5]. Gallego et al. [36] executed an experiment where a system with optimal allocation has been compared to a system with FCFS allocation. Optimal allocation performed always better, but the differences in costs were relatively small. Hence, FCFS allocation is a sensible option for systems that would have serious imbalance problems under the LB heuristic (distribution systems with low demand rates probably belong to this category). Other alternative allocation rules have been studied by Axssäter et al. [4] and Güllü et al. [42].

For systems without imbalance problems, the LB heuristic is appropriate. Variants of the LB heuristic have been developed to increase the speed of computational procedures. This was done by the assumption of linear instead of optimal allocation rules, and is useful for large-scale systems with multiple echelon levels and many stockpoints; for research in this direction, see [20, 62], and the references therein.
5.3 General systems and connection with practice

So far, we have treated multi-echelon systems with a pure serial, a pure assembly/convergent, or a pure distribution/divergent structure. These systems are applicable in practice, e.g., when a company is only responsible for a small part of the supply chain with such a pure structure and wants to control that part by multi-echelon models. However, there are many other practical situations with a mixture of convergent and divergent structures. That leads to multi-echelon models that are hard to solve to optimality, or to models with many stockpoints. For such models, a few interesting concepts have been developed.

There is one concept for general networks of stockpoints that is based on the principles for pure convergent and pure divergent systems as described in §4.5 and §5.1. This concept is denoted as synchronized basestock policies; for an extensive description, see De Kok and Fransoo [17]. The basestock policies are called synchronized as the control of components that go into the same end-products are coordinated according to the insights for convergent systems. This concept has been applied at Philips Electronics to support weekly collaborative planning of operations by Philips Semiconductors and one of its customers, Philips Optical Storage; see De Kok et al. [18]. A second concept has been developed by Ettl et al. [26]. They use a continuous-review, basestock policy for each stockpoint and assume FCFS allocation rules; this is in line with the research on continuous-review distribution systems with FCFS allocation as mentioned in §5.2. This concept has been applied at IBM; see Lin et al. [46]. A third concept for general networks has been described by Graves and Willems [40, 41], and extends earlier work by Simpson [57], Inderfurth [43], and Inderfurth and Minner [44]. This concept builds on basestock policies, bounded demands, and decoupling of a supply chain into subsystems via safety stocks. It is mainly developed for supply chain design, and has been applied at Eastman Kodak.

All three concepts have led to huge cost savings at the companies where they were applied, and thus these concepts have been successful already. Nevertheless, further research is desired to improve and extend them. In the first two concepts, several approximate steps are made in the evaluation of basestock policies and optimization of basestock levels to obtain efficient solution procedures for large networks. In the third concept, simplifying assumptions are made for the same purpose. First of all, it is relevant to study the effect of these approximations/assumptions on the quality of the generated solutions, i.e., on the distance between the generated solutions and optimal solutions (where in the case of the third concept optimal solutions for the model without simplifying assumptions are meant). Second, it would be interesting to compare these concepts for a setting where all three concepts can be applied. Third, in all three concepts, no capacity constraints and batching rules are taken into account. If the hierarchical approach as discussed at the beginning of Section 1, is adopted, then one may deal with capacity issues at the first decision level via appropriately set batching rules, and at the second level decisions may be supported by multi-echelon models that respect these batching rules. This suggests to incorporate insights from serial systems with fixed batch sizes and fixed replenishment intervals, cf. §4.6 and §4.7. If the first level decisions lead to capacity constraints (or, better, work load control rules) for single or multiple items, those constraints have to be taken into account as well, although this will be hard. In fact, even single-product multi-echelon models with a capacity constraint per stage are already hard; see e.g. [37, 48], and the references therein. Forth, the first two concepts are appropriate for operational planning, but in practice they will be applied in a rolling horizon setting, and the effect
Table 1: A classification of multi-echelon systems.

<table>
<thead>
<tr>
<th>Nice systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems for which Newsboy equations have been derived:</td>
</tr>
<tr>
<td>- Standard serial system (§3.1)</td>
</tr>
<tr>
<td>- Assembly system (§4.5, [51])</td>
</tr>
<tr>
<td>- Serial system with a fixed batch size per stage (§4.6, [10])</td>
</tr>
<tr>
<td>- Serial system with a fixed replenishment interval per stage (§4.7, [64])</td>
</tr>
<tr>
<td>- Distribution system under the balance assumption (§5.1)</td>
</tr>
<tr>
<td>- Serial system with a capacity constraint at the most upstream stage (§4.8, [69])</td>
</tr>
<tr>
<td>Systems for which no Newsboy equations have been derived (at least, not yet):</td>
</tr>
<tr>
<td>- Serial system with fixed batch sizes and fixed replenishment intervals (§4.7, [8])</td>
</tr>
<tr>
<td>- Serial system with advanced demand information (§4.8, [34])</td>
</tr>
<tr>
<td>- Serial system with Markov-modulated demand (§4.8, [11])</td>
</tr>
<tr>
<td>- Serial system with a fixed ordering cost at the most upstream stage (§4.8, [15])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complicated systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Distribution system without balance assumption (§5.2)</td>
</tr>
<tr>
<td>- Distribution systems with FCFS allocation (§5.2)</td>
</tr>
<tr>
<td>- Systems with a mixed convergent-divergent structure (§5.3)</td>
</tr>
<tr>
<td>- Systems with a capacity constraint at each stage (§5.3)</td>
</tr>
<tr>
<td>- Systems with a fixed ordering cost at each stage (§4.6, [15])</td>
</tr>
</tbody>
</table>

of that deserves special attention.

6. A Classification of Multi-Echelon Systems and Conclusion

As we have seen in the previous sections, there are several multi-echelon systems for which many nice results are obtained. For those systems, (generalized) basestock policies are optimal and a decomposition result applies for the optimal basestock or reorder levels. In addition, for many of these systems Newsboy equations have been derived. Also, it are these systems where Newsvendor bounds cf. Shang and Song [54, 55] are most likely to work. We call these systems 'nice' systems, and they are listed in the upper part of Table 1, where we distinguish two subclasses: systems for which Newsboy equations have been derived and systems for which they have not been derived (at least, not yet; we believe that they do exist for these systems). The nice systems have in common that all main results are obtained via a single-cycle analysis, for which a stochastic dynamic program with a finite number of stages has to be solved. For these systems, successive cycles are more or less decoupled.

In the lower part of Table 1, we have listed a number of systems that we call 'complicated' systems. For these systems, there is a kind of coupling (or, dependence) between successive cycles.
The structure of optimal policies cannot be derived via a single-cycle analysis. Also that structure may be rather complicated and thus unattractive for practical purposes. For these systems, it may be sensible (and justified) to assume (generalized) basestock policies, as in the concepts for general systems that we discussed in §5.3. But there is no decomposition result anymore, and thus optimal basestock levels have to be determined in an alternative way. In fact, even an evaluation of a basestock policy may already be complicated.

The distinction between nice and complicated systems is delicate (as delicate as between product-form and non-product-form networks in the area of queueing networks). Apart from the issues raised at the end of §5.3, future research may be devoted to that distinction as well. That may lead to a bigger set of nice systems and improved insights for heuristic solutions for complicated systems.

References

