Length scales in the concrete carbonation process and water barrier effect: a matched asymptotics approach
Muntean, A.; Böhm, M.

Published: 01/01/2006

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Length scales in the concrete carbonation process and water barrier effect: a matched asymptotics approach

Adrian Muntean Michael Böhm

Report 06–07

Berichte aus der Technomathematik

Report 06–07 September 2006
LENGTH SCALES IN THE CONCRETE CARBONATION PROCESS AND WATER BARRIER EFFECT: A MATCHED ASYMPOTICS APPROACH

ADRIAN MUNTEAN AND MICHAEL BÖHM

Abstract. The reaction \(\text{CO}_2 + \text{Ca(OH)}_2 \rightarrow \text{H}_2\text{O} + \text{CaCO}_3 \) takes place in unsaturated porous concrete-based materials with separated reactants, where \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) are diffusing and \(\text{Ca(OH)}_2 \) can be assumed as immobile. The process (called carbonation) plays an important role in the service life of concrete-based structures. Our aims are threefold:

1. We study via a matched-asymptotics approach the occurrence of two distinct length scales in the carbonation process. These scales are arising due to the strong competition between reaction and diffusion effects. We show that for sufficiently large times \(\tau \) the width of the carbonated region is proportional to \(\sqrt{\tau} \), while the width of the reaction front is proportional to \(\tau^{\frac{1}{2}(p+1)} \) for carbonation-reaction rates with a power law structure like \(k[\text{CO}_2]^p[\text{Ca(OH)}]^q \), where \(k > 0 \) and \(p, q > 1 \).

2. We emphasize the occurrence of a water barrier in the reaction zone which may hinder the penetration of \(\text{CO}_2 \) by locally filling with water air parts of the pores. This non-linear effect may be one of the causes why a purely linear extrapolation of accelerated carbonation test results to natural carbonation settings is (even theoretically) not reasonable.

3. We compare the asymptotic penetration law, which we obtain for the position of the reaction front, against measured penetration depths from [5]. The novelty consists in the fact that the factor multiplying \(\sqrt{\tau} \) is now identified asymptotically by solving a non-linear system of ordinary differential equations, and hence, no fitting arguments are necessary to estimate its size.

Our law is an alternative to the asymptotic \(\sqrt{\tau} \) expression of the carbonation-front position obtained by Papadakis, Vayenas and Fardis in [26].

Key words: reaction-diffusion process, concrete carbonation, separation of length scales, water barrier, asymptotic penetration law, matched asymptotics

1. Introduction

The reaction-diffusion process studied in this note concerns the following scenario: The mechanism

\[
(1.1) \quad \text{CO}_2(g \rightarrow \text{aq}) + \text{Ca(OH)}_2(s \rightarrow \text{aq}) \rightarrow \text{H}_2\text{O} + \text{CaCO}_3(\text{aq} \rightarrow s)
\]

takes place in unsaturated porous concrete-based materials, where the reactants are assumed to be initially separated. The physicochemical process associated with (1.1) can be described as follows: \(\text{CO}_2 \) from the atmosphere penetrates the concrete material via the air parts of the pores and get absorbed in pore water. Once arrived in pore water, aqueous \(\text{CO}_2 \) moves to the places where aqueous \(\text{Ca(OH)}_2 \) is available. The latter species comes from the pore matrix via dissolution. The reactants meet and react cf. (1.1) to produce moisture (\(\text{H}_2\text{O} \)) and carbonates (\(\text{CaCO}_3 \)). The process is called carbonation and plays an important role in the service life of concrete-based structures. For more details on concrete carbonation and its relevance with respect to corrosion and durability issues of concrete-based structures, we refer the reader to the surveys by Kropp [14] and Chaussadent [7] as well as to the references cited therein.
In this paper, we rely on a conceptually simple isoline model to investigate a couple of asymptotic features of the carbonation process. The particularities of this model, which has been presented in [6] and is reformulated with minor modifications in section 2, are the following: The reactant CO$_2$ and the product H$_2$O are allowed to diffuse, while the other reactant Ca(OH)$_2$ is static. Furthermore, we assume that the total porosity of the concrete stays constant. Despite its apparent simplicity, the model encompasses the main features of the carbonation process. More elaborate models were proposed by several authors, see for instance [13, 27, 32, 21]. In the sequel, we focus on the following issues:

(1) We study the asymptotic separation of length scales during carbonation arisen due to the strong competition between reaction and diffusion effects. We show that for sufficiently large times τ the width of the carbonated region is proportional to $\sqrt{\tau}$, while the width of the reaction front is proportional to $\tau^{\frac{p}{2(p+1)}}$ for carbonation-reaction rates with a power law structure like $k[\text{CO}_2]^{p}[\text{Ca(OH)}]_2^{q}$, where $k > 0$ and $p, q > 1$. The same issue was touched, for instance, in [28, 8, 4, 15, 36] from both theoretical and experimental viewpoints.

(2) We emphasize the occurrence of a water barrier in the reaction zone which, under certain circumstances, can hinder the penetration of CO$_2$ by locally filling with water the air parts of the pores. This non-linear effect may be one of the causes why a purely linear extrapolation of accelerated carbonation test results to natural carbonation settings is not possible. Our motivation for this subject was explained in detail in [25]. At that point, we have listed a set of non-linear issues which can hinder any reasonable a priori quantitative extrapolation in correct ranges.

(3) We compare the asymptotic penetration law, which we obtain for the description of the position of the reaction front, against measured penetration depths extracted from Bunte’s PhD thesis [5]. The novelty consists in the fact that the factor multiplying \sqrt{t} is now identified asymptotically by solving a non-linear system of ordinary differential equations, and hence, no fitting arguments are necessary to estimate its size. Our law may be viewed as another asymptotic alternative to the asymptotic \sqrt{t} expression of the reaction-front position in [26]. In contrast to [26], we do not shrink the reaction layer to the corresponding free boundary. We rather prefer to keep the geometry of the layer as it is and estimate its width asymptotically taking into account the structure of the reaction kinetics.

Our motivation to apply formal asymptotic methods in order to to tackle subjects like those stated in (1)-(3) basically stems from the pioneering approach to carbonation by Papadakis, Vayenas and Fardis in [26]. At the modeling level, we are influenced by the asymptotic investigation of Ca(OH)$_2$ leaching in concrete done by Mainguy in his PhD thesis [18] and then applied in [19] by Mainguy and Coussy to the same problem. Similar ideas as in [18] were employed in the context of carbonation by Thiéry in his PhD thesis [35]. At the technical level, since we employ matched asymptotics (see [2, 29, 16, 34], e.g., for details), our approach is different. The mathematical core of this contribution follows partly the lines of the paper by Bazant and Stone [4]. We apply some of their ideas to the carbonation problem. Nevertheless, the introduction of an additional partial differential equation to describe the diffusive behavior of the moisture produced by reaction (1.1), and also, our particular choice of scaling parameters used to non-dimensionalize the model equations lead us away from the basic framework treated in [4]. Since in the interior of the reaction layer the equation of moisture formally decouples from those of
the reactants, many of the working ideas employed in [4] become applicable to our setting.

The paper is organized as follows:

CONTENTS

1. Introduction 1
2. Carbonation model 3
3. Inner problem 5
4. Outer problem 6
5. Matching of the inner and outer approximations 7
6. Calculation of $\hat{U}'(\infty)$ and $\hat{W}'(\infty)$ 8
7. Identification of m in (2.9) 9
8. Simulation results 10
9. Discussion 13
Appendix A. The choice of scaling exponents 14
Acknowledgments 15
References 15

2. Carbonation model

We consider the carbonation model as proposed by Cahyadi and Uomoto in [6]. One of the particularities of their formulation is that the molecules of Ca(OH)$_2$ and CaCO$_3$ are supposed to be immobile (non-diffusing), while those of CO$_2$ and of moisture may diffuse. Moreover, we consider that production and precipitation of CaCO$_3$ are equal and do not significantly affect the remaining mechanisms of the reaction-diffusion problem in question.

Denote by u, v and w the dimensionless concentration of CO$_2$(aq), Ca(OH)$_2$(aq) and moisture produced by the reaction

$\text{CO}_2 + \text{Ca}(\text{OH})_2 \rightarrow \text{H}_2\text{O} + \text{CaCO}_3$.

Note that there are a few conceptual differences between (1.1) and (2.1). Particularly, in the sequel we do not distinguish between the water and air phases. The main reason which is behind such a treatment is that both the transfer of CO$_2$ from the air to water phase (and *vice versa*) and the dissolution of Ca(OH)$_2$ from the solid matrix to water phase (and *vice versa*) may be assumed to be in local equilibrium. Let $\Omega :=]-\infty, +\infty[\text{ and } S :=]0, \infty[\text{ be the space and time domain of interest. Our choice of } \Omega \text{ underlines the fact that we do not account for boundary}
effects. Following [26, 23], the carbonation problem may be stated in dimensionless form as

\begin{align}
(2.2) & \quad u_{\tau} - \delta_u u_{zz} = -\Phi^2 f(u, v) \text{ equation for CO}_2 \\
(2.3) & \quad \beta_v v_{\tau} = -\Phi^2 f(u, v) \text{ equation for CaOH}_2 \\
(2.4) & \quad \beta_w w_{\tau} - \delta_w w_{zz} = +\Phi^2 f(u, v) \text{ equation for H}_2\text{O} \\
(2.5) & \quad u(z, 0) = H(z), v(z, 0) = H(-z) \text{ and } w(z, 0) = 0 \text{ for all } z \in \Omega, \\
(2.6) & \quad u(\infty, \tau) = 1 \text{ and } w(\infty, \tau) = \dot{w}, u(-\infty, \tau) = 0, w(-\infty, \tau) = \dot{w} \text{ for all } \tau \in S.
\end{align}

We are looking for left-traveling wave fronts of CO\textsubscript{2} and Ca(OH)\textsubscript{2} concentrations and for a pulse of humidity, see Fig. 1. These are solutions defined on the entire real line (see chapter 3 in [17], e.g.) and represent a mathematical ansatz of wave concentration profiles in the laboratory or in situ experiment. By (2.6), the wave of CO\textsubscript{2} is a compression (contamination) wave, while that of Ca(OH)\textsubscript{2} is a rarefaction (remediation) one.

The parameters \(\delta_u, \delta_w, \beta_v, \beta_w\) and \(\Phi^2\) are positive quantities which correspondingly represent the effective CO\textsubscript{2} and humidity diffusivities, impact capacity factors, and the Thiele modulus, see section 8 for typical values. The term

\begin{equation}
(2.7) \quad f(u, v) := u^p v^q
\end{equation}

denotes the production by carbonation reaction. Note that the mass-balance equations are coupled by means of \(f\). In (2.5), \(H(\cdot)\) is the Heaviside function which is defined by

\begin{equation}
(2.8) \quad H(\zeta) = \begin{cases} 0, & \text{if } \zeta < 0, \\
1, & \text{if } \zeta \geq 0.
\end{cases}
\end{equation}

For simplicity, we assume in (2.6) that \(\dot{w} = 0\). Therefore, \(w\) comprises only the concentration of water produced by (1.1). Furthermore, since the species whose concentration is denoted by \(v\) is not allowed to diffuse, it cannot leave its initial support, and hence, \(v(x, t) = 0\) for all \(x > 0\) and \(t \geq 0\). The reactant \(u\) diffuses into \(-x\) direction toward the place hosting the static reactant \(v\). Arguing as in [2, 4], if an asymptotic similarity solution exist, then it must involve a moving front which diffuses into the material. See section 3 and [3, 26, 4, 15], e.g., for discussions concerning why such a front is expected to exist. We denote by \(\sigma(\tau)\) its position at the moment \(\tau > 0\). For fixing the ideas, let \(\sigma(\tau)\) be the center of the reaction zone. We assume that \(\frac{d\sigma(\tau)}{d\tau} < 0\), where \(\sigma(\tau)\) is given by

\begin{equation}
(2.9) \quad \sigma(\tau) := -2m\tau^\alpha, \alpha \in \mathbb{R}, \tau \geq 0.
\end{equation}

The coefficient \(m\) is a priori unknown. We expect \(m\) to depend on the Thiele modulus \(\Phi^2\), but the precise way in which this dependence holds still needs to be identified. We address the determination of \(m\) in section 7. The dependence of \(m\) on \(\Phi^2\) is explained for a particular case in section 9. In the sequel, we omit to write down explicitly the dependence of \(m\) on \(\Phi^2\).

We use the definition (2.9) of \(\sigma(\tau)\) in order to distinguish between the three space domains of interest. Namely, we denote the carbonated zone (also called diffusion layer), the inter-phase carbonation layer (called also reaction layer) and the uncarbonated part, respectively, by

\begin{align}
(2.10) & \quad \Omega_1(\tau) := [\sigma(\tau) + \epsilon/2, \infty[, \\
(2.11) & \quad \Omega_c(\tau) := [\sigma(\tau) - \epsilon/2, \sigma(\tau) + \epsilon/2[, \\
(2.12) & \quad \Omega_2(\tau) :=]-\infty, \sigma(\tau) - \epsilon/2[,.
\end{align}
By (2.12), ϵ is the width of $\Omega_\epsilon(\tau)$. In this framework, $\Omega_\epsilon(\tau)$ some sort of a mushy region where u, v and w coexist. Since $\frac{d\tau}{\delta \tau} < 0$, the reaction front $\Omega_\epsilon(\tau)$ (and implicitly the production by reaction $f(u,v)$) moves towards the location of the source of v. The separation of reactants can be expressed as

$$u(z, \tau) = 0 \text{ for all } z \in \Omega_2(\tau),$$

$$v(z, \tau) = 0 \text{ for all } z \in \Omega_1(\tau).$$

Furthermore, we have

$$w(z, \tau) = 0 \text{ for all } z \in \Omega_1(\tau) \cup \Omega_2(\tau).$$

3. INNER PROBLEM

We consider as inner problem the scaling of the reaction layer $\Omega_\epsilon(\tau)$. We make use of the stretching variable

$$\eta := \frac{z + \sigma(\tau)}{\tau^\beta} = \frac{z + 2m \tau^\alpha}{\tau^\beta},$$

where we assume that the width ϵ of $\Omega_\epsilon(\tau)$ is proportional to τ^β for some $\beta \geq 0$. By (3.1), we deduce

$$\eta_z = \tau^{-\beta} \text{ and } \eta_\tau = -\beta \tau^{-1} \eta + 2m \alpha \tau^{\alpha-\beta-1}.$$

In the vicinity of $\sigma(\tau)$, we allow the concentrations u and w to vary like

$$U(\eta, \tau) := \tau^\gamma u(z, \tau), \quad V(\eta, \tau) = v(x, t) \quad \text{and} \quad W(\eta, \tau) = \tau^\nu w(z, \tau)$$

with $\gamma > 0$ and $\nu > 0$. We refer the reader to [4], for a discussion of the non-relevance of the cases $\gamma = 0$ and $\nu = 0$.

Owing to (3.3), it is necessary to replace $f(u, v)$ in (2.7) by $f(U, V) = \tau^{-\delta} U^p V^q$, with $\delta := \gamma p$.

By (3.1), (3.2), (3.3) and the chain rule, the mass-balance equations (2.2), (2.3) and (2.4) become

$$\tau^{(p-1)} U_\tau = \tau^\gamma \beta \eta U_\eta + \gamma U + 2m \alpha \tau^{\alpha-\beta+\gamma(p-1)-1} U_\eta = \tau^{(p-1)-\gamma} \delta_w U_\eta - \frac{\phi^2}{\beta_w} U^p V^q,$$

$$\tau^{(\gamma-\delta)} V_\tau = \tau^\gamma \beta \eta V_\eta + 2m \alpha \tau^{\alpha-\beta+\gamma\delta-1} V_\eta = -\frac{\phi^2}{\beta_w} U^p V^q,$$

$$\tau^{(\gamma-\delta)-\nu} W_\tau = \tau^\gamma \beta \eta W_\eta + \nu W + 2m \alpha \tau^{\alpha-\beta+\gamma\delta-\nu-1} W_\eta = \tau^{(\gamma-\delta)-\nu} \delta_w W_\eta + \frac{\phi^2}{\beta_w} U^p V^q.$$

We aim at finding asymptotically invariant (similarity) solutions which correspond to the following limiting behavior with suitable U, V and W:

$$U(\eta, \tau) \rightarrow \tilde{U}(\eta), \quad V(\eta, \tau) \rightarrow \tilde{V}(\eta), \quad W(\eta, \tau) \rightarrow \tilde{W}(\eta),$$

$$U_\eta(\eta, \tau) \rightarrow \tilde{U}_\eta(\eta), \quad V_\eta(\eta, \tau) \rightarrow \tilde{V}_\eta(\eta), \quad W_\eta(\eta, \tau) \rightarrow \tilde{W}_\eta(\eta),$$

as $\tau \rightarrow \infty$ and $-\infty < \eta < \infty$. We make use of the same arguments as in [4] to require the presence of a dominant balance (cf. also chapter 5 in [12]), which compensates the effect of the nonlinear reaction $U^p V^q$. The first step needed in order to obtain the time-invariance of U, V and W is to require the smallness of the terms U_τ, V_τ and W_τ relatively to the production by reaction. In other words, we assume the pseudo-steady state approximation for U, V and W, i.e.

$$\lim_{\tau \rightarrow \infty} \tau^{(p-1)} U_\tau = \lim_{\tau \rightarrow \infty} \tau^{(p-1)} V_\tau = \lim_{\tau \rightarrow \infty} \tau^{(p-1)-\nu} W_\tau = 0.$$
The dominant balance situations for U, V, and W suggest the study of the following cases:

- (U1) $\gamma(p - 1) - 2\beta = 0$, $\alpha - \beta + \gamma(p - 1) - 1 \leq 0$, $\gamma(p - 1) - 1 \leq 0$,
- (U2) $\gamma(p - 1) - 2\beta \leq 0$, $\alpha - \beta + \gamma(p - 1) - 1 = 0$, $\gamma(p - 1) - 1 \leq 0$,
- (U3) $\gamma(p - 1) - 2\beta \leq 0$, $\alpha - \beta + \gamma(p - 1) - 1 = 0$, $\gamma(p - 1) - 1 = 0$,
- (V1) $\gamma p - 1 = 0$, $\alpha - \beta + \gamma p - 1 \leq 0$,
- (V2) $\gamma p - 1 \leq 0$, $\alpha - \beta + \gamma p - 1 = 0$,

and

- (W1) $p\gamma - \nu - 2\beta = 0$, $\alpha - \beta + \gamma p - \nu - 1 \leq 0$, $\gamma p - \nu - 1 \leq 0$,
- (W2) $p\gamma - \nu - 2\beta \leq 0$, $\alpha - \beta + \gamma p - \nu - 1 = 0$, $\gamma p - \nu - 1 \leq 0$,
- (W3) $p\gamma - \nu - 2\beta \leq 0$, $\alpha - \beta + \gamma p - \nu - 1 \leq 0$, $\gamma p - \nu - 1 = 0$.

We proceed as in [4] and find out the traveling wave cases (U2, V2, W1) and (U2, V2, W2) and the diffusing front case (U1, V2, W1). We drop those configurations which are not logically consistent\(^1\), see appendix A for details. We are not interested in any traveling wave, but only on those that are bounded and approach constant, equilibrium states at $z = \pm\infty$. These special types of traveling wave solutions are called wave front (or diffusing front) solutions. On this way, we are only left with the diffusing front case (U1, V2, W1). Therefore, we are forced to take into account two regions with different scale invariance: one for the diffusion layer, and another one for the reaction layer. In this case the front advances sub-linearly in time, i.e. like ζ^α with $0 < \alpha < 1$. Note that such a sub-linear behavior of the front has been mathematically shown for two moving-boundary formulations of the concrete carbonation problem in [23].

4. Outer problem

In this section, we deal with the case of the infinitely thin carbonation front (layer). Namely, we only consider the case when Thiele modulus $\Phi^2 \gg 1$ is and finite, see appendix A in [23] or [26], e.g. We are motivated to study this case by the fact that during the carbonation process the reaction is faster than the transport. Therefore, we expect that the width $\epsilon > 0$ of the reaction layer $\Omega_1(\tau)$ is relatively small compared to the width of the diffusion layer $\Omega_2(\tau)$. Such setting occurs when in the reaction-diffusion process the characteristic time scale of reaction is much smaller than that of diffusion.

We consider as outer problem the scaling of the diffusion layer $\Omega_1(\tau)$. To scale this region, we introduce another similarity variable which reads

\[
\zeta := \frac{2\eta r^\alpha + z}{2\tau^\rho}
\]

for all $\zeta > 0$, zeta $\geq \sigma$.

In (4.1), we have $\rho > 0$. The similarity variables η cf. (3.1) and ζ cf. (4.1) are linked through

\[
\eta = 2\tau^{\rho-\beta} \zeta.
\]

If $\eta \to \infty$ and $\zeta \to 0$ with $\zeta > 0$, then the carbonated zone needs to connect with the reaction layer. Let us introduce some new functions

\[
U(\zeta, \tau) := u(z, \tau), \quad V(\zeta, \tau) := v(z, \tau) \quad \text{and} \quad W(\zeta, \tau) := w(z, \tau).
\]

\(^1\)For the case (U1, V2, W1), we have $\nu = \gamma$, $0 < \gamma \leq \frac{1}{2}$, $\beta = \frac{1}{2}(p - 1)$, $\alpha \leq 1 - \frac{2}{3}(p - 1)$. The same arguments as in [4] can be used to show that the traveling wave ansatz is not satisfactory for the reaction-diffusion model in question. We do not repeat them here and refer the reader to (22a)-(23) in [4].
As in section 3, we omit to write the dependence of \(m \) on \(\Phi^2 \). (4.1) yields
\[
\zeta, \tau = \frac{1}{2\eta} \quad \text{and} \quad \zeta, \tau = m\alpha + p - 1 - \zeta, \tau^{-1}.
\]
The mass-balance equations (2.2)-(2.4) become
\[
\tau^2 \partial U, + m\alpha + p - 1 U, - \zeta, \tau^2 \partial^{-1} U, = \frac{1}{4} \frac{\delta_u}{\beta_u} \partial U, = - \frac{\Phi^2}{\beta_w} \tau^2 U^p \Phi^3,
\]
and
\[
\tau^2 \partial V, + m\alpha + p - 1 V, - \zeta, \tau^2 \partial^{-1} V, = - \frac{1}{4} \frac{\delta_u}{\beta_u} \partial V, = - \frac{\Phi^2}{\beta_w} \tau^2 U^p \Phi^3.
\]
We look for capturing the following asymptotic similarity behavior
\[
U(\zeta, \tau) \rightarrow \hat{U}(\zeta), \quad V(\zeta, \tau) \rightarrow \hat{V}(\zeta), \quad W(\zeta, \tau) \rightarrow \hat{W}(\zeta),
\]
\[
U, (\zeta, \tau) \rightarrow \hat{U}, (\zeta), \quad V, (\zeta, \tau) \rightarrow \hat{V}, (\zeta), \quad W, (\zeta, \tau) \rightarrow \hat{W}, (\zeta),
\]
\[
U, (\zeta, \tau) \rightarrow \hat{U}, (\zeta), \quad V, (\zeta, \tau) \rightarrow \hat{V}, (\zeta), \quad W, (\zeta, \tau) \rightarrow \hat{W}, (\zeta),
\]
as \(\tau \rightarrow \infty \) and \(\zeta > 0 \). In order to realize this, we firstly assume that the time derivative of \(U, \ V \) and \(W \) can be neglected when compared to diffusion terms
\[
\lim_{\tau \rightarrow \infty} \tau^2 \partial U, (\zeta, \tau) = \lim_{\tau \rightarrow \infty} \tau^2 \partial W, (\zeta, \tau) = 0 \quad \text{for all} \quad \zeta > 0.
\]
A scaling, which is different from that one used for the carbonation layer, can be acquired if the production by reaction does not enter the dominant balance. Thus, we assume that
\[
\lim_{\tau \rightarrow \infty} \tau^2 \Phi^2 U^p (\zeta, \tau) \Phi^3 (\zeta, \tau) = 0 \quad \text{for all} \quad \zeta > 0.
\]
The investigation of the dominant balance suggests the following possible cases:
\[
\alpha + p - 1 = 0, \quad 2\rho - 1 \leq 0
\]
\[
\alpha + p - 1 \leq 0, \quad 2\rho - 1 = 0.
\]
The situation corresponding to \(\alpha + p - 1 \leq 0 \) and \(2\rho - 1 = 0 \) represents the case of the diffusing front-like solution, the width of the carbonated region being then proportional to \(\sqrt{\tau} \). The other situation is eliminated as in [4].

5. Matching of the inner and outer approximations

The limit \(\eta \rightarrow \infty \) of the inner approximation has to match the limit \(\zeta \rightarrow 0, \zeta > 0 \) of the outer approximation. Since we want to obtain an asymptotic matching, it is essential to pass to the limit \(\tau \rightarrow \infty \) before the matching is realized. The major care is to propose those matching conditions which conserve the mass when passing from the diffusion layer to the reaction layer.

The matching of \(v \) is
\[
\lim_{\eta \rightarrow \infty} \hat{V}(\eta) = \lim_{\zeta \rightarrow 0^+} \hat{V}(\zeta).
\]
To match the outer and inner limits of \(u \) and \(w \), some care is needed to formulate the connecting conditions in the intermediate zone. This intermediate region lies between the reaction and diffusion layer. Note firstly that since \(\gamma \rightarrow 0 \) the concentration profiles of \(u \) and \(w \) decay to zero as \(t \rightarrow \infty \) and \(|\eta| < \infty \). The decay happens like \(u(z, \tau) = O(\tau^{-1}) \) and \(w(z, \tau) = O(\tau^{-\nu}) \). We proceed as in [4] and match the
linear terms in the Taylor expansion of u and w in the intermediate region. Notice that

\begin{equation}
(5.2) \quad u_z(z, \tau) = \frac{\hat{U}'(\zeta)}{2\tau^\rho}, \quad w_z(z, \tau) = \frac{\hat{W}'(\zeta)}{2\tau^\rho},
\end{equation}

as $\tau \to \infty$ and $0 < \zeta < \infty$ is fixed, and

\begin{equation}
(5.3) \quad u_z(z, \tau) = \frac{1}{\tau^{\beta+\gamma}} \hat{U}'(\eta), \quad w_z(z, \tau) = \frac{1}{\tau^{\beta+\nu}} \hat{W}'(\eta),
\end{equation}

as $\tau \to \infty$ and $|\eta| < \infty$ is fixed. (5.2) and (5.3) suggest the matching of the exponents

\begin{equation}
(5.4) \quad \beta + \gamma = \rho, \quad \beta + \nu = \rho
\end{equation}

and also

\begin{equation}
(5.5) \quad \hat{U}'(\infty) = \frac{1}{2}\hat{U}'(0), \quad \hat{W}'(\infty) = \frac{1}{2}\hat{W}'(0).
\end{equation}

The values of $\hat{U}'(\infty)$ and $\hat{W}'(\infty)$ will be calculated in section 6. Finally, we conclude this section by giving the asymptotic scaling we were looking for:

\begin{equation}
(5.6) \quad \beta = \frac{p-1}{2(p+1)}, \quad \gamma = \frac{1}{p+1}, \quad \rho = \alpha = \frac{1}{2}, \quad \delta = \frac{p}{p+1} = p\gamma,
\end{equation}

and recall the relation $\nu = \gamma$. It is worth mentioning that the value of γ in (5.6) is obtained combining $\beta + \gamma = \rho$ and $\beta = \gamma (p - 1)$.

6. Calculation of $\hat{U}'(\infty)$ and $\hat{W}'(\infty)$

The concentration profiles of \hat{U} and \hat{W} can be calculated in the diffusion layer. Herein, we have

\begin{align*}
2(m - \zeta)\hat{U}' &= \delta_u \hat{U}'' \\
\hat{U}(0) &= 0, \quad \hat{U}(\infty) = 1
\end{align*}

and hence,

\begin{align}
(6.1) \quad -2 \left(\frac{\zeta}{\delta_u} - \frac{m}{\delta_u} \right) \hat{U}' &= \hat{U}'' \\
(6.2) \quad \hat{U}(0) &= 0, \quad \hat{U}(\infty) = 1.
\end{align}

The exact solution of (6.1)-(6.2) is

\begin{equation}
(6.3) \quad \hat{U}(\zeta) = \frac{\text{erf} \left(\frac{\zeta - m}{\delta_u} \right) + \text{erf} \left(\frac{m}{\delta_u} \right)}{1 + \text{erf} \left(\frac{m}{\delta_u} \right)},
\end{equation}

where the error function erf is defined by

$$
\text{erf}(\lambda) = \frac{2}{\sqrt{\pi}} \int_0^\lambda \exp(-r^2)dr
$$

for all $\lambda \geq 0$. Similarly, we obtain

\begin{equation}
(6.4) \quad \hat{W}(\zeta) = 0 \text{ for all } \zeta \geq 0.
\end{equation}

Denoting

\begin{equation}
(6.5) \quad M_u := \frac{m}{\delta_u} \text{ and } \alpha := \frac{\zeta}{\delta_u},
\end{equation}

as $\tau \to \infty$ and $0 < \zeta < \infty$ is fixed, and
we can write

\[\frac{U'(0)}{2} = \lim_{\zeta \to 0} \frac{\hat{U}'(\zeta)}{2} = \lim_{\zeta \to 0} \frac{1}{\sqrt{\pi} (1 + \text{erf}(M_u))} \exp (- (\alpha - M_u)^2), \]

\[\frac{W'(0)}{2} = \lim_{\zeta \to 0} \frac{\hat{W}'(\zeta)}{2} = 0. \]

The matching conditions allow us to define \(U^* \) and \(W^* \) via

\[U^* = \hat{U}'(\infty) = \frac{U'(0)}{2}, \]

\[W^* = \hat{W}'(\infty) = \frac{W'(0)}{2}. \]

7. Identification of \(m \) in (2.9)

Let us consider the following system of ordinary differential equations which hold in the reaction front:

\[\delta_u \hat{U}'' - \Phi^2 \hat{U}' \hat{V}' = 0, \]

\[m \hat{V}' - \Phi^2 \hat{V}' \hat{W}' = 0, \]

\[\delta_w \hat{W}'' + \Phi^2 \hat{W}' \hat{V}' = 0. \]

The associated boundary conditions are

\[\hat{U}(-\infty) = 0 \quad \hat{U}'(\infty) = U^*, \]

\[\hat{V}(-\infty) = 1 \quad \hat{V}'(\infty) = 0, \]

\[\hat{W}(-\infty) = 0 \quad \hat{W}'(\infty) = W^*, \]

where the boundary values \(U^* \) and \(W^* \) are given by (6.8) and (6.9). It is important to observe that we need all 6 boundary conditions listed in (7.4)-(7.6) in order to find the solution \(\hat{U}, \hat{V}, \hat{W} \) of the system (7.1)-(7.3), and simultaneously, to identify the parameter \(m \). Note that \(\hat{U}, \hat{V}, \hat{W} \) and \(\Phi^2 \) depend on the choice of \(\delta_u, \beta_v, \beta_w \) and \(\Phi^2 \). Combining\(^2\) equations (7.4) and (7.5) and then integrating the result firstly from \(t \) up to \(\infty \), and afterwards, integrating the result mentioned above from \(-\infty\) up to \(t \) yields

\[\delta_u U^* - \delta_u \hat{U}'(t) - \beta_v m \hat{V}(t) = 0 \quad \text{and} \quad -\beta_v m + \beta_v m \hat{V}(t) + \delta_u \hat{U}'(t) = 0, \]

for all \(t \geq 0 \), and hence,

\[m = \frac{\delta_u U^*(m)}{\beta_v}. \]

(7.8) has a uniquely determined solution \(m > 0 \), see Fig. 2. This type of reasoning is standard if we think of calculating wave speeds. With the notation

\[\Theta : [0, \infty] \to \mathbb{R} \text{ defined by } \Theta(\chi) := \frac{1}{\beta_v} \left[\frac{e^{-\chi^2}}{\sqrt{\pi} (1 + \text{erf}(\chi))} \right], \]

we get \(U^*(\chi) = \beta_v \Theta(\chi) \) for all \(\chi \geq 0 \). It is straightforward to eliminate \(\hat{V} \) to obtain a single equation in terms of \(\hat{U} \). By (7.1), (7.2) and (7.7), we obtain

\[\hat{U}'(t) = U^* - \frac{\beta_v m}{\delta_u} \hat{V}(t) = U^*(1 - \hat{V}(t)) \text{ for } t \geq 0, \]

\[\Theta(\chi) \text{ as also } [17] \text{ pp. 78-79, e.g.} \]
and hence,

\begin{equation}
\hat{V}(t) = 1 - \frac{\hat{U}(t)}{U^*}, \quad t \geq 0.
\end{equation}

Thus (7.1) becomes

\begin{equation}
\delta_u \hat{U}'' - \Phi^2 \hat{U}^p \left(1 - \frac{\hat{U}'}{U^*}\right)^q = 0.
\end{equation}

The boundary conditions (7.4) are associated to the non-linear equation (7.12).

Questions concerning the existence and uniqueness of the reaction front scaling function \(\hat{U} \), which satisfies (7.12) and (7.4), were addressed in [4], section 3.6. Once \(\hat{U} \) is known, the system (7.1)-(7.6) decouples and the remaining equations are then easy to integrate.

8. Simulation results

We turn our attention to the carbonation setting described in [5]. We perform the calculations with respect to the space domain \(\Omega_L := [-L, L] \) and the time interval \(S_T := [0, T] \). In this section, we set \(L = 1 \) cm, \(\epsilon = \frac{1}{4} \) cm and \(T = 18 \) years. Note that \(T \) represents the final time of the carbonation process in Bunte’s experiment (cf. [5]) and \(L > \epsilon \). The couple \((\Omega_L, S_T)\) is used for the numerical approximation of the infinitely large intervals \(\Omega \) and \(S \). Further, let us denote by \(D_A \) the effective diffusivity of species \(A \), by \(\lambda_A \) the Dirichlet boundary datum which we assume to be compatible with the corresponding initial datum. Our candidates for \(A \) are the reactants and products involved in (1.1). By \(\eta_{\text{max}} \) we denote the maximum value of the reaction rate.

Herein, the following material parameters are used: \(D_{\text{CO}_2} = 3.5 \) cm\(^2\)/day, \(D_{\text{H}_2\text{O}} = 1 \) cm\(^2\)/day, \(D_{\text{Ca(OH)}_2} = 0.864 \) cm\(^2\)/day, \(\lambda_{\text{CO}_2} = 58.9286 \times 10^{-6} \text{g/cm}^3 \), \(\lambda_{\text{Ca(OH)}_2} = 0.077 \text{g/cm}^3 \), \(\lambda_{\text{H}_2\text{O}} = 1 \text{g/cm}^3 \), \(\eta_{\text{max}} = k \lambda_{\text{CO}_2}^p \lambda_{\text{Ca(OH)}_2}^q \), where \(k = 150 \) [1/day\(^p\)(g/cm\(^3\)\(^{1-p-q}\)]. Moreover, we fix \(p = 2 \) and \(q = 1 \) but other choices are possible as well. By (5.6), we have \(\beta(p) = \frac{p-1}{2(p+1)} \), and hence, we expect results which are asymptotically insensitive with respect to the selection of the partial-reaction order \(q \). Since we are in the fast reaction vs. slow diffusion case, we expect that asymptotically the overall influence of the exponents \(p \) and \(q \) on the concentration...
profiles and position of the reaction front is negligible. These parameters define
the following dimensionless numbers:

\begin{align}
\beta_u & := 1, \quad \beta_v := \frac{\lambda_{\text{cm}(\text{OH})_2}}{\lambda_{\text{CO}_2}}, \quad \beta_w := \frac{\lambda_{\text{H}_2\text{O}}}{\lambda_{\text{CO}_2}}, \\
\delta_u & := 1, \quad \delta_v := \frac{D_{\text{cm}(\text{OH})_2}}{D_{\text{CO}_2}}, \quad \delta_w := \frac{D_{\text{H}_2\text{O}}}{D_{\text{CO}_2}}.
\end{align}

For simulations, we choose \(\epsilon = 10^{-2} \) to scale the length variable and the characteristic time of \(\text{CO}_2 \) diffusion to scale the time variable. With these notations, the Thiele modulus reads

\begin{equation}
\Phi^2 := \frac{\eta_{\text{max}} \epsilon^2}{D_{\text{CO}_2} \lambda_{\text{CO}_2}}.
\end{equation}

Thorough discussions of the role of these dimensionless numbers are given in [26] and in appendix A of [23].

In the sequel, our focus is on calculating the asymptotic profiles of the involved active concentrations and of the asymptotic reaction front position. We begin with the next elementary observation: After a sufficient large time, the behavior of \(u \) within the diffusion layer is described via

\begin{align}
(8.4) \quad & u_{\tau} - \delta_u u_{zz} = 0 \text{ in } \mathbb{R}, \ t > 0, \\
(8.5) \quad & u(z, 0) = H(z), \ u(-\infty, \tau) = 0, \ u(\infty, \tau) = 1.
\end{align}

The system (8.4)-(8.5) admits the exact similarity solution

\begin{equation}
\begin{aligned}
u(z, \tau) = \frac{1}{2} \left(1 + \text{erf} \left(\frac{z}{2\sqrt{\beta_u \tau}} \right) \right).
\end{aligned}
\end{equation}

In terms of \((\zeta, \tau)\) variables, the latter equation reads

\begin{equation}
\begin{aligned}
u(\zeta, \tau) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{1}{\sqrt{\beta_u}}(\zeta - m) \right) \right].
\end{aligned}
\end{equation}

\textbf{Figure 3.} Profile of \(\text{CO}_2 \) vs. space within the diffusion layer.

Simultaneously, by the maximum principle the profile of \(w \) vanishes in the same region. The profile of \(u \) cf. (8.6) is shown in Fig. 3. It shows the tendency of \(\text{CO}_2 \) to decay near the reaction layer.

In the sequel, we want to obtain the asymptotic profiles of concentrations in the reaction layer. In order to obtain them, we need to solve the non-linear system

\begin{footnote}{For \(p = 2, (5.6) \) shows that \(\epsilon \) is of order of \(\mathcal{O} \left(\tau^{\frac{p}{2}} \right) \) which is negligible compared to the width of \(\Omega_L \). Following the same arguments, if \(p = 1.5 \), then \(\epsilon \sim \mathcal{O} \left(\tau^{\frac{3}{10}} \right) \). Interestingly, if \(p = 1 \), then \(\epsilon \) and \(\tau \) appears to be asymptotically independent, while \(\beta(p) \rightarrow \frac{1}{2} \) as \(p \rightarrow \infty \).}

\end{footnote}
of differential equations (7.1)-(7.6), which is described in section 7. It is worth mentioning that in [26] the effect of the reaction layer on the whole process was neglected. The approximation of the solution to the boundary-value problem (7.1),

\[
\begin{align*}
\text{(7.4)} \quad \text{and} \quad \text{(7.11)}
\end{align*}
\]

is obtained by means of the code \texttt{bvp4c}, which is available in MATLAB, using default tolerances. To this end, the problem has to be transformed to first order form. The routine is based on both the collocation method and continuation argument, and is illustrated in [30] (chapter 3.2), e.g. Shooting methods can be an alternative to our strategy, see [33] or [20], e.g. More mathematical details on the application of the collocation method for two-points BVP can be found in [1], e.g. The numerical approximation of the reactant profiles in Fig. 4 is done within the reaction front. Firstly, we approximate the value of \(m \) for a given set of parameters by solving (7.8) in MATLAB by means of the routine \texttt{fminsearch}. The profile of \(u \) is depicted in Fig. 4 (a), while that of \(v \) is shown in Fig. 4 (b).

In Fig. 5, we note a localized production of water which may be interpreted as a barrier. By barrier we simply mean that the water may locally fill the air part of some pores. On this way, the water barrier impedes the penetration of gaseous \(\text{CO}_2 \) and may lead to a slow down of the process or even to its stopping.

\[
\begin{align*}
\text{(8.7)}
\end{align*}
\]

Asymptotically, the reaction front diffuses into the material with the speed

\[
\sigma'(\tau) := -\frac{m}{\sqrt{2\tau}},
\]

see Fig. 7 (a) for a plot of the (asymptotical) interface position with respect to time compared with the experimental penetration depth measured by Bunte [5].
In Fig. 7 (a) we also compare the position of the reaction front given by (2.9) with that respecting the law

\[\sigma(\tau) = -\sqrt{\frac{2\lambda_c D_{CO_2}}{\lambda_h}} \tau, \]

which is basically the law proposed by Papadakis et al. [26] applied to this reaction-diffusion scenario. The results are comparable. For the chosen parameter set, our approach seems to be better\(^4\). The velocity of the front is plotted in Fig. 7 (b).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure6}
\caption{Behavior of \(\frac{U^*(m)}{m} \) vs. \(m \).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure7}
\caption{(a) The solid line shows the interface position cf. (2.9) vs. time. The dashed line show the interface position cf. (8.8) vs. time. The points "o" denote the measured penetration depths from [5]. (b) Plot of the velocity (8.7) of the front.}
\end{figure}

9. Discussion

There is no explicit dependence\(^5\) of \(m \) defined cf. (7.8) on important material parameters like the curing time, degree of hydration, water-to-cement ratio, chemistry of the concrete and so on. Therefore, the criticism with respect to the asymptotic penetration law proposed in [26], which was addressed among others by Chausse dent [7] in his survey on concrete carbonation issues, can be repeated here as well. There are many arguments pro et contra. We do not dwell with them here, but mention that, at any rate, the merit of such an asymptotic approach is that it eliminates any fitting argument when determining the position of the reaction

\(^4\)This is not yet concluding. More qualitative investigations are needed.

\(^5\)However, the scaling parameters connect \(m \) with the initial and boundary data.
front. Namely, in our case we obtain the unknown parameter \(m \) as solution of a system of differential equations coupled with an algebraic one. The information concerning the chemistry of the concrete sample and the boundary conditions is comprised in the scaling parameters. Therefore, the asymptotic penetration law only depends on the choice of scaling parameters and that of \(m \). Our asymptotic penetration depths are somehow close to those obtained by Papadakis et al. [26]. It is not clear whether we overestimate or underestimate their results.

Exploiting (7.8), we note that \[\frac{U^*(m)}{m} = O\left(\frac{1}{\Phi^2}\right) \]. This can be interpreted in the following way: For increasing \(m \), the fraction \(\frac{U^*(m)}{m} \) decreases, see Fig. 6. This also corresponds to increasing Thiele modulus \(\Phi^2 \) and finally leads cf. (2.9) to higher penetration depths. Simple dimensional investigation shows that the proportionality constant \(c \) from

(9.1) \[\frac{U^*(m)}{m} = c\Phi^2 \]

depends on the effective diffusion coefficient of CO\(_2\) in air, maximum reaction rate, choice of length scale and initial concentration of Ca(OH)\(_2\) in concrete. If \(m \) is known, then by (7.8) the constant \(c \) can be exactly computed. In this case, we have

(9.2) \[c = \frac{D_{CO_2} \lambda_{Ca(OH)2}}{\eta_{max}^2 \epsilon^2} \]

where \(\epsilon \) represents the characteristic length scale of interest. Furthermore, for certain values of \(m \), we notice the linear behavior \(\Phi^2(m) \approx \xi m \), where the approximate proportionality factor \(\xi \) can be calculated from Fig. 6 with the routine `diff` of MATLAB.

If we change the set of scaling parameters, then the main output (i.e. penetration depth vs. time plot) alters. More dimensional investigations and numerical simulations are needed in order to be able to identify the effect of each of the dimensionless parameters and dimensional length and time scales on the penetration depths. We will treat these aspects in a forthcoming publication.

At least two complementary research directions emerge from the preliminary character of this study. From one hand, the matched asymptotic analysis can be extended to tackle rather complex scenarios in which several reactive species can diffuse and admit various structures of reaction kinetics. Typically, tedious calculations become unavoidable. The paper [4] and this note give a basis for investigations in this direction. Note also that at this stage, the asymptotic results may intimately combine with numerics. On the other hand, the matched asymptotic analysis provides theoretical hints about the large-time behavior of concentration profiles and penetration front position, at least in the case when the front is thin but does not shrink to a sharp interface. There are essential differences between the asymptotic behavior of moving thin fronts and sharp interfaces, see corresponding remarks in [22, 10, 9, 31, 11], e.g., where the exact asymptotic behavior is shown to be strongly dependent on the structure of the reaction kinetics and type of the moving front (sharp interface or not). This first step gives us additional motivation to reconsider at a later stage the moving-interface approach to carbonation as stated in [23, 24].

The present asymptotic approach is purely formal. It needs to be cast in a proper mathematical framework. At this moment, it is not quite clear how this framework should look like, especially if also we think of recovering the sharp interface scenario.

Appendix A. The choice of scaling exponents

In this appendix, we discuss the elimination procedure of the traveling-wave solutions and of the other non-relevant situations which may occur as result of
the scaling of the reaction front, see section 3. To this end, we solve systems of linear algebraic inequalities. Our investigation follows [4] and essentially uses the weak coupling between the mass-balance equation of moisture and the rest of mass balance equations.

We proceed in the following manner:

Because of $\gamma = \frac{1}{p-1}$, the case (U3) is incompatible with both (V1) and (V2). Therefore all combinations containing (U3) have to be discarded.

If $\nu = \gamma$, then the latter assertion holds for (W3), too.

Obviously, in the case (V1) we have $\gamma = \frac{1}{p}$. This fact does not match the cases (U1), (U2) and (U3).

Gathering together these incompatibilities between the scaling exponents, we see that a successful configuration can only involve (U1), (U2), (V2), (W1) and (W2).

We note that there is a certain incompatibility between the cases (U2) and (V2) [and also (W2)]. Namely, from $\alpha - \beta + \gamma(p-1) - 1 = 0$ and $\alpha - \beta + \gamma p - 1 = 0$, we deduce that $\gamma = 0$. This contradicts our choice of γ.

The triple (U1, V2, W1) is the successful combination. Notice that $\gamma \leq \frac{1}{p-1}$.

From $\alpha - \frac{2}{p}(p-1) \leq 0$ and $\gamma(p-1) = 2\beta$, we obtain that $\alpha \leq \frac{1}{2}$ and $\beta \leq \frac{1}{2}$. The rest of the discussion follows as in [4].

ACKNOWLEDGMENTS

The authors acknowledge financial support from the DFG grant SPP 1122 Prediction of the course of physicochemical damage processes involving mineral materials. They also thank S. Meier (University of Bremen) for improving a preliminary version of the manuscript.

REFERENCES

Centre for Industrial Mathematics, Department of Mathematics and Computer Science, FB 3, Postfach 330440, University of Bremen, 28334, Bremen, Germany, e-mail: {muntean,mbohm}@math.uni-bremen.de.