Abstract. An elementary approach is used to derive a Bayes-type formula, extending the Kallianpur–Striebel formula for the nonlinear filters associated with the Gaussian noise processes. In the particular cases of certain Gaussian processes, recent results of Kunita and of Le Breton on fractional Brownian motion are derived. We also use the classical approximation of the Brownian motion by the Ornstein–Uhlenbeck dispersion process to solve the “instrumentability” problem of Balakrishnan. We give precise conditions for the convergence of the filter based on the Ornstein–Uhlenbeck dispersion process to the filter based on the Brownian motion. It is also shown that the solution of the Zakai equation can be approximated by that of a (deterministic) partial differential equation.

Key words. filtering, Gaussian noise process, Bayes formula, Ornstein–Uhlenbeck dispersion process, Zakai equation, fractional Brownian motion

AMS subject classifications. 60G35, 60G15, 62M20, 93E11

PII. S0363012998343380

1. Introduction. The general filtering problem can be described as follows. The signal or system process \((X_t, 0 \leq t \leq T)\) is unobservable. Information about \((X_t)\) is obtained by observing another process \(Y\) which is a function of \(X\) corrupted by noise, i.e.,

\[
Y_t = \beta_t + N_t, \quad 0 \leq t \leq T,
\]

where \(\beta_t\) is measurable with respect to \(\mathcal{F}_t^X\), the \(\sigma\)-field generated by the signal \(\{X_u, 0 \leq u \leq t\}\) (augmented by the inclusion of zero probability sets), and \((N_t)\) is some noise process. The observation \(\sigma\)-field \(\mathcal{F}_t^Y = \sigma\{Y_u, 0 \leq u \leq t\}\) contains all the available information about \(X_t\). The primary aim of filtering theory is to get an estimate of \(X_t\) based on the information \(\mathcal{F}_t^Y\). This is given by the conditional distribution \(\nu_t\) of \(X_t\) given \(\mathcal{F}_t^Y\), or equivalently, the conditional expectation \(E(f(X_t)|\mathcal{F}_t^Y)\) for a rich enough class of functions \(f\). Since this estimate minimizes the squared error loss, \(\nu\) is called the optimal filter.

In the classical case one considers the observation model

\[
dY_t = h(t, X_t) dt + dW_t,
\]

where \(W\) is the Wiener process independent of \(X\) and \(h\) satisfies the conditions for the Girsanov theorem (for details, see [10]). Kallianpur and Striebel [12] derived a Bayes-type formula for the conditional distribution \(\nu_t\) of the form \(\nu_t = \frac{\sigma_t}{\sigma_{t,1}}\), where \(\sigma_t\) is the so-called unnormalized conditional distribution. In the case when the signal process \(X_t\) is a Markov process, satisfying the SDE

\[
dX_t = A(t, X_t) dt + B(t, X_t) d\tilde{W}_t,
\]

\(\tilde{W}\) is a Brownian motion independent of \(X\), the noise process \((N_t)\) is given by

\[
N_t = \int_{0}^{t} A(s, X_s) ds + \int_{0}^{t} B(s, X_s) d\tilde{W}_s
\]

Received by the editors August 10, 1998; accepted for publication (in revised form) June 14, 2000; published electronically October 11, 2000.

†EURANDOM / LG 1.21, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (mandal@eurandom.tue.nl).
‡Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824 (mandrekar@stt.msu.edu).
where \tilde{W} is another Wiener process independent of W. Zakai [20] showed that σ_t is the unique solution of a measure valued stochastic differential equation. It is also known that the filter V_t satisfies a stochastic differential equation widely known as the Kushner or FKK equation (see, e.g., [14] and [8]).

That the noise process (N_t) is a Wiener process plays an important part in deriving all of the above equations and formulas. However, in the real physical system, the noise process (N_t) may not be exactly a Wiener process. In this case no effective way of computing the filter is known. In a recent paper Kunita [13] considered the filtering problem with the observation process

$$Y_t = \int_0^t h(X_s) \, ds + N_t,$$

where N_t is a particular Gaussian process connected to W_t by a kernel. He derived a Bayes-type formula extending the one by Kallianpur and Striebel. We generalize this result to any Gaussian noise process N_t with β in the model (1.1) belonging almost surely (a.s.) to the reproducing kernel Hilbert space (RKHS) of the covariance of (N_t). It should be noted that this result with a modified Kallianpur–Striebel proof was first obtained by one of the authors [19]. However, the proof presented here is entirely new and is based on an extension of a one-dimensional result which makes (Y_t), under a change of measure, Gaussian with the same distribution as that of (N_t) and independent of (X_t). As an immediate consequence we get the result of Kunita and Kallianpur and Striebel with a simple proof.

In case (X_t) is a diffusion process, one can attempt to obtain a Zakai-type equation whose solution gives a recursive form of the filter. Unfortunately, in the full generality of the problem, it does not seem easy to even formulate such an equation. However, we have indicated how to obtain such an equation for the Ornstein–Uhlenbeck dispersion process. We have partial results in this direction for the case of Kunita and that of the fractional Brownian motion (fBm). The solution of these equations requires new methods. We shall present this work elsewhere once it becomes complete.

Recently, stochastic models appropriate for long-range dependent phenomena have been given a great deal of interest and numerous theoretical resets and successful applications have been already reported (see, e.g., Beran [4] and references therein). In this view we consider the filtering problem with the fBm noise process. We obtain a general form of the filter in this case. In particular, if $X_t = \eta$ for all t, then we obtain all the results in [6] under his assumptions.

We also discuss the issue raised by Balakrishnan [2] regarding “instrumenting” the filtering problem. An approach to this problem using finitely additive measures was given by Kallianpur and Karandikar in their well-known monograph [11]. They work on the Cameron–Martin space with a finitely additive measure and approximate the filter through an extension. Our method is to follow the classical approach of physics; namely, to approximate the Wiener noise process by the Ornstein–Uhlenbeck dispersion process (see, e.g., Nelson [16]). Using our Bayes formula we show that the usual filtering theory with the Wiener process can be obtained as a limit. The latter uses the ideas of Kunita [13] on stability. We give here the precise conditions for the validity of stability. It should be observed that the theory with the Ornstein–Uhlenbeck dispersion process can be instrumented. We approximate the dispersion process by neglecting a term of order σ^{-1} for σ large (cf. (6.15)) and for this process we obtain a Zakai equation which can be approximated by an ordinary partial differential equation.
The article is organized as follows. In section 2, we give a brief overview of RKHS and its connection with stochastic processes. The extension of the Kallianpur–Striebel formula is obtained in section 3. We discuss Kunita’s result in section 4. Section 5 deals with the filtering problem with the fBm as the noise process. Finally, in section 6, the filtering problem corresponding to the Ornstein–Uhlenbeck dispersion noise process is considered along with its limit.

2. Reproducing kernel Hilbert space and stochastic processes. A Hilbert space H consisting of real-valued functions on some set T is said to be an RKHS if there exists a function K on $T \times T$ with the following two properties: for every t in T and g in H,

(i) $K(\cdot, t) \in H$,

(ii) $(g(\cdot), K(\cdot, t)) = g(t)$ (the reproducing property).

K is called the reproducing kernel of H. The following basic properties can be found in Aronszajn [1].

1. If a reproducing kernel exists, then it is unique.

2. If K is the reproducing kernel of H, then $\{K(\cdot, t), t \in T\}$ spans H.

3. If K is the reproducing kernel of H, then it is nonnegative definite in the sense that for all t_1, \ldots, t_n in T and $a_1, \ldots, a_n \in \mathbb{R}$

$$\sum_{i,j=1}^{n} K(t_i, t_j) a_i a_j \geq 0.$$

The converse of (3), stated in Theorem 2.1 below, is fundamental toward understanding the RKHS representation of Gaussian processes. A proof of the theorem can be found in Aronszajn [1].

THEOREM 2.1 (E. H. Moore). A symmetric nonnegative definite function K on $T \times T$ generates a unique Hilbert space, which we denote by $H(K)$ or sometimes by $H(K, T)$, of which K is the reproducing kernel.

Now suppose $K(s, t), s, t \in T$, is a nonnegative definite function. Then, by Theorem 2.1, there is an RKHS, $H(K, T)$, with K as its reproducing kernel. If we restrict K to $T' \times T'$ where $T' \subset T$, then K is still a nonnegative definite function. Hence K restricted to $T' \times T'$ will also correspond to an RKHS $H(K, T')$ of functions defined on T'. The following result from Aronszajn [1, p. 351] explains the relationship between these two.

THEOREM 2.2. Suppose K_T, defined on $T \times T$, is the reproducing kernel of the Hilbert space $H(K_T)$ with the norm $\| \cdot \|$. Let $T' \subset T$, and $K_{T'}$ be the restriction of K_T on $T' \times T'$. Then $H(K_{T'})$ consists of all f in $H(K_T)$ restricted to T'. Further, for such a restriction $f' \in H(K_{T'})$ the norm $\|f'\|_{H(K_{T'})}$ is the minimum of $\|f\|_{H(K_T)}$ for all $f \in H(K_T)$ whose restriction to T' is f'.

If $K(s, t)$ is the covariance function for some zero mean process $Z_t, t \in T$, then, by Theorem 2.1, there exists a unique RKHS, $H(K, T)$, for which K is the reproducing kernel. It is also easy to see (e.g., see Theorem 3D in [18]) that there exists a congruence (linear, one-to-one, inner product preserving map) between $H(K)$ and $\mathbf{P}L^2 \{Z_t, t \in T\}$ which takes $K(\cdot, t)$ to Z_t. Let us denote by $\langle Z, h \rangle \in \mathbf{P}L^2 \{Z_t, t \in T\}$ the image of $h \in H(K, T)$ under the congruence.

We conclude the section with an important special case.
2.1. A useful example. Suppose the stochastic process \(Z_t \) is a Gaussian process given by
\[
Z_t = \int_0^t F(t,u)dW_u, \quad 0 \leq t \leq T,
\]
where \(\int_0^T F^2(t,u)du < \infty \) for all \(0 \leq t \leq T \). Then the covariance function
\[
K(s,t) = E(Z_s Z_t) = \int_0^{t \land s} F(t,u)F(s,u)du \quad (2.1)
\]
and the corresponding RKHS is given by
\[
H(K) = \left\{ g : g(t) = \int_0^t F(t,u)g^*(u)du, 0 \leq t \leq T \right\} \quad (2.2)
\]
for some (necessarily unique) \(g^* \in \mathfrak{sp}L^2(L^1) \) with the inner product
\[
(g_1,g_2)_{H(K)} = \int_0^T g_1^*(u)g_2^*(u)du,
\]
where
\[
g_1(s) = \int_0^s F(s,u)g_1^*(u)du \quad \text{and} \quad g_2(s) = \int_0^s F(s,u)g_2^*(u)du.
\]
For \(0 \leq t \leq T \), by taking \(K(\cdot,t)^* \) to be \(F(t,\cdot)1_{[0,t]}(\cdot) \), we see, from (2.1) and (2.2), that \(K(\cdot,t) \in H(K) \). To check the reproducing property suppose \(h(t) = \int_0^t F(t,u)h^*(u)du \in H(K) \). Then
\[
(h,K(\cdot,t))_{H(K)} = \int_0^T h^*(u)K(\cdot,t)^* du = \int_0^t h^*(u)F(t,u)du = h(t).
\]
Also, in this case, it is very easy to check (cf. [17], Theorem 4D) that the congruence between \(H(K) \) and \(\mathfrak{sp}L^2(L^1) \) is given by
\[
\langle Z,g \rangle = \int_0^T g^*(u)dW_u. \quad (2.3)
\]

3. Extension of the Kallianpur–Striebel formula. Suppose \(X_t, 0 \leq t \leq T \), is a real-valued signal process and the observation process is given by
\[
Y_t = \beta(t,X) + N_t, \quad 0 \leq t \leq T, \quad (3.1)
\]
where \(\beta : [0,T] \times \mathbb{R}^{[0,T]} \to \mathbb{R} \) is a nonanticipative function and the noise process \((N_t) \) is independent of the signal process \((X_t) \). We are interested in finding the best estimate of \(f(X_t) \) based on \(F_t^Y \), which is given by the conditional expectation \(E(f(X_t)|F_t^Y) \). First we consider the one-dimensional analogue of the problem which captures the main idea of obtaining a Bayes-type formula for \(E(f(X_t)|F_t^Y) \).
Let \((\Omega, \mathcal{F}, P)\) be a probability space. Suppose \(Z\) is a standard normal random variable independent of \(X \) and \(Y = X + Z\). Consider the problem of computing \(E(X|Y)\). Suppose \(P \ll Q\) and \(\mathcal{G} \subset \mathcal{F}\) is a sub-\(\sigma\)-field. Then

\[
E_P(X|\mathcal{G}) = \frac{E_Q \left(X \frac{dP}{dQ} \right| \mathcal{G} \right)}{E_Q \left(\frac{dP}{dQ} \right| \mathcal{G} \right)}.
\]

If we define

\[
dQ = \exp \left\{ -XY + \frac{1}{2} X^2 \right\} dP,
\]

then \(Q\) is a probability measure. Also, considering the joint characteristic function, under \(Q\), of \(X\) and \(Y\) it is easy to see that under \(Q\), \(Y\) is a standard normal random variable independent of \(X\), and \(X\) has the same probability distribution as under \(P\).

We now give the analogue of the above-mentioned result for the general Gaussian processes. Suppose \(N_t\) is a Gaussian process with zero mean, i.e., \(m_t \equiv E(N_t) = 0\) and with the covariance function \(R(s, t) \equiv E(N_s N_t)\). Suppose that \(R\) is continuous on \([0, T] \times [0, T]\). Let \(\{\xi_t, 0 \leq t \leq T\}\) be another process with values in a space \(\mathcal{S}\) and independent of \(\{N_t, 0 \leq t \leq T\}\). Suppose

\[
Y_t = f(t, \xi_t) + N_t, \quad 0 \leq t \leq T,
\]

where \(f\) is a measurable nonanticipative functional on \([0, T] \times \mathcal{S}^{[0, T]}\).

Let \(H(R; t)\) denote the RKHS corresponding to \(R|_{[0,t] \times [0,t]}\), with norm \(\| \cdot \|_t\) and \(H(R) = H(R; T)\). Also, let \(\langle N, \cdot \rangle_t\) denote the congruence between \(H(R; t)\) and \(\mathbb{R}L^2\{N_s, 0 \leq s \leq t\}\) so that for \(g, h \in H(R; t)\), the random variables \(\langle N, g \rangle_t\) and \(\langle N, h \rangle_t\) are normal random variables with mean zero and covariance \(E(\langle N, g \rangle_t \langle N, h \rangle_t) = \langle g, h \rangle_{H(R; t)}\).

Theorem 3.1. Suppose \(f(\cdot) \equiv f(\cdot, \xi)\) in (3.2) is in \(H(R)\) a.s. Define for each \(t, (0 \leq t \leq T)\),

\[
dQ_t = e^{-\langle N, f \rangle_t - \frac{1}{2} \|f\|_t^2} dP.
\]

Then \(Q_t\) is a probability measure, and under \(Q_t\), we have that

(i) \(Y_s, 0 \leq s \leq t\), is a Gaussian process with zero mean and covariance function \(R\),

and is independent of \(\xi_s, 0 \leq s \leq T\);

(ii) \(\xi_s, 0 \leq s \leq T\) has the same distribution as under \(P\).

Remark. It should be noted that, in case \(N_t\) is the Brownian motion, one can interpret (i) of the theorem as the analogue of the Girsanov theorem except that the functions \(f\) are from a smaller class than those considered by Girsanov. The property that \(Q_t\) is a probability measure is automatically satisfied in this case due to the independence of the processes \((\xi_t)\) and \((N_t)\). For this one uses the Cameron–Martin result for each fixed value of \(\xi_t\).

Proof of Theorem 3.1. Fix \(0 \leq t \leq T\). First note that since \(f(\cdot) \in H(R)\) a.s., by Theorem 2.2, \(f|_{[0,t]} \in H(R; t)\) a.s. That \(Q_t\) is a probability measure follows from the fact that \(N\) and \(\xi\) are independent and for \(g \in H(R; t), \langle N, g \rangle_t\) is a zero mean normal random variable with variance \(\|g\|_t^2\). Now suppose \(0 \leq s_1, \ldots, s_m \leq t, 0 \leq t_1, \ldots, t_n \leq T, g_1, \ldots, g_n : \mathcal{S} \to \mathbb{R}\) are measurable, and \(\alpha_1, \ldots, \alpha_n, \gamma_1, \ldots, \gamma_m\) are
real numbers. Consider the joint characteristic function
\[
\beta
E_{Q_t} \left[e^{i(\alpha_1 g_1(\xi_t) + \cdots + \alpha_m g_m(\xi_{t_m})) + i(\gamma_1 Y_{t_1} + \cdots + \gamma_m Y_{t_m})} \right]
\]
\[
= E_P \left[e^{i \sum_{k=1}^n \alpha_k g_k(\xi_{t_k}) + i \sum_{j=1}^m \gamma_j Y_{t_j}} e^{-\frac{1}{2} \|f\|_t^2} \right]
\]
\[
= E_P \left[e^{i \sum_{k=1}^n \alpha_k g_k(\xi_{t_k}) - \frac{1}{2} \|f\|_t^2 + i \sum_{j=1}^m \gamma_j f(s_j)} e^{i \sum_{j=1}^m \gamma_j N_{t_j} - (N_f)_t} \right]
\]
\[
= E_P \left[e^{i \sum_{k=1}^n \alpha_k g_k(\xi_{t_k}) - \frac{1}{2} \|f\|_t^2 + i \sum_{j=1}^m \gamma_j f(s_j)} E_P \left(e^{i \sum_{j=1}^m \gamma_j N_{t_j} - (N_f)_t} \right| \mathcal{F}_t^X \right]
\]
\[
= E_P \left[e^{i \sum_{k=1}^n \alpha_k g_k(\xi_{t_k})} \right] e^{- \sum_{j=1}^m \gamma_j R(s_j, s_1)}
\]

Hence the assertions (i) and (ii) follow. \[\square \]

Let us now consider the observation process \((Y_t)\) given by (3.1). Suppose that the noise process \((N_t)\) is Gaussian with continuous covariance function \(R\). It is easy to see, from (3.3) with \(S = \mathbb{R}\), \(\xi = X\), and \(f(\cdot, \xi) = \beta(\cdot, X)\), that
\[
\frac{dP}{dQ_t} = \exp \left\{ (Y_t, \beta(\cdot, X))_t - \frac{1}{2} \|\beta(\cdot, X)\|_t^2 \right\} \text{ a.s. [}Q_t\].
\]

This is because if \(\beta^n(\cdot) = \sum_{j=1}^{k_n} a_{nj} R(\cdot, t^n_j) \in H(R; t), n = 1, 2, \ldots\), are such that \(\beta^n \to \beta \equiv \beta(\cdot, X)\) in \(H(R; t), \) then
\[
(Y, \beta)_t = \lim_{n \to \infty} (Y, \beta^n)_t \quad (Q_t\text{-a.s. and hence } P\text{-a.s.})
\]
\[
= \lim_{n \to \infty} \sum_{j=1}^{k_n} a_{nj} Y_{t^n_j} = \lim_{n \to \infty} \sum_{j=1}^{k_n} a_{nj} N_{t^n_j} + \lim_{n \to \infty} \sum_{j=1}^{k_n} a_{nj} \beta_{t^n_j}
\]
\[
(3.4) = \lim_{n \to \infty} \langle N, \beta^n \rangle_t + \lim_{n \to \infty} \langle \beta^n, m \rangle_{H(R; t)} = \langle N, \beta \rangle_t + \|\beta\|_t^2 \quad P\text{-a.s.}
\]

Then for any \(\mathcal{F}_t^X\)-measurable integrable function \(g(T, X)\), we have
\[
E_P(g(T, X)|\mathcal{F}_t^Y) = \frac{E_{Q_t} \left(g(T, X) \frac{dP}{dQ_t} | \mathcal{F}_t^Y \right)}{E_{Q_t} \left(\frac{dP}{dQ_t} | \mathcal{F}_t^Y \right)}
\]
\[
= \frac{E_{Q_t} \left(g(T, X)e^{(Y, \beta(\cdot, X))_t - \frac{1}{2} \|\beta(\cdot, X)\|_t^2} | \mathcal{F}_t^Y \right)}{E_{Q_t} \left(e^{(Y, \beta(\cdot, X))_t - \frac{1}{2} \|\beta(\cdot, X)\|_t^2} | \mathcal{F}_t^Y \right)}.
\]

From Theorem 3.1, \(\{Y_s, 0 \leq s \leq t\}\), under \(Q_t\), is independent of \(\{X_s, 0 \leq s \leq T\}\) and the distribution of \(X\), under \(Q_t\), is the same as that under \(P\). Hence the conditional expectations of the form \(E_{Q_t}(\phi(X, Y)|\mathcal{F}_t^Y)\) can be evaluated as
\[
E_{Q_t}(\phi(X, Y)|\mathcal{F}_t^Y)(\omega) = \int_{\Omega} \phi(X(\omega'), Y(\omega)) Q_t(d\omega') = \int \phi(x, Y(\omega)) dP_X(x),
\]
where \(P_X \) is the probability distribution of \(X \). Hence, from (3.5), we have the following.

Theorem 3.2. Suppose that the observation process \(Y_t \) is as in (3.1) and that \((N_t)\) is Gaussian with continuous covariance kernel \(R \). Let

\[
\beta(\cdot, X(\omega)) \in H(R) \quad \text{for almost all } \omega.
\]

Then for any \(\mathcal{F}_t^X \)-measurable and integrable function \(g(T, X) \),

\[
E \left(g(T, X) \mid \mathcal{F}_t^Y \right) = \frac{\int g(T, x) e^{\langle Y, \beta(\cdot, x) \rangle t - \frac{1}{2} \| \beta(\cdot, x) \|^2_t} dP_X(x)}{\int e^{\langle Y(\cdot, x) \rangle t - \frac{1}{2} \| \beta(\cdot, x) \|^2_t} dP_X(x)}.
\]

We next consider an important special case from which it can be easily shown that the formula (3.7) extends the Kallianpur–Striebel formula, as well as the one by Kunita.

3.1. An important special case. Suppose the noise \(N_t \) is of the form

\[
N_t = \int_0^t F(t, u) \tilde{h}(u, X_u) du + \tilde{N}_t,
\]

where \(F(t, s) \) is continuous on \(\{0 \leq s \leq t \leq T\} \). It is easy to check that the covariance function of \((N_t)\),

\[
R(t, s) = \int_0^{t \wedge s} F(t, u) F(s, u) du,
\]

is continuous on \([0, T] \times [0, T]\). Then from the example considered in section 2.1 we have

\[
H(R; t) = \left\{ \phi : \phi(s) = \int_0^s F(s, u) \phi^*(u) du, \phi^* \in \mathfrak{sp}L^2 \left\{ F(s, \cdot)1_{[0, s]}(\cdot), 0 \leq s \leq t \right\} \right\}
\]

with the inner product

\[
(\phi_1, \phi_2)_{H(R; t)} = \int_0^t \phi_1^*(u) \phi_2^*(u) du,
\]

where

\[
\phi_1(s) = \int_0^s F(s, u) \phi_1^*(u) du \quad \text{and} \quad \phi_2(s) = \int_0^s F(s, u) \phi_2^*(u) du.
\]

Suppose the observation process is given by

\[
Y_t = \int_0^t F(t, u) \tilde{h}(u, X_u) du + N_t,
\]

such that

\[
\tilde{h}(\cdot, X(\cdot)) \in \mathfrak{sp}L^2 \left\{ F(s, \cdot)1_{[0, s]}(\cdot), 0 \leq s \leq t \right\}.
\]

Then, by (2.3) and by an argument similar to the one used in (3.4), we have for \(\phi(\cdot) = \int_0^c F(\cdot, u) \phi^*(u) du \in H(R) \),

\[
\langle Y, \phi \rangle_t = \int_0^t \phi^*(u) \tilde{h}(u, X_u) du + \int_0^t \phi^*(u) dW_u = \int_0^t \phi^*(u) d\tilde{Y}_u,
\]

where \(\tilde{Y}_u \) is the process defined by

\[
\tilde{Y}_u = \int_0^u \phi^*(s) dW_s.
\]
where
\[\hat{Y}_s = \int_0^s \hat{h}(u, X_u) du + W_s, \quad 0 \leq s \leq T. \]

Hence the Bayes formula (3.7) becomes
\[
\begin{align*}
E \left(g(T, X) \mid \mathcal{F}_T^Y \right) &= \int g(T, x) e^{\int_0^T \hat{h}(u, x_u) du} \frac{1}{2} \int_0^T \left| \hat{h}(u, x_u) \right|^2 du \ dP_X(x) \\
&\quad \int e^{\int_0^T \hat{h}(u, x_u) du} \frac{1}{2} \int_0^T \left| \hat{h}(u, x_u) \right|^2 du \ dP_X(x).
\end{align*}
\]

Remark. It is now easy to see that the Bayes formula (3.7) is indeed an extension of the Kallianpur–Striebel formula. Take \(F(t, u) \equiv 1 \) in the model (3.8) and \(\hat{h} \) in the model (3.10) to be \(h \in L^2[0, T] \equiv \mathbb{L}^2 \{ 1_{[0,t]}(\cdot), 0 \leq t \leq T \} \), so that \(N_t = W_t \) and the observation process satisfies the usual model
\[Y_t = \int_0^t h(u, X_u) du + W_t. \]

Note that, in this case, \(\hat{Y}_t = Y_t \). Therefore the Bayes formula (3.7) reduces to the Kallianpur–Striebel formula
\[
E \left(g(T, X) \mid \mathcal{F}_T^Y \right) = \frac{\int g(T, x) e^{\int_0^T \hat{h}(u, x_u) du} \frac{1}{2} \int_0^T \left| \hat{h}(u, x_u) \right|^2 du \ dP_X(x)}{\int e^{\int_0^T \hat{h}(u, x_u) du} \frac{1}{2} \int_0^T \left| \hat{h}(u, x_u) \right|^2 du \ dP_X(x)}.
\]

Our result also generalizes a similar result by Kunita. We show that in the next section.

4. Kunita’s result. In this section we shall derive Kunita’s result ([13], Theorem 2.1), when \(d = 1 \), as a corollary of our result. Suppose the signal process \((X_t) \) is a continuous process taking values in a complete metric space \(S \). Suppose the observation process is given by
\[
Y_t = \int_0^t h(X_s) ds + N_t, \quad 0 \leq t \leq T,
\]
where \(h \) is a continuous map from \(S \) into \(\mathbb{R} \) and the noise process \((N_t) \) is given by
\[
N_t = m_t + \int_0^t \psi(t, s) dW_s, \quad 0 \leq t \leq T,
\]
with \(\psi(t, s) \) and \(m_t \) satisfying the following three conditions.

Condition 1. \(\psi(t, s) \) is continuously differentiable in \((t, s) \in [0, T] \times [0, T]\).

Let \(C_0^r \) be the set of all \(r \)-times continuously differentiable functions from \([0, T]\) to \(\mathbb{R} \) which vanish at zero. Define \(\Psi : C_0 \equiv C_0^0 \to C_0 \) such that
\[
(\Psi \phi)_t = \int_0^t \psi(t, s) \phi'(s) ds
\]
for \(\phi \in C_0^1 \). For general \(\phi \in C_0 \), it is extended by integration by parts as
\[
(\Psi \phi)_t = \psi(t, t) \phi(t) - \int_0^t \phi(s) \frac{\partial \psi}{\partial s}(t, s) ds.
\]
Let $\mathcal{R}(\Psi) = \{ \Psi : \phi \in \mathcal{C}_0 \}$. Note that for $f, g \in \mathcal{C}_0$ and $0 \leq u \leq t \leq T$,

$$(\Psi f)_u - (\Psi g)_u = \psi(u, u) (f(u) - g(u)) - \int_0^u (f(s) - g(s)) \frac{\partial \psi}{\partial s}(u, s) \, ds.$$

Hence Ψ is causal in the sense that

$$(\Psi f)_u = (\Psi g)_u \text{ holds for } u \leq t \text{ if } f(s) = g(s) \text{ holds for } s \leq t. \quad (4.5)$$

Condition 2. The transformation Ψ has a causal inverse transformation $K : \mathcal{R}(\Psi) \to \mathcal{C}_0$ such that $K \Psi \phi = \phi$ holds for all $\phi \in \mathcal{C}_0$. Further, Kg is differentiable whenever $g \in \mathcal{C}_1 \cap \mathcal{R}(\Psi)$ and the derivative is in $L^2[0, T]$.

Condition 3. m_t is continuously differentiable in t and it belongs to $\mathcal{R}(\Psi)$.

Set

$$\dot{m}_t = \frac{dm_t}{dt}, \quad (4.6)$$

$$(Lf)_t = \frac{d}{dt}(Kg)_t, \quad \text{where } g_t = \int_0^t f_s \, ds. \quad (4.7)$$

Since $R(s,t) = E(N_s N_t) = \int_0^{t \land s} \psi(t, u) \psi(s, u) \, du$ is as in the special case considered in section 2.1, from (3.9) we have

$$H(R) = \left\{ g : g(t) = \int_0^t g^*(u) \psi(t, u) \, du, g^* \in \mathcal{S} L^2 \{ \psi(t, \cdot)1_{[0, t]}(\cdot) : 0 \leq t \leq T \} \right\}. \quad (4.8)$$

With the help of Lemma 4.1 we can further simplify the form of $H(R)$.

Lemma 4.1. If ψ satisfies Condition 1 and Condition 2, then

$$\mathcal{S} L^2 \{ \psi(t, \cdot)1_{[0, t]}(\cdot) : 0 \leq t \leq T \} = L^2[0, T].$$

Proof. It suffices to show that if $f \in L^2[0, T]$ is such that $f \perp \psi(t, \cdot)1_{[0, t]}(\cdot)$ for all $t \in [0, T]$, then $f = 0$. So suppose $f \in L^2[0, T]$.

$$\int_0^t \psi(t,s) f(s) \, ds = 0 \text{ for all } t \Rightarrow \Psi g = 0, \quad \text{where } g(t) = \int_0^t f(s) \, ds$$

$$\Rightarrow g = K \Psi g = 0 \Rightarrow \int_0^t f(s) \, ds = 0 \text{ for all } t \Rightarrow f = 0.$$

Hence the lemma is proved. \square

Therefore, from Lemma 4.1 and from (4.8), we have

$$H(R) = \left\{ g : g(t) = \int_0^t g^*(u) \psi(t, u) \, du \text{ for some } g^* \in L^2[0, T] \right\}. \quad (4.9)$$

The following proposition describes a relationship between the spaces $\mathcal{R}(\Psi)$ and $H(R)$.

Proposition 4.2. Let $\mathcal{R}(\Psi)$ and $H(R)$ be as above. Then

$$C^1_0 \cap \mathcal{R}(\Psi) \subseteq H(R) \subseteq \mathcal{R}(\Psi).$$

Furthermore, for $g \in H(R)$, $(Kg)_t = \int_0^t g^*(u) \, du$ and if $f \in C^1_0 \cap \mathcal{R}(\Psi)$, then $f^* = L(f')$, where L is given by (4.7).

Proof. Let $g \in H(R)$. From (4.9),

$$g(t) = \int_0^t \psi(t,s)g^*(s) \, ds. \quad (4.10)$$

Considering $\phi = \int_0^t g^*(u) \, du$, we have $\phi \in C_0$ and from (4.4),

$$(\Psi \phi)_t = \psi(t,t)\phi(t) - \int_0^t \frac{\partial \psi}{\partial s}(t,s)\phi(s) \, ds$$

$$= \psi(t,t) \int_0^t g^*(u) \, du - \int_0^t \left\{ \frac{\partial \psi}{\partial s}(t,s) \int_0^s g^*(u) \, du \right\} \, ds$$

$$= \int_0^t \psi(t,s)g^*(s) \, ds \quad \text{(using integration by parts)}$$

$$= g(t) \quad \text{(by (4.10))}.$$

Hence $H(R) \subseteq \mathcal{R}(\Psi)$ and for $g \in H(R)$, $(Kg)_t = \int_0^t g^*(u) \, du$.

On the other hand, for $f \in C^1_0 \cap \mathcal{R}(\Psi)$, letting $\phi \in C_0$ to be such that $\Psi \phi = f$, by Condition 2, we have that $\phi = K \Psi \phi = Kf$ is differentiable with $\phi' = L(f') \in L^2[0,T]$.

Now

$$f(t) = (\Psi \phi)_t = \psi(t,t)\phi(t) - \int_0^t \phi(s)\frac{\partial \psi}{\partial s}(t,s) \, ds$$

$$= \int_0^t \psi(t,s)\phi'(s) \, ds \quad \text{using integration by parts.} \quad (4.11)$$

Hence the proposition follows from (4.9).

We are now ready to derive the result of Kunita ([13], Theorem 2.1) as a corollary of our result, Theorem 3.2.

Theorem 4.3 (Kunita). Suppose the noise process (N_t), given by (4.2), satisfies Conditions 1–3, and the observation process (Y_t) is given by (4.1). Let P_X denote the probability distribution of X on $C[0,T]$. Assume further that $(\int_0^t h(X_s) \, ds)$ belongs to $\mathcal{R}(\Psi)$ a.s. Then for any measurable function g on S, the signal state space, such that $E(|g(X_t)|) < \infty$

$$E(g(X_t)|\mathcal{F}^Y_t) = \frac{\int \alpha_t(x,Y)g(x(t)) \, dP_X(x)}{\int \alpha_t(x,Y) \, dP_X(x)},$$

where

$$\alpha_t(x,Y) = \exp \left\{ \int_0^t L(h(x) + \dot{m})_s \, d\hat{Y}_s - \frac{1}{2} \int_0^t |L(h(x) + \dot{m})_s|^2 \, ds \right\}$$

and

$$\hat{Y}_t = \int_0^t Lh(x)_s \, ds + \int_0^t (L\dot{m})_s \, ds + W_t.$$
Remark. To check that $\alpha_t(x, Y)$ in the theorem is in fact \mathcal{F}_t^γ-measurable it has been shown in Kunita [13] that $\dot{Y}_t = (KY)_t$ and then the causality of K is used. In the proof given below we show that $\alpha_t(x, Y) = \langle Y, \beta(\cdot, x) \rangle_t$ which proves that it is indeed \mathcal{F}_t^γ-measurable.

Proof of Theorem 4.3. Let Ω_0 with $P(\Omega_0) = 1$ be such that $\int_0^t h(X_s(\omega)) \, ds \in \mathcal{R}(\Psi)$ for all $\omega \in \Omega_0$. Fix $\omega \in \Omega_0$. Since $h(X_s(\omega))$ is continuous in $s \in [0, T]$, $\int_0^t h(X_s(\omega)) \, ds \in C_0^1 \cap \mathcal{R}(\Psi)$. So, by Proposition 4.2, $\int_0^t h(X_s(\omega)) \, ds$ belongs to $H(R)$. Hence $(\int_0^t h(X_s) \, ds)$ belongs to $H(R)$ a.s. with $(\int_0^t h(X_s) \, ds)^* = (Lh(x))_t$. Similarly, since by Condition 3, $m \in C_0^1 \cap \mathcal{R}(\Psi)$, we have $m \in H(R)$ with $m^* = L\hat{m}$. Rewriting the observation model (4.1), we have

$$Y_t = \int_0^t h(X_s) \, ds + m_t + \int_0^t \psi(t, s) \, dW_s$$

$$= \int_0^t L(h(x) + \hat{m})_s \psi(t, s) \, ds + \int_0^t \psi(t, s) \, dW_s.$$

The theorem then follows from the special case considered in section 3.1 with $F(t, s) = \psi(t, s)$ and $\hat{h} = L(h(x) + \hat{m}) \in L^2[0, T]$. \qed

5. Fractional Brownian motion noise process. Suppose the observation process is given by

$$(5.1) \quad Y_t = \int_0^t h(X_u) \, du + B_H(t), \quad 0 \leq t \leq T,$$

where $B_H(t)$ is an fBm with Hurst parameter $H \in (\frac{1}{2}, 1)$ and is independent of the signal process (X_t). Here $R(s, t) = E[B_H(t)B_H(s)] = 1/2\{|t|^{2H} + |s|^{2H} - |t - s|^{2H}\}$. Assume that $h(u) \equiv h(X_u)$ is continuous a.s. To apply Theorem 3.2 we shall need the following lemma about the representation of functions in $H(R)$. It can be obtained from Theorem 4.4 of Barton and Poor [3], where a characterization of the functions in $H(R)$ is given. However, it takes some effort to relate it to our notation and concepts used in Theorem 3.2. We therefore give a self-contained short proof below.

Lemma 5.1. Let $(B_H(t), 0 \leq t \leq T)$ be an fBm with $H \in (\frac{1}{2}, 1)$ and the covariance function $R(s, t)$. For any continuous function $c(\cdot)$ on $[0, \tau]$ ($\tau > 0$), suppose $g^c_H(\cdot)$ satisfies the equation (see Carleman [7])

$$(5.2) \quad \int_0^\tau g^c_H(u)H(2H - 1)|v - u|^{2H - 2} \, du = c(v), \quad 0 \leq v \leq \tau.$$

Suppose $a(\cdot)$ is continuous on $[0, T]$. Then $\int_0^t a(u) \, du \in H(R)$ with

$$\left\langle \int_0^t a(u) \, du, B_H \right\rangle_t = \int_0^t g^a_H(u) \, dB_H(u)$$

and

$$\left\| \int_0^t a(u) \, du \right\|^2 = \int_0^t g^a_H(u) a(u) \, du.$$

Proof. Recall that there exists a congruence between the RKHS, $H(R)$, and $\mathcal{F}^{L^2} \{ B_H(s) : s \in [0, T] \}$ under which $R(\cdot, t) \mapsto B_H(t)$. Clearly, $\int_0^T g^a_H(u) \, dB_H(u) \in \mathcal{F}^{L^2} \{ B_H(s) : 0 \leq s \leq T \}$. Hence there exists $\hat{g} \in H(R)$ such that the image of \hat{g},
under the congruence, is \(\int_0^T g_a^T(u)dB_H(u) \). Then for \(0 \leq s \leq T \), by (5.2),

\[
\tilde{g}(s) = (R(\cdot, s), \tilde{g})_{H(R)} = E \left(B_H(s) \int_0^T g_a^T(u)dB_H(u) \right) = \int_0^s \int_0^T g_a^T(u)H(2H-1)|v-u|^{2H-2}du dv = \int_0^s a(v)dv.
\]

This proves that \(\int_0^s (-1) a(u)du \in H(R) \) and following the notation of section 2 we have \(\langle \int_0^t a(u)du, B_H \rangle = \int_0^T g_a^T(u)dB_H(u) \). Exactly in the same way it follows that \(\langle \int_0^t a(u)du, B_H \rangle_t = \int_0^t g_a^T(u)dB_H(u) \). Finally,

\[
\left\| \int_0^t (a(u)du) \right\|^2 = E \left(\int_0^t g_a^T(u)dB_H(u) \right) \int_0^t g_a^T(u)dB_H(u) = \int_0^t \int_0^t g_a^T(u)g_a^T(v)H(2H-1)|u-v|^{2H-2}dv dv = \int_0^t g_a^T(u)a(u)du \quad \text{from (5.2)}. \]

Clearly, \(R \) is continuous on \([0, T] \times [0, T]\). Then from Theorem 3.1, under a suitable change of measure \((Y_t) \) becomes an fBm. Therefore, from the Bayes formula (3.7) with \(\beta(t, X) = \int_0^t h(u)du \) and \(N_t = B_H(t) \), and from Lemma 5.1, we have

\[
E \left[f(x_t) \mid \mathcal{F}_t^Y \right] = \frac{\int f(x_t) \exp \left\{ \int_0^t g_h^T(u)du + \frac{1}{2} \int_0^t g_h(u)h(u)du \right\} dP_X(x)}{\int \exp \left\{ \int_0^t g_h^T(u)du + \frac{1}{2} \int_0^t g_h(u)h(u)du \right\} dP_X(x)}.
\]

When the signal process is actually a random variable \(\eta \) (independent of the noise process \(B_H(t) \)) such that \(h(u) = \eta a(u) \), where \(a \) is a continuous (deterministic) function, then using the fact that for a constant \(k \), \(g_{ka} = kg_a \), from (5.3) we have

\[
E \left[f(\eta) \mid \mathcal{F}_t^Y \right] = \frac{\int f(x) \exp \left\{ \int_0^t g_h^T(u)du + \frac{1}{2} x^2 \int_0^t g_h(u)a(u)du \right\} dP_\eta(x)}{\int \exp \left\{ \int_0^t g_h^T(u)du + \frac{1}{2} x^2 \int_0^t g_h(u)a(u)du \right\} dP_\eta(x)}.
\]

If we further assume that \(\eta \) is a Gaussian random variable with mean \(\hat{\eta}_0 \) and variance \(\gamma_0 \), then \(\eta \) being independent of \((B_H(t)) \), we have \((\eta, Y) \) jointly Gaussian. Hence the conditional distribution of \(\eta \) given \(\mathcal{F}_t^Y \) is also Gaussian with mean \(E(\eta \mid \mathcal{F}_t^Y) = \hat{\eta}_t \), say, and variance \(E((\eta - \hat{\eta}_t)^2 \mid \mathcal{F}_t^Y) = \hat{\gamma}_t \), say. Then

\[
E \left(e^{\alpha \eta} \mid \mathcal{F}_t^Y \right) = \exp \left\{ \frac{1}{2} \alpha^2 \hat{\gamma}_t \right\}.
\]

Now from (5.4), taking \(f(x) = e^{\alpha x} \), we have

\[
E \left[e^{\alpha \eta} \mid \mathcal{F}_t^Y \right] = \frac{\int e^{\alpha x} \exp \left\{ \int_0^t g_h^T(u)du + \frac{1}{2} x^2 \int_0^t g_h(u)a(u)du \right\} \phi(x; \eta_0, \gamma_0)dx}{\int \exp \left\{ \int_0^t g_h^T(u)du + \frac{1}{2} x^2 \int_0^t g_h(u)a(u)du \right\} \phi(x; \eta_0, \gamma_0)dx},
\]
where \(\phi(x; \eta_0, \gamma_0) \) is the density of a Gaussian random variable with mean \(\eta_0 \) and variance \(\gamma_0 \).

Let us consider the numerator of the right-hand side of (5.5):

\[
\int e^{x \left(\alpha + \int_0^x g_a(u) dY(u) \right) - \frac{1}{2} x^2 \int_0^x g_a^2(u) du} \frac{1}{\sqrt{2\pi\gamma_0}} e^{-\frac{1}{2\gamma_0} (x-\eta_0)^2} dx
\]

\[
= \frac{1}{\sqrt{2\pi\gamma_0}} \int e^{-\frac{1}{2} \left[\gamma_0^{-1} + \int_0^x g_a(u) a(u) du \right] - 2x \left(\alpha + \gamma_0^{-1} + \eta_0 \int_0^x g_a(u) dY(u) + \gamma_0^{-1} \eta_0^2 \right]} dx
\]

\[
= \frac{1}{\sqrt{2\pi\gamma_0}} \int e^{-\frac{1}{2} \left[2x(\alpha + m_t) \gamma_t + (\alpha + m_t)^2 \gamma_t^2 \right]} e^{-\frac{1}{2\gamma_0} \eta_0^2 + \frac{1}{2} \gamma_t (\alpha + m_t)^2} dx,
\]

(5.6) where \(\gamma_t^{-1} = \gamma_0^{-1} + \int_0^t g_a^2(u) du \) and \(m_t = \gamma_0^{-1} \eta_0 + \int_0^t g_a(u) dY(u) \)

(5.7) \(= \sqrt{\gamma_0^{-1} \gamma_t} e^{-\frac{1}{2} \gamma_0^{-1} \eta_0^2 + \frac{1}{2} \gamma_t (\alpha + m_t)^2} \).

Putting \(\alpha = 0 \) in (5.7) we get the denominator of the right-hand side of (5.5):

\[
\text{Denominator} = \sqrt{\gamma_0^{-1} \gamma_t} e^{-\frac{1}{2} \gamma_0^{-1} \eta_0^2 + \frac{1}{2} \gamma_t m_t^2}.
\]

Therefore, from (5.5), we have

\[
E \left[e^{\alpha Y_t} \middle| \mathcal{F}_t \right] = e^{\frac{1}{2} \gamma_t (\alpha + m_t)^2 - \gamma_t m_t^2} = e^{\frac{1}{2} \gamma_t \alpha (\alpha + 2m_t)}.
\]

Collecting the coefficients of \(\alpha \) and \(\alpha^2 \) and using (5.6), we get

\[
\hat{\eta}_t = \gamma_t m_t = \gamma_t \left(\gamma_0^{-1} \eta_0 + \int_0^t g_a(u) dY(u) \right),
\]

\[
\hat{\gamma}_t = \left(\gamma_0^{-1} + \int_0^t g_a^2(u) a(u) du \right)^{-1}.
\]

Note that these equations for the filter are exactly the same as those obtained by Le Breton [6].

Remark. Recently, Le Breton [5] considered the parametric estimation problem in a simple deterministic regression model setup with the fBm noise process. Our general Bayes formula can be used to study the parametric estimation problem in a more general setup with the fBm noise process, as done in Liptser and Shiryayev [15] in parameter estimation of the drift coefficient for diffusion-type processes with the Wiener noise. We leave that for a future note.

6. **Ornstein–Uhlenbeck noise process.** Although the use of the Wiener process as noise produces elegant, powerful mathematical techniques to calculate the optimal filter, one of the main criticisms against it (as expressed by Balakrishnan [2]) is from the practical point of view. Since the sample paths of a Wiener process are of unbounded variation with probability one, the actual data samples have zero probability of occurring and hence the results obtained cannot be instrumented. On the other hand, it has been argued by Nelson [16] that the Ornstein–Uhlenbeck (dispersion) process is natural to consider as an approximation to the Wiener process and the Ornstein–Uhlenbeck processes are realizable. In this section we consider the
Suppose \(v(t) \) is an Ornstein–Uhlenbeck velocity process satisfying the stochastic differential equation

\[
 dv(t) = -\beta v(t) dt + \sigma dW(t) \quad (\beta > 0, \sigma > 0)
\]

with the initial value \(v(0) = 0 \). Consider the Ornstein–Uhlenbeck (dispersion) process given by

\[
 \xi(t) = \int_0^t v(s) ds.
\]

It is easy to see that if \(\beta \) and \(\sigma \) tend to infinity in such a way that \(\sigma^2/\beta^2 \to 1 \), then \(\xi(t) \) converges in distribution to the standard Wiener process. See, for example, Theorem 9.5 of Nelson [16].

Now suppose the noise process \((N_t)\) is given by an Ornstein–Uhlenbeck process so that, from (6.2) and (6.1), we have

\[
 N_t = \int_0^t \sigma \int_0^s \exp\{-\beta(s-r)\} dW_r ds = \int_0^t \frac{\sigma}{\beta} \left(1 - e^{-\beta(t-s)}\right) dW_s.
\]

Also, suppose that the signal process \(X \) is independent of \(W \) and the observation process is given by

\[
 Y_t^{\beta,\sigma} = \int_0^t h(X_u) du + N_t,
\]

where \(h(u) \equiv h(X_u) \) is differentiable in \([0,T]\) and \(h'(u) \in L^2[0,T] \).

Then, the covariance \(R(t, s) \) of \((N_t)\) is given by

\[
 R(s, t) = E(N_s N_t) = \int_0^{t \wedge s} F(t, u) F(s, u) du,
\]

where

\[
 F(t, u) = \frac{\sigma}{\beta} \left(1 - e^{-\beta(t-u)}\right), \quad 0 \leq u \leq t \leq T.
\]

Also, it is easy to see that

\[
 \mathbb{E} L^2 \{F(t, \cdot) 1_{[0,t]}(\cdot), 0 \leq t \leq T\} = L^2[0,T].
\]

This is because if \(f \in L^2[0,T] \) such that \(f \perp F(t, \cdot) 1_{[0,t]}(\cdot) \) for all \(0 \leq t \leq T \), then

\[
 \int_0^t f(u) F(t, u) du = 0 \quad \text{for all } t
\]

\[
 \Rightarrow \int_0^t f(u) \frac{\sigma}{\beta} \left(1 - e^{-\beta(t-u)}\right) du = 0 \quad \text{for all } t
\]

\[
 \Rightarrow \int_0^t f(u) du - e^{-\beta t} \int_0^t e^{\beta u} f(u) du = 0 \quad \text{for all } t
\]

\[
 \Rightarrow f(t) + \beta e^{-\beta t} \int_0^t e^{\beta u} f(u) du - e^{-\beta t} e^{\beta t} f(t) = 0 \quad \text{almost everywhere (a.e.) [t]}
\]

\[
 \Rightarrow \int_0^t e^{\beta u} f(u) du = 0 \quad \text{a.e. [t]}
\]

\[
 \Rightarrow f(t) = 0 \quad \text{a.e. [t].}
\]
Hence from (3.9) we have
\[H(R) = \left\{ g : g(s) = \int_0^s F(s, u)g^*(u) du \text{ for some } g^* \in L^2[0, T] \right\}. \]

It is also easy to check (assuming, without loss of generality, \(h(X_0) = 0 \)) that
\[\int_0^t h(X_u) du = \int_0^t F(t, u) \left[\frac{\beta}{\sigma} h(X_u) + \frac{1}{\sigma} h'(u) \right] du. \]

Hence the noise process and the observation process are as in the special case considered in section 3.1, that is, \(N_t \) is of the form (3.8) with \(F(t, s) \) given by (6.4) and \(Y_t^{\beta, \sigma} \) is of the form (3.10) with
\[\tilde{h}(u, X_u) = \frac{\beta}{\sigma} h(X_u) + \frac{1}{\sigma} h'(u). \]

In this case, therefore, from (3.11), we have
\[\nu_t^{\beta, \sigma}(f)(Y_t^{\beta, \sigma}) := E(f(X_t)|\mathcal{F}_t^{Y_t^{\beta, \sigma}}) = \frac{\int f(x_t)\alpha_t^{\beta, \sigma}(x, Y_t^{\beta, \sigma}) P_X(dx)}{\int \alpha_t^{\beta, \sigma}(x, Y_t^{\beta, \sigma}) P_X(dx)}, \]
where
\[\alpha_t^{\beta, \sigma}(x, Y_t^{\beta, \sigma}) = \exp \left\{ \int_0^t \left[\frac{\beta}{\sigma} h(x_u) + \frac{1}{\sigma} h'(u) \right] d\tilde{Y}_u^{\beta, \sigma} - \frac{1}{2} \int_0^t \left[\frac{\beta}{\sigma} h(x_u) + \frac{1}{\sigma} h'(u) \right]^2 du \right\} \]
and
\[\tilde{Y}_t^{\beta, \sigma} = \int_0^t \left[\frac{\beta}{\sigma} h(x_u) + \frac{1}{\sigma} h'(u) \right] du + W_t. \]

Now suppose that \(\nu_t \) is the classical filter based on the observation process
\[Y_t = \int_0^t h(X_u) ds + W_t. \]

Recall from the Kallianpur–Striebel formula that
\[\nu_t(f)(Y) := E(f(X_t)|\mathcal{F}_t^{Y}) = \frac{\int f(x_t)\alpha_t(x, Y) P_X(dx)}{\int \alpha_t(x, Y) P_X(dx)}, \]
where
\[\alpha_t(x, Y) = \exp \left\{ \int_0^t h(x_u) dY_u - \frac{1}{2} \int_0^t h^2(x_u) du \right\}. \]

The following result shows that the conventional filter can be approximated by suitable filters corresponding to the Ornstein–Uhlenbeck noise process.

Theorem 6.1. Suppose \(h \) satisfies the following condition
\[E \left[\exp \left\{ 7 \int_0^T h^2(X_u) du + \int_0^T (h'(u))^2 du \right\} \right] < \infty. \]
Then for bounded function f, as $\beta, \sigma \to \infty$, with $\sigma^2/\beta^2 \to 1$,

\[
(6.9) \quad \nu_t^{\beta,\sigma}(f)(Y^{\beta,\sigma}) \longrightarrow \nu_t(f)(Y) \quad \text{a.s.}
\]

through an appropriate subsequence.

Proof. Denote by $a_t(\beta, \sigma)$ and a_t the expressions in the curly brackets in (6.5) and (6.7), respectively. Then as $\beta \to \infty, \sigma \to \infty$ such that $\sigma^2/\beta^2 \to 1$, we have

\[
a_t(\beta, \sigma) = \int_0^t \left[\frac{\beta}{\sigma} h(x_u) + \frac{1}{\sigma} h'(u) \right] dW_u + \frac{1}{2} \int_0^t \left[\frac{\beta}{\sigma} h(x_u) + \frac{1}{\sigma} h'(u) \right]^2 du
\]

\[
= \frac{\beta}{\sigma} \int_0^t h(x_u) dW_u + \frac{1}{\sigma} \int_0^t h'(u) dW_u + \frac{1}{2} \int_0^t \left[\frac{\beta}{\sigma} h(x_u) + \frac{1}{\sigma} h'(u) \right]^2 du
\]

\[
(6.10) \quad \longrightarrow \int_0^t h(x_u) dW_u + \frac{1}{2} \int_0^t |h(x_u)|^2 du = a_t \quad \text{a.e. } x [P_X] \text{ and a.e. } [P].
\]

Hence it is enough to show that

\[
(6.11) \quad \int a_t^{\beta,\sigma}(x, Y^{\beta,\sigma}) P_X(dx) \longrightarrow \int a_t(x, Y) P_X(dx) \quad \text{in } L^1,
\]

for L^1-convergence will imply a.s. convergence through a subsequence and then the theorem will follow from Scheffe’s theorem.

It is easy to check that for any numbers a and b,

\[
|e^a - e^b| \leq |a - b| \cdot \max \left(e^{|a|}, e^{|b|} \right).
\]

Then

\[
E \left(\int a_t^{\beta,\sigma}(x, Y^{\beta,\sigma}) P_X(dx) - \int a_t(x, Y) P_X(dx) \right)
\]

\[
\leq E \left(\int |\exp\{a_t(\beta, \sigma)\} - \exp\{a_t\}| P_X(dx) \right)
\]

\[
\leq E \left(\int |a_t(\beta, \sigma) - a_t| \cdot \max \left(e^{|a_t(\beta, \sigma)|}, e^{|a_t|} \right) P_X(dx) \right)
\]

\[
\leq \left\{ \int E \left(|a_t(\beta, \sigma) - a_t|^2 \right) P_X(dx) \cdot \int E \left(e^{2|a_t(\beta, \sigma)|} + e^{2|a_t|} \right) P_X(dx) \right\}^{1/2}
\]

\[
(6.12) \quad \leq \left(\int I_1 P_X(dx) \right)^{1/2} \left(\int I_2 P_X(dx) \right)^{1/2}, \quad \text{say.}
\]

Then

\[
I_1 = E \left(|a_t(\beta, \sigma)| - a_t|^2 \right)
\]

\[
= E \left(\int_0^t \left\{ \left(\frac{\beta}{\sigma} - 1 \right) h(x_u) + \frac{1}{\sigma} h'(u) \right\} dW_u
\]

\[
+ \frac{1}{2} \int_0^t \left\{ \left(\frac{\beta}{\sigma} h(x_u) + \frac{1}{\sigma} h'(u) \right)^2 - h^2(x_u) \right\} du \right)^2 \right)
\]

\[
\leq 2E \left(\int_0^t \left\{ \left(\frac{\beta}{\sigma} - 1 \right) h(x_u) + \frac{1}{\sigma} h'(u) \right\} dW_u \right)^2
\]
\[+ 2 \cdot \frac{1}{4} \left| \int_0^t \left(\frac{2\beta^2}{\sigma^2} - 1 \right) h^2(x_u) du + \int_0^t \frac{2}{\sigma^2} (h'(u))^2 du \right|^2 \]

\[\leq 2 \int_0^t \left\{ \left(\frac{\beta}{\sigma} - 1 \right) h(x_u) + \frac{1}{\sigma} h'(u) \right\}^2 du \]

\[+ \frac{1}{2} \cdot 2 \left\{ \left(\frac{2\beta^2}{\sigma^2} - 1 \right)^2 \left(\int_0^t h^2(x_u) du \right)^2 + \frac{4}{\sigma^4} \left(\int_0^t (h'(u))^2 du \right)^2 \right\} \]

\[\leq 4 \left(\frac{\beta}{\sigma} - 1 \right)^2 \int_0^t h^2(x_u) du + \frac{4}{\sigma^2} \int_0^t (h'(u))^2 du \]

\[+ \left(\frac{2\beta^2}{\sigma^2} - 1 \right)^2 \left(\int_0^t h^2(x_u) du \right)^2 + \frac{4}{\sigma^4} \left(\int_0^t (h'(u))^2 du \right)^2. \]

Hence, from (6.8), it follows that

\[(6.13) \quad \int I_t P_X(dx) \to 0 \quad \text{as} \quad \beta, \sigma \to \infty, \quad \text{with} \quad \frac{\sigma^2}{\beta^2} \to 1. \]

Now, using the fact that for a normal random variable \(Z \) with zero mean and variance \(\sigma^2 \), \(E(e^{2|Z|}) \leq 2e^{\sigma^2/2} \), we have

\[I_2 = E \left(e^{2|a_1(\beta, \sigma)|} + e^{2|a_1|} \right) \]

\[= E \left(\exp \left\{ \left| 2 \int_0^t \left[\frac{\beta}{\sigma} h(x_u) + \frac{1}{\sigma} h'(u) \right] dW_u + \int_0^t \left[\frac{\beta}{\sigma} h(x_u) + \frac{1}{\sigma} h'(u) \right] du \right\} \right) \]

\[+ E \left(\exp \left\{ \left| 2 \int_0^t h(x_u) dW_u + \int_0^t |h(x_u)|^2 du \right| \right) \right) \]

\[\leq 2 \exp \left\{ \left| 3 \int_0^t \left[\frac{\beta}{\sigma} h(x_u) + \frac{1}{\sigma} h'(u) \right]^2 du \right| + 2 \exp \left\{ \left| 3 \int_0^t |h(x_u)|^2 du \right| \right) \right\} \]

\[\leq 2 \exp \left\{ \frac{6\beta^2}{\sigma^2} \int_0^t h^2(x_u) du + \frac{6}{\sigma^2} \int_0^t (h'(u))^2 du \right\} + 2 \exp \left\{ \left| 3 \int_0^t h^2(x_u) du \right| \right) \right\} \]

Therefore, from (6.8), we have for large \(\sigma \) and \(\beta \), \(\int I_t P_X(dx) \) is bounded and consequently, (6.11) follows from (6.12) and (6.13).

Remark. Note that the condition (6.8) in Theorem 6.1 will hold if one assumes that the functions \(h(\cdot) \) and \(h'(\cdot) \) are bounded.

Next we address the issue of implementation of the results obtained by considering the Ornstein–Uhlenbeck dispersion process as the observation noise process. We would like to obtain a Zakai-type evolution equation for the so-called unnormalized conditional density of \(X_t \) given the observations up to time \(\tau \). So let us assume that the signal process \(X_t \) is a Markov process.

First, we shall prove the following properties of \(\tilde{Y}_t \equiv \tilde{Y}_t^{\beta, \sigma} \) and its relationship with \(Y_t \equiv Y_t^{\beta, \sigma} \).

Lemma 6.2. Suppose \(\tilde{Y}_t \) is given by (6.6). Suppose \(Q \) is defined by

\[dP = \exp \left\{ \int_0^T \left[\frac{\beta}{\sigma} h(X_u) + \frac{1}{\sigma} h'(u) \right] d\tilde{Y}_u - \frac{1}{2} \int_0^T \left[\frac{\beta}{\sigma} h(X_u) + \frac{1}{\sigma} h'(u) \right]^2 du \right\} dQ. \]
Then

(i) under Q, \hat{Y}_t is a Wiener process,

(ii) $\mathcal{EF}^L_{t}\{Y_s, 0 \leq s \leq t\} = \mathcal{EF}^L_{t}\{\hat{Y}_s, 0 \leq s \leq t\}$,

(iii) $\mathcal{F}_t^Y = \mathcal{F}_t^{\hat{Y}}$.

Proof. Clearly (iii) follows from (ii) as, under Q, (Y_t) and (\hat{Y}_t) are Gaussian. (i) follows from Lemma 11.3.1 of [10] since (X_t) is independent of (W_t). For (ii) note that

$$Y_t = \int_0^t h(X_u)du + \int_0^t F(t, u)dW_u$$

$$= \int_0^t F(t, u)\left[\frac{\beta}{\sigma}h(X_u) + \frac{1}{\sigma}h'(u)\right]du + \int_0^t F(t, u)dW_u$$

(6.14)

$$= \int_0^t F(t, u)d\hat{Y}_u.$$

Hence

$$\mathcal{EF}^L_{t}\{Y_s, 0 \leq s \leq t\} \subset \mathcal{EF}^L_{t}\{\hat{Y}_s, 0 \leq s \leq t\}.$$

To show the reverse inclusion suppose $\xi \in \mathcal{EF}^L_{t}\{\hat{Y}_s, 0 \leq s \leq t\}$ and $E_Q(\xi Y_s) = 0$ for all $0 \leq s \leq t$. Since \hat{Y}_t, under Q, is a Wiener process we can express ξ as an Ito integral, say, $\xi = \int_0^t \phi(u)d\hat{Y}_u$. Then

$$E_Q(\xi Y_s) = 0 \quad \text{for all } 0 \leq s \leq t$$

$$\Rightarrow E_Q(\int_0^t \phi(u)d\hat{Y}_u \int_0^s F(s, u)d\hat{Y}_u) = 0 \quad \text{for all } 0 \leq s \leq t$$

$$\Rightarrow \int_0^s \phi(u)F(s, u)du = 0 \quad \text{for all } 0 \leq s \leq t$$

$$\Rightarrow \int_0^s \phi(u)\frac{\sigma}{\beta^2} \left(1 - e^{-\beta(s-u)}\right)du = 0 \quad \text{for all } 0 \leq s \leq t$$

$$\Rightarrow \int_0^s \phi(u)du - e^{-\beta s} \int_0^s \phi(u)e^{\beta u}du = 0 \quad \text{for all } 0 \leq s \leq t$$

$$\Rightarrow (\text{by differentiating}) \quad \beta e^{-\beta s} \int_0^s \phi(u)e^{\beta u}du = 0 \quad \text{a.e. } s \in [0, t]$$

$$\Rightarrow \phi(u) = 0 \quad \text{a.e. } u \in [0, t].$$

Hence

$$\mathcal{EF}^L_{t}\{\hat{Y}_s, 0 \leq s \leq t\} \subset \mathcal{EF}^L_{t}\{Y_s, 0 \leq s \leq t\}.$$

This completes the proof of part (ii).

Because of property (iii) of Lemma 6.2, the filter based on $\{Y_s, 0 \leq s \leq t\}$ will coincide with the filter based on $\{\hat{Y}_s, 0 \leq s \leq t\}$, where

$$\hat{Y}_t = \int_0^t \left[\frac{\beta}{\sigma}h(X_u) + \frac{1}{\sigma}h'(u)\right]du + W_t.$$

We shall, however, consider the observation process to be given by

(6.15)

$$\hat{Y}_t = \int_0^t \frac{\beta}{\sigma}h(X_u)du + W_t,$$
which, for large σ, will approximate \tilde{Y}_t. We can then use the classical theory with the Wiener noise process to obtain the following result.

Suppose A_t with domain D is the generator of the Markov signal process (X_t). Denote by $\Phi(u,t)$ the unnormalized conditional density of X_t given $F_t^{\tilde{Y}}$. Then

$$
(6.16) \quad \Phi(u,t) = \Phi(u,0) + \int_0^t A^*_s \Phi(u,s)ds + \int_0^t \left[\frac{\beta}{\sigma} h(X_s) \right] \Phi(u,s)d\tilde{Y}_s,
$$

where A^*_s is the formal adjoint of A_s.

Now note that from (6.14) and the form (6.4) of F we have

$$
Y_t = \sigma \int_0^t \left[1 - e^{-\beta(t-u)} \right] d\tilde{Y}_u = \frac{\sigma}{\beta} \left[\tilde{Y}_t - e^{-\beta t} \int_0^t e^{\beta u} d\tilde{Y}_u \right]
$$

$$
= \frac{\sigma}{\beta} \left[\tilde{Y}_t - e^{-\beta t} \left\{ e^{\beta t} \tilde{Y}_t - \int_0^t \beta e^{\beta u} \tilde{Y}_u du \right\} \right] = \sigma e^{-\beta t} \int_0^t e^{\beta u} \tilde{Y}_u du.
$$

Hence,

$$
y_t := \frac{d}{dt} \tilde{Y}_t = \sigma e^{-\beta t} (-\beta) \int_0^t e^{\beta u} \tilde{Y}_u du + \sigma e^{-\beta t} e^{\beta t} \tilde{Y}_t = \sigma \tilde{Y}_t - \beta \tilde{Y}_t,
$$

that is,

$$
\tilde{Y}_t = \tilde{Y}_t - \frac{1}{\sigma} \int_0^t h'(u) du = \frac{1}{\sigma} \left\{ y_t - \int_0^t h'(u) du \right\} + \frac{\beta}{\sigma} Y_t.
$$

Therefore ignoring the first term in the expression for \tilde{Y}_t above, which is of the order of σ^{-1}, we see that the solution of the Zakai equation (6.16), for large σ, can be approximated by the solution of the following ordinary partial differential equation

$$
\frac{d}{dt} \Phi(u,t) = A^*_t \Phi(u,t) + \left(\frac{\beta}{\sigma} \right)^2 h(X_t) \Phi(u,t) y_t.
$$

Acknowledgment. We thank the referees for their insightful suggestions, which led to the improvement of our presentation.

REFERENCES

