N, NH, and NH2 radical densities in a remote Ar-NH3-SiH4 plasma and their role in silicon nitride deposition

Citation for published version (APA):

DOI:
10.1063/1.2358330

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
N, NH, and NH₂ radical densities in a remote Ar–NH₃–SiH₄ plasma and their role in silicon nitride deposition

P. J. van den Oever,a) J. H. van Helden, J. L. van Hemmen, R. Engeln, D. C. Schram, M. C. M. van de Sanden, and W. M. M. Kesselsb)
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 28 May 2006; accepted 27 July 2006; published online 6 November 2006)

The densities of N, NH, and NH₂ radicals in a remote Ar–NH₃–SiH₄ plasma used for high-rate silicon nitride deposition were investigated for different gas mixtures and plasma settings using cavity ringdown absorption spectroscopy and threshold ionization mass spectrometry. For typical deposition conditions, the N, NH, and NH₂ radical densities are on the order of 10¹² cm⁻³ and the trends with NH₃ flow, SiH₄ flow, and plasma source current are reported. We present a feasible reaction pathway for the production and loss of the NH₄ radicals that is consistent with the experimental results. Furthermore, mass spectrometry revealed that the consumption of NH₃ was typically 40%, while it was over 80% for SiH₄. On the basis of the measured N densities we deduced the recombination and sticking coefficient for N radicals on a silicon nitride film. Using this sticking coefficient and reported surface reaction probabilities of NH and NH₂ radicals, we conclude that N and NH₂ radicals are mainly responsible for the N incorporation in the silicon nitride film, while Si atoms are most likely brought to the surface in the form of SiH₄ radicals. © 2006 American Institute of Physics. [DOI: 10.1063/1.2358330]

I. INTRODUCTION

Plasma deposited amorphous silicon nitride (a-SiNₓ:H) thin films have been studied extensively because of their electrical and optical properties that make them very suitable for many applications in microelectronics device fabrication (e.g., as gate dielectric or passivation layer).1–3 Other applications can be found in the encapsulation of devices such as organic light emitting devices4 and in the photovoltaic industry, where a-SiNₓ:H is used as an antireflection coating on c-Si solar cells that also serves as a surface and bulk passivation layer to improve the carrier lifetime in silicon.5,6 Most silicon nitride deposition processes use mixtures of SiH₄ and NH₃ or N₂, but also liquid precursors such as hexamethyldisilazane (HMDS), tris(dimethylamino)chlorosilane (TDEACS), and bis(dimethylamino)-dimethylsilane (BDMADMS) have been used with varying success.7–9

Because of their numerous applications, silicon nitride films deposited by plasma enhanced chemical vapor deposition (PECVD) have been widely investigated and the dependence of the film properties on the plasma gas composition and deposition conditions was established in various types of plasma reactors.10–13 However, due to the complexity of chemical reactions both in the gas phase and at the surface, the mechanisms underlying silicon nitride deposition are not yet fully understood and further knowledge of the processes taking place in the plasma is still required. For N₂–SiH₄ plasmas several studies of the silicon nitride growth mechanism were reported. In 1990 Smith et al. found that N radicals are probably directly incorporated in the a-SiNₓ:H film,14 while Hanyaloglu and Aydil (1998) suggested on the basis of optical emission spectroscopy that excited N₂⁺ molecules are most likely responsible for the N incorporation in the a-SiNₓ:H films.15 Recently, more support for the incorporation of N radicals in the a-SiNₓ:H film was found in a remote Ar–N₂–H₂–SiH₄ plasma and a refined growth mechanism was proposed. In this refined growth mechanism an α-Si:H-like surface layer formed by predominantly SiH₃ radicals is converted into a-SiNₓ:H by nitridation reactions with impinging N radicals.16,17

On the other hand, Smith et al.11,18 identified the aminosilane radical as the most important precursor for silicon nitride deposition in a NH₃–SiH₄ radio frequency plasma using mass spectrometry. This result was supported by Beach and Jasinski (1990) who proposed a reaction mechanism for the formation of aminosilane radicals involving NH₂ radicals.19 In 1995, Murley et al. showed that the amount of aminosilanes formed is dependent on the gas residence time inside the reactor chamber.20 Long residence times typically lead to high aminosilane concentrations, whereas short residence times result in no aminosilanes at all, which suggests the existence of a complementary growth mechanism most likely based on SiH₃ and NH₂ radicals under short-residence-time conditions.

For a-SiNₓ:H growth based on NH₃–SiH₄ gas mixtures, the role and densities of N, NH, and NH₂ radicals were not yet investigated in great detail. The results of Theil et al. (1992) suggest that SiH₄ and NH radicals are more important for silicon nitride growth than the aminosilane radicals,21 although they did not measure these radicals directly. More recently Umemoto et al. measured NH, NH₂, and SiH₃ radicals in a hot wire chemical vapor deposition (CVD) process and they found that SiH₃ and NH₂ are most

a)Electronic mail: p.j.v.d.oever@tue.nl
b)Author to whom correspondence should be addressed; electronic mail: w.m.m.kessels@tue.nl
likely responsible for the Si and N incorporations in the film. The density and role of N radicals in NH$_3$–SiH$_4$ based plasmas, however, are not well known as limited studies into this subject have been reported.

Further insight into the silicon nitride growth mechanism can be inferred from the interaction of the various NH radicals with the surface, which was studied by several research groups. Fisher and co-workers measured the surface interaction of NH and NH$_2$ radicals for different types of surfaces using laser induced fluorescence combined with a molecular beam setup. For N radicals on stainless steel and silicon nitride surfaces, the surface reactivity has been summarized and extended by Kessels et al. on the basis of the experimental results of Adams and Miller and Singh et al.

In this paper, we report the densities of the NH radicals in a remote Ar–NH$_3$–SiH$_4$ plasma and we focus on the role of these radicals in the deposition process of silicon nitride. In Sec. II, the expanding thermal plasma (ETP) technique operated on an Ar–NH$_3$ gas mixture is briefly described. This technique was recently introduced in industry and is capable of depositing good quality silicon nitride at nominal deposition rates ranging from 4 to 7 nm/s, which is faster than most conventional processes (<1 nm/s). The diagnostic techniques, such as cavity ringdown absorption spectroscopy (CRDS) for the detection of NH and NH$_2$ radicals and threshold ionization mass spectrometry (TIMS) for the N radical measurements, are described briefly in Sec. III. In Sec. IV, we present the NH radical densities as function of several plasma parameters such as NH$_3$ flow, SiH$_4$ flow, and plasma source current (Secs. IV A–IV C) and discuss the most important plasma reactions that can explain the observed trends. Furthermore, the NH$_2$ and SiH$_4$ consumptions and the production of molecules from the dissociated molecules (Sec. IV D) are addressed for different plasma settings. Subsequently, Sec. V summarizes the plasma chemistry and discusses the surface reaction probability of the NH radicals and the implications of our measurements on the silicon nitride growth mechanism. Finally, the conclusions are given in Sec. VI.

II. THE EXPANDING THERMAL PLASMA ON AR–NH$_3$

Figure 1 shows a schematic overview of the deposition setup including the laser setup used for the measurements of the NH and NH$_2$ densities and the mass spectrometry setup for the determination of the N density. Both diagnostic techniques will be discussed in greater detail in Sec. III.

An extensive description of the plasma source and the ETP technique can be found elsewhere and here a brief summary of the ETP plasma operated on an Ar–NH$_3$ mixture will be given. The ETP technique consists of a cascaded arc plasma source that operates at subatmospheric pressures (~200 Torr) and a low pressure processing chamber. A dc current of typically 45 A is used to efficiently ionize argon atoms in a narrow plasma channel with flowing argon gas. NH$_3$ gas is introduced through a slit in the nozzle at the outlet of the plasma source (see Fig. 1) and the resulting Ar–NH$_3$ plasma expands into the low pressure chamber (~0.15 Torr). The electron temperature is low (0.2–0.3 eV) in the expansion and as a consequence, electron impact induced chemistry and ion bombardment due the plasma self-bias potential are not important. The most important reactive species emanating from the plasma source are Ar$^+$ ions that transfer their charge to NH$_3$ molecules in the course of the expansion, creating mainly NH$_3^+$ molecular ions. These molecular ions recombine dissociatively with electrons into mainly N and NH radicals. The charge transfer reaction as well as the dissociative recombination reaction are very fast and the N and NH densities both saturate at a level of 3 x 1012 cm$^{-3}$ for NH$_3$ flows above 3 SCCS (standard cubic centimeter per second) due to the limited amount of Ar$^+$ ions available. Langmuir probe measurements carried out at 36 cm from the plasma source revealed an exponential decrease of the ion density by three orders of magnitude until 3 SCCS NH$_3$ was injected in the plasma, which is in line with the constant N and NH densities above 3 SCCS NH$_3$. The saturation also implies that gas phase loss with NH$_3$ can be neglected for these radicals. NH$_2$ radicals, on the other hand, are most likely produced differently via reactions of NH$_3^+$ with NH$_3$ or via NH$_3$ dissociation reactions by H abstraction, resulting in a linear increase of the NH$_2$ density as a function of the NH$_3$ flow. The NH$_2$ density reached for 15 SCCS injected NH$_3$ flow is approximately 4.0 x 1012 cm$^{-3}$. More information on the reaction mechanism responsible for the creation of NH and NH$_2$ in the Ar–NH$_3$ plasma can be found in Ref. 33.

When the plasma is used for silicon nitride deposition SiH$_4$ gas is injected through a ring situated at a distance of approximately 7 cm from the nozzle. The reactive fragments (NH$_x$, H, etc.) created in the initial part of the expansion are used to dissociate the injected SiH$_4$ leading to silicon containing reactive species that deposit an a-SiN$_x$:H film on a downstream situated substrate. The standard experimental conditions and the parameter range used in this study are given in Table I.

III. PLASMA DIAGNOSTICS

A. Cavity ringdown absorption spectroscopy

The cavity ringdown setup is shown schematically in Fig. 1. Laser pulses generated by a dye laser pumped by the
second harmonic radiation of a Nd:YAG (yttrium aluminum garnet) laser were injected into a high finesse optical cavity formed by two planoconcave high reflectivity mirrors (M). The mirrors, protected from reactive plasma species by a small argon flow, were placed 12 cm apart on flexible bellow at a distance of 36 cm from the plasma source, which is 3 cm before the substrate holder. Before injection into the cavity, the laser pulse energy was attenuated to below 100 μJ per pulse to avoid optical saturation of the used transitions.

The light intensity leaking out of the cavity was detected through an interference bandpass filter (F) by a photomultiplier tube (PMT). For every single laser pulse, the decay rate was sampled by a 100 MHz, 12 bit data acquisition system [TU/eDACS (Ref. 34)]. All observed decay rates were single exponential and were analyzed by a weighted least squares fit of the logarithmic of the transient data, while an average of 20 single decays was used to improve the signal to noise ratio. More details on the cavity ringdown setup can be found elsewhere.33

The NH radical was detected on the $3^1Π_1 ← X^1Σ^−_g$ transition around ~ 340 nm and the NH2 radical on the $(0,0),(0,0)$ band of the $A^3Σ^−_g ← X^1Σ^+g$ transition at ~ 597 nm. For NH, the isolated $P_{3,3}(9)$ absorption line at 339.624 nm (29 444.3 cm$^{-1}$) was used, while the “isolated” $Σ^P_1,1$ absorption line at 597.375 nm (16 739.9 cm$^{-1}$) was used for NH2. The actual density information was determined by scanning the laser over the particular absorption line and using the integrated absorption cross sections derived in Ref. 33.

First, the spectra of NH and NH2 were recorded for the Ar–NH3 plasma to establish the measurement procedure. We found that the addition of SiH4 to the plasma introduced a broadband absorption in addition to the NH and NH2 spectral features. The origin of this broadband absorption has not been identified, but it did not change the distinct spectral features of the NH and NH2 radicals. The largest uncertainty in the absolute values of the densities reported is generated by the assumption about the absorption path length for the radicals in the plasma, which is estimated to be 30 cm.35 This systematic error can be as large as a factor of 3 for the local absolute densities.

B. (Threshold ionization) mass spectrometry

The triple stage differentially pumped quadrupole mass spectrometer (QMS) used in this study was modified from the version that was used to measure N radicals in an Ar–N2–SiH4 plasma.16 The apparatus used in this study is based on the design by Agarwal et al.36 and was described extensively elsewhere.28,37 Briefly, the plasma is sampled by effusive extraction through a 0.8 mm orifice that is situated approximately 56 cm from the plasma source and 4.5 cm off the reactor axis. The extraction creates a molecular beam that passes two consecutive orifices separating the pumping stages in the housing of the mass spectrometer. The quadrupole mass spectrometer (Hiden Analytical Epic 300, PSM upgrade) is placed in the third stage, in line of sight with the three orifices. Typical pressures in the second and third stages during measurements are 10^{-6} and 10^{-7} Torr, respectively, while the third stage base pressure is below 10^{-9} Torr. Due to the finite pressure in the third stage, the mass spectrometer signal will not only consist of a beam component but also of a background component due to surface scattered molecules.

Ground state N radicals were detected using the so-called threshold ionization or appearance potential technique.14,28 In general, electron impact ionization of radicals has a lower threshold than dissociative ionization of parent molecules leading to the same ion. Table II shows the different electron impact ionization processes that lead to the detection of an ion with a mass-over-charge (m/e) ratio equal to 14. By scanning the electron energy used for ionization, we can distinguish different ionization processes. To obtain absolute densities of N radicals, we used a calibration method for the N radicals similar to the one described by Singh et al.27 The absolute N densities were obtained by correlating the measured signal of N radicals to the direct ionization signal of NH3 reference gas with a known number density. The details of the calibration procedure can be found in Ref. 28.

The mass spectrometer was also used to determine the densities of stable species such as NH3, SiH4, H2, and N2 in the plasma beam. The calibration procedure to obtain the absolute densities of these molecules was carried out prior to each measurement run using different reference gas mixtures in argon (e.g. NH3 in Ar, SiH4 in Ar, etc.) to mimic the actual measurement conditions. From these measurements the relative consumption or depletion of a species can be calculated.

For the Ar–NH3–SiH4 plasma, all signals were corrected for clogging of the sampling orifice by normalizing all signals to the Ar signal in the “plasma off” case. This correction was not necessary for non-depositing plasmas.

TABLE I. The range of plasma parameters used in this study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard value</th>
<th>Range studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar flow</td>
<td>55 SCCS</td>
<td>...</td>
</tr>
<tr>
<td>NH3 flow</td>
<td>17 SCCS</td>
<td>0–17 SCCS</td>
</tr>
<tr>
<td>SiH4 flow</td>
<td>2.5 SCCS</td>
<td>0–5 SCCS</td>
</tr>
<tr>
<td>Arc current</td>
<td>45 A</td>
<td>30–70 A</td>
</tr>
<tr>
<td>Arc voltage</td>
<td>42 V</td>
<td>...</td>
</tr>
<tr>
<td>Arc pressure</td>
<td>210 Torr</td>
<td>...</td>
</tr>
<tr>
<td>Downstream pressure</td>
<td>0.15 Torr</td>
<td>...</td>
</tr>
</tbody>
</table>

TABLE II. Various reactions leading to N+ ions in the mass spectrometer’s ionizer by electron impact ionization. The corresponding appearance potentials are also given.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Appearance potential (eV)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N+ + e → N2+ + 2e</td>
<td>15.3</td>
</tr>
<tr>
<td>B</td>
<td>NH3 + e → N2+ + H+ + 2e</td>
<td>22.6</td>
</tr>
<tr>
<td>C</td>
<td>N2+ + e → N+ + N + 2e</td>
<td>24.3</td>
</tr>
</tbody>
</table>

"a" Reference 46.
"b" Reference 47.
ringdown spectroscopy. The lines serve as a guide to the eyes.

The N and NH densities increase more gradual to their final values of 7.0×10^{12} cm$^{-3}$, respectively. Also the NH$_2$ density shows a similar linear increase as in the case without SiH$_4$ reaching a density of 2.5×10^{12} cm$^{-3}$ at 15 SCCS NH$_3$. For NH$_3$ flows below 4 SCCS, however, no NH$_2$ radicals could be detected in the plasma in contrast to the situation without SiH$_4$. The NH$_3$ density obtained for 15 SCCS NH$_3$ flow is 7.0×10^{14} cm$^{-3}$, which is slightly lower than in the situation without SiH$_4$.

The observed density changes can be qualitatively understood by looking at the production rate P and and loss time τ of species in a steady state situation,

$$\frac{d n}{dt} = P - \frac{n}{\tau} = 0,$$

with n the density of the species. In this case, the observed gradual increase of the N and NH densities can be explained by a decrease in the production rate of these radicals due to SiH$_4$ injection. Competition between charge transfer reactions of Ar$^+$ ions with NH$_3$, responsible for the creation of N and NH radicals, and with SiH$_4$ results in a lower production rate for N and NH. This effect is especially important when the NH$_3$ flow is comparable to or smaller than the SiH$_4$ flow, as is also observed in Figs. 2(a) and 2(b). For high NH$_3$ flows the influence of the charge transfer reaction of Ar$^+$ with SiH$_4$ is of minor importance and the observed N and NH densities are similar to the values obtained in the situation without SiH$_4$. The final N radical density seems to be somewhat higher in the presence of SiH$_4$, which is predominantly caused by a change in the loss time of the N radical [e.g., a different surface reaction probability (see Sec. V B)]. The absence of NH$_2$ radicals in the Ar–NH$_3$–SiH$_4$ plasma for flows below 4 SCCS NH$_3$ is another indication that the production and/or loss mechanism of NH$_2$ is different than that of N and NH. Additional measurements showed that the NH$_3$ flow threshold for NH$_2$ detection depends linearly on the SiH$_4$ flow. This behavior is not completely understood yet, but a few mechanisms changing the production or the loss time of NH$_2$ radicals can be suggested. A first possibility is the abstraction reaction between atomic H and SiH$_4$. This reaction is much faster at 1750 K (Ref. 33) [reaction rate of $\sim 8 \times 10^{-11}$ cm3 s$^{-1}$ (Ref. 38)] than the equivalent reaction with NH$_3$ [with a rate of $\sim 3 \times 10^{-11}$ cm3 s$^{-1}$ (Ref. 33)] such that the NH$_2$ production might be suppressed. Another reaction that can play a role is a fast gas phase loss reaction of the produced NH$_2$ with SiH$_4$ or its dissociation products.

Likely candidates for this reaction are the amino-silane creation reactions as proposed by Beach and Jasinski. Finally, NH$_2$ radicals might be preferentially incorporated in the α-SiN$_x$:H film leading to the low NH$_2$ density in the plasma. This argument is supported by values of the NH$_2$ surface loss probability as discussed in Sec. V B.

IV. RESULTS

A. NH$_x$ radical densities versus NH$_3$ flow

Figures 2(a)–2(d) show the absolute densities of N, NH, and NH$_2$ radicals and NH$_3$ molecules in the expanding Ar–NH$_3$–SiH$_4$ plasma as a function of the NH$_3$ flow for a SiH$_4$ flow of 2.5 SCCS (circles). The arc current was 45 A. The N and NH densities were measured by (threshold ionization) mass spectrometry and the NH and NH$_2$ densities by cavity ringdown spectroscopy. The lines serve as a guide to the eyes.

B. NH$_x$ radical densities versus SiH$_4$ flow

The N, NH, and NH$_2$ radical densities as well as the NH$_3$ density were also measured for different SiH$_4$ flows, as shown in Fig. 3. The NH$_3$ flow was 17 SCCS and the plasma source current was 45 A. The densities of all NH$_x$ radicals decrease significantly when silane is injected in the plasma.
The N radical density decreases from $\sim 8.0 \times 10^{12}$ to $\sim 2.0 \times 10^{12}$ cm$^{-3}$ and the NH density from $\sim 3.0 \times 10^{12}$ to $\sim 2.0 \times 10^{12}$ cm$^{-3}$. The NH$_2$ density decreases from $\sim 4.0 \times 10^{12}$ to $\sim 1.0 \times 10^{12}$ cm$^{-3}$ for a SiH$_4$ flow of 5 SCCS, while the NH$_3$ density decreases only slightly from $\sim 7.5 \times 10^{14}$ to $\sim 6.5 \times 10^{14}$ cm$^{-3}$. Figure 3 also shows the values of the NH$_4$ densities in the absence of SiH$_4$ for a clean stainless steel reactor (open triangles). Note that for small injected SiH$_4$ flows the N radical density in the depositing plasma is higher than in the situation without SiH$_4$. This particular behavior will be addressed in more detail in Sec. V B, but first the NH$_4$ radical densities will be discussed in detail.

The small decrease of the NH density versus the SiH$_4$ flow can be explained by a decreased production rate due to the competition between the Ar$^+$ charge transfer reactions with NH$_3$ and SiH$_4$, as explained in the previous section. The N and NH$_2$ densities, however, decrease faster than the NH density upon injection of SiH$_4$, which suggests that an additional loss mechanism related to SiH$_4$ lowers the N and NH$_2$ densities. A similar decreasing trend for the N radical density versus SiH$_4$ flow was observed by Kessels et al. in an Ar–N$_2$–H$_2$–SiH$_4$ plasma. Due to the endoergic nature of the reaction of N radicals with SiH$_4$ (enthalpy = +0.45 eV), the corresponding reaction rate is very low at room temperature ($< 8 \times 10^{-14}$ cm3 s$^{-1}$). At a gas temperature of 1750 K, we still expect the reaction rate to be very small due to the relatively high energy barrier for this reaction. Therefore, Kessels et al. argued that gas phase loss of N radicals can be excluded and it was established that a larger fraction of N radicals must be incorporated in the a-SiN$_x$:H film. Also for the Ar–NH$_3$–SiH$_4$ plasma N incorporation in the a-SiN$_x$:H film is most likely responsible for the observed N loss. For NH$_2$, a gas phase loss mechanism involving SiH$_4$ molecules cannot be excluded on the basis of the reaction rates reported in the literature. Two possible reactions that might explain the observed NH$_2$ loss were already proposed in Sec. IV A. The first reaction, which removes atomic H from the plasma by a reaction with SiH$_4$ suppressing the NH$_2$ production, can in principle take place. But on the basis of the small amount of injected SiH$_4$ molecules, it is unlikely that this reaction can explain the total NH$_2$ decrease. The second reaction resulting in the creation of amino silanes is not expected to be significant as we found no evidence for these fragments by mass spectrometry. Moreover, a similar decrease of the NH and NH$_2$ densities versus SiH$_4$ flow in a hot wire CVD system was attributed to a decreased decomposition efficiency of NH$_3$ on the hot wire surface and not to gas phase reactions. In our case, the faster decrease of the NH$_2$ density is presumably caused by an increased incorporation of NH$_2$ into the a-SiN$_x$:H film at higher SiH$_4$ flows, similar to the situation for N radicals (Sec. V B).

C. NH$_4$ radical densities versus arc current

Another important plasma parameter, besides the NH$_3$ and SiH$_4$ gas flows, is the plasma source current, which determines the amount of ions emanating from the source. Figures 4(a)–4(d) show the NH$_4$ (0–3) densities as a function of the arc current for a NH$_4$ flow of 17 SCCS and a SiH$_4$ flow of 2.5 SCCS. The N density increases linearly from $\sim 2.5 \times 10^{13}$ to $\sim 9.0 \times 10^{12}$ cm$^{-3}$ when the arc current is increased from 30 to 70 A. Also the NH density increases linearly from $\sim 2.0 \times 10^{13}$ to $\sim 4.0 \times 10^{13}$ cm$^{-3}$, while the NH$_2$ density remains almost constant at 2.0×10^{14} cm$^{-3}$. The NH$_3$ density in the plasma decreases from $\sim 10.0 \times 10^{14}$ to $\sim 4.0 \times 10^{14}$ cm$^{-3}$ when the arc current increases from 30 to 70 A.

The linear increase of the N and NH densities versus arc current confirms that the production mechanism of these radicals is dependent on Ar$^+$ ions from the plasma source, as discussed briefly in Sec. II. The stronger increase of the N density compared to the NH density indicates that N radicals might also be produced in secondary reactions of Ar$^+$ ions.
with NH radicals or N₂ molecules, while this is not the case for NH radicals. The linear decrease in the NH₃ density is expected because the NH₃ dissociation process starts with the charge transfer reaction of Ar⁺ with NH₃. Furthermore, the constant NH₂ density corroborates the previous conclusion that NH₂ is produced by a different pathway than N and NH radicals.

D. NH₃ and SiH₄ consumption

The relative amount of gas phase consumption of a precursor, also called depletion, can give valuable insights into the deposition process. Furthermore, an effective use of the precursor gas is important from a cost perspective (e.g., high depletion values allows for more efficient use of precursor gases). The amount of NH₃ and SiH₄ consumed in the plasma can be derived from mass spectrometry measurements of the NH₃ density and SiH₄ density (see Sec. III C). In Fig. 5 we show the depletion of NH₃ (a) and of SiH₄ (b) in the plasma as a function of the NH₃ flow for a SiH₄ flow of 2.5 SCCS. The depletion of NH₃ decreases from ~0.9 for small NH₃ flows to ~0.4 for high NH₃ flows. Accurate measurements of depletions near 100% for low NH₃ flows are difficult, which explains the larger error bars in Fig. 5. The behavior of the NH₃ depletion versus NH₃ flow can be understood by considering the amount of reactive species from the source compared to the injected NH₃ flow and the remote character of the ETP technique. For low NH₃ flows the amount of Ar⁺ from the plasma source is sufficient to dissociate all NH₃, but when the NH₃ flow is increased further, the amount of Ar⁺ will be deficient to dissociate all NH₃. At this point the depletion of NH₃ starts to decrease. Also the depletion of SiH₄ decreases from ~1.0 to ~0.8 when the NH₃ flow increases from 0 to ~6 SCCS, whereas it remains constant at ~0.8 for higher NH₃ flows. The decrease of the SiH₄ depletion when the NH₃ flow increases is most probably related to a decrease in the direct dissociation of SiH₄ by Ar⁺ due to competition of this process with the charge exchange reaction of NH₃ with Ar⁺ as discussed in Sec. IV A. At a NH₃ flow of 6 SCCS, most Ar⁺ ions are used to dissociate NH₃, while SiH₄ is presumably dissociated indirectly by reactive NH₃ species leading to a SiH₄ depletion of ~0.8.

Figures 6(a) and 6(b) show the NH₃ and SiH₄ depletions versus the SiH₄ flow in an Ar–NH₃–SiH₄ plasma for a NH₃ flow of 17 SCCS. The NH₃ depletion remains constant at ~0.4 over the whole range of SiH₄ flows, because the injected SiH₄ flow is relatively small compared to the NH₃ flow. Furthermore, the NH₃ flow is injected in an earlier stage of the plasma expansion than SiH₄ (see Fig. 1). There-
fore, the NH₃ dissociation is not affected by the injected SiH₄ flow for these large NH₃ flows. The SiH₄ depletion remains constant at ~0.8 for SiH₄ flows between 0 and 2.5 SCCS SiH₄ and subsequently decreases to ~0.5 for a SiH₄ flow of 5 SCCS. This suggests that the amount of reactive species created in the NH₃ dissociation process is the limiting factor for the SiH₄ dissociation for SiH₄ flows exceeding 2.5 SCCS.

In the expanding thermal plasma, the NH₃ depletion is in the order of 40% for actual deposition conditions of silicon nitride antireflection coatings on solar cells, while the SiH₄ depletion is approximately 80%. Note that the consumed NH₃ flow is actually larger than the consumed SiH₄ flow leading to near stoichiometric silicon nitride. These values for the NH₃ and SiH₄ depletions are relatively high in comparison to the results reported by Umemoto et al. They reported a NH₃ depletion of 5% and a SiH₄ depletion of 60% in the hot wire CVD process based on NH₃ and SiH₄. However, when H₂ is added to the NH₃/SiH₄ system, a much higher NH₃ decomposition efficiency can be achieved in the hot wire CVD process. Chowdhury et al. reported SiH₄ depletions up to 100% for small SiH₄ flows and high power density in their rf PECVD system based on N₂ and SiH₄. In the ETP plasma, both the NH₃ and the SiH₄ depletions increase when the arc current and therefore the plasma power are increased. For an injected SiH₄ flow of 2.5 SCCS, NH₃ flow of 17 SCCS, and an arc current of 70 A, the NH₃ and SiH₄ depletions are ~60% and ~100%, respectively. These high values of the depletion density enable high rate deposition of a-SiNₓ:H using the ETP technique.

The typical depleted NH₃ density when the plasma is switched on is on the order of 10¹⁴ cm⁻³ while the typical NH₃ densities generated are on the order of 10¹² cm⁻³ during actual deposition conditions. The difference in magnitude of these densities cannot be explained by N or H incorporation in the film alone, which means that other species besides NH₃ radicals must be generated in the plasma. For an Ar–NH₃ plasma, it was already demonstrated that large densities of N₂ and H₂ molecules were generated. Also in the Ar–NH₃–SiH₄ plasma we observed that most of the depleted NH₃ and SiH₄ flows are converted into H₂ and N₂ with typical densities on the order of 10¹⁴ cm⁻³ (not shown). A similar observation was also reported by Umemoto et al., who measured the H₂ and N₂ productions in their hot wire CVD system.

V. DISCUSSION

A. Summary of the plasma chemistry

From the results presented in the current study combined with the outcome of previous studies, the following reaction pathway in the Ar–NH₃–SiH₄ plasma can be deduced. The cascaded arc plasma source produces primarily Ar⁺ ions that undergo a charge transfer reaction with NH₃ molecules injected in the very first part of the plasma expansion. The NH₃⁺ ions created recombine dissociatively into N and NH radicals, while NH₂ radicals are produced via ion-molecule reactions or radical-molecule reactions with NH₃ molecules. This mechanism leads to relatively high N and NH densities that saturate at a level of (3.0–4.0) × 10¹² cm⁻³ for high NH₃ flows due to the limited amount of Ar⁺ available. The NH₂ density on the other hand increases linearly with the NH₃ flow and reaches a level of 2.5 × 10¹² cm⁻³.

When SiH₄ is injected in the plasma all NH₃ radicals decrease in density. For a part, this decrease can be explained by a lower production rate due to the competition between the charge transfer reaction of Ar⁺ with NH₃ and the charge transfer reaction of Ar⁺ with SiH₄. However, for the N and NH₂ radicals the decrease in density is more pronounced than for the NH radical suggesting that an additional loss mechanism is present for the N and NH₂ radicals, besides the reduction of their production rate. This loss mechanism is most likely an increased incorporation of these radicals in the a-SiNₓ:H film, as can be concluded from the surface loss of these radicals that will be discussed in Sec. V B. In this case, the Si–N bond characteristic for a-SiNₓ:H is not predominantly formed in the plasma volume, but on the surface of the growing film. When the SiH₄ flow injected in the plasma is increased, the surface composition of the growing film changes due to a higher flux of impinging SiH₄ radicals that create additional sites for N incorporation on the film’s surface. Therefore, the surface loss rate of N radicals will increase for higher SiH₄ flows.

The amount of reactive species emanating from the plasma source can be increased by a higher current, which leads to more production of N and NH radicals and a higher NH₃ consumption in the plasma. The higher flow of reactive NH₃ species from the plasma source also allows for a higher degree of SiH₄ dissociation. For a plasma with a NH₃ flow of 17 SCCS, a SiH₄ flow of 2.5 SCCS, and a plasma source current of 70 A, the dissociation degree of NH₃ and SiH₄ can be as high as 60% and 100%, respectively. Finally, it was
observed that significant amounts of \(\text{N}_2 \) and \(\text{H}_2 \) molecules are produced in the plasma from dissociated \(\text{NH}_3 \) and \(\text{SiH}_4 \).

B. Surface loss probabilities

The kinetics of film growth in a plasma depend on the interactions of the plasma-generated species with the growing film surface. In order to understand how the film composition and electronic properties are related to the plasma parameters, detailed information on the interaction of the plasma species with the surface is required.

Information on the surface reactivity of species can be deduced from density measurements for different wall conditions. Figure 7 shows a measurement of the \(N \) radical density versus the \(\text{NH}_3 \) flow in an \(\text{Ar}-\text{NH}_3 \) plasma for a clean stainless steel wall and a wall covered with a silicon nitride film. The observed trends for both curves are identical, but the saturation value of the \(N \) radical density is substantially lower for the stainless steel wall, while a wall covered with a silicon nitride film. This difference in \(N \) density was already observed in Fig. 3(a), where the \(N \) density for stainless steel walls (triangles) lies considerably lower than the \(N \) density in a depositing \(\text{Ar}-\text{NH}_3-\text{SiH}_4 \) plasma (circles). Assuming constant production rate \(P \) and no difference in gas phase loss for \(N \) radicals (corroborated by the extremely low reactivity of the \(N \) radical with \(\text{SiH}_4 \)), the observed density difference must be caused by changing surface recombination rate [see Eq. (1)]. In general, species can be lost at the surface with a probability \(\beta \), which consists of a “recombination part” with a probability \(\gamma \) and of a “growth part” with a probability \(s \). According Motz and Wise 44 the flux of species that is lost at the surface is given by

\[
\Phi_{\text{loss}} = \frac{nu}{4} \frac{\beta}{1 - (\beta/2)},
\]

with \(\beta = \gamma + s, n \) the density of the species, and \(v \) the thermal velocity. In a nondepositing \(\text{NH}_3 \) plasma, the sticking probability \(s \) is zero and the flux of species lost at the surface is determined by the recombination probability \(\gamma \). For our experimental conditions with a partial \(\text{N}_2 \) pressure on the order of 10 mTorr, the recombination probability on stainless steel \(\gamma_{\text{SS}} \) can be estimated at \(\sim 0.1 \) on the basis of the work of Adams and Miller26 and Singh et al.25 Using this value of \(\gamma_{\text{SS}} \) and the experimentally observed density ratio \(n_{\text{SiN}}/n_{\text{SS}} \) of \(\sim 3.0 \), we obtain a recombination probability of \(N \) radicals on a silicon nitride surface \(\gamma_{\text{SiN}} \) of \(\sim 0.03 \) via Eq. (2).

In \(\text{SiH}_4 \) containing plasmas the sticking probability \(s \) is nonzero as \(N \) radicals can also be incorporated in the growing \(a\)-\(\text{SiN}_x \):H film. When we attribute the decrease in the \(N \) density as a function of the injected \(\text{SiH}_4 \) flow in Fig. 3(a) solely to \(N \) incorporation in the \(a\)-\(\text{SiN}_x \):H film, we can calculate an upper estimate for the sticking coefficient \(s \), assuming a constant \(N \) recombination probability \(\gamma_{\text{SiN}} \), no significant change in the \(N \) production rate due to \(\text{SiH}_4 \) addition, and no gas phase loss. For example, the \(N \) density is \(\sim 8.0 \times 10^{12} \text{ cm}^{-3} \) for a \(\text{SiH}_4 \) flow of 0 SCCS, while it is \(\sim 6.0 \times 10^{12} \text{ cm}^{-3} \) for a \(\text{SiH}_4 \) flow of 1 SCCS. In the first situation the loss will only consist of \(N \) recombination on the surface \((s=0) \), while in the second case incorporation of \(N \) in the film causes an additional decrease in the \(N \) density. Using Eq. (2) we obtain a sticking coefficient \(s \) that varies with \(\text{SiH}_4 \) flow: from \(\sim 0.016 \) for 1 SCCS injected \(\text{SiH}_4 \) to \(\sim 0.034 \) when the \(\text{SiH}_4 \) flow is 5 SCCS. A similar change in the surface reaction probability \(\beta = \gamma + s \) from \(\sim 0.007 \) for low \(\text{SiH}_4 \) flows to \(\sim 0.04 \) for higher \(\text{SiH}_4 \) flows was also observed by Kessels et al. in the \(\text{Ar}-\text{N}_2-\text{H}_2-\text{SiH}_4 \) expanding plasma.16,17 This change in the sticking probability \(s \) for higher \(\text{SiH}_4 \) flows is most likely caused by a higher \(\text{SiH}_4 \) flux to the surface creating more reactive surface sites available for \(N \) incorporation.

For \(\text{NH} \) and \(\text{NH}_2 \) radicals no significant difference in the surface recombination probability was observed on the basis of the measured densities in nondepositing plasmas for stainless steel walls and silicon nitride covered walls [see Figs. 3(b) and 3(c)]. The surface reactivity of \(\text{NH} \) and \(\text{NH}_2 \) on different materials was reported by Fisher and co-workers using laser induced fluorescence in combination with a molecular beam setup.23–25 The molecular beam was created from a rf powered plasma based on a \(\text{NH}_3 \) or \(\text{NH}_3-\text{SiH}_4 \) feed gas mixture by expansion into a differentially pumped reactor. A surface loss probability \(\beta_{\text{NH}} = 0.0 \pm 0.1 \) for the \(\text{NH} \) radical on \(a\)-\(\text{SiN}_x \):H surfaces in \(\text{NH}_3 \) and \(\text{NH}_3-\text{SiH}_4 \) plasmas was observed,23 indicating that the \(\text{NH} \) radical is virtually not reactive with the surface during plasma deposition of \(a\)-\(\text{SiN}_x \):H \((\gamma_{\text{NH}} = 0) \). For the \(\text{NH}_2 \) radical, surface production \((\gamma_{\text{NH}_2} < 0) \) was found on \(a\)-\(\text{SiN}_x \):H surfaces in a \(\text{NH}_3 \) plasma, while a surface loss probability \(\beta_{\text{NH}_2} \) of \(0.13 \pm 0.07 \) was found in a \(\text{NH}_3-\text{SiH}_4 \) plasma.24 This suggests that \(\text{NH}_2 \) is incorporated in the growing \(a\)-\(\text{SiN}_x \):H film. Assuming a similar \(\text{NH}_2 \) recombination probability in \(\text{NH}_3 \) and \(\text{NH}_3-\text{SiH}_4 \) plasmas, we deduce a sticking coefficient for \(\text{NH}_2 \) \((\gamma_{\text{NH}_2} \) during \(a\)-\(\text{SiN}_x \):H growth that is larger than 0.13.

C. Implications for \(a\)-\(\text{SiN}_x \):H growth mechanism

The deposition of \(a\)-\(\text{SiN}_x \):H films by plasmas is governed by reactive species (radicals) created in the plasma and their reaction kinetics on the surface (See Sec. V B). More specifically, radical species are responsible for the creation of
the Si–N network and two main options were introduced for the deposition mechanism of these films. One mechanism was proposed by Smith et al. and is based on the creation of amino-silane radicals [Si(NH)3] in the plasma phase that are responsible for the a-SiN_x:H growth. On the other hand, Umemoto et al. have demonstrated that NH2 and SiH3 radicals are the dominant growth precursors in the hot wire CVD deposition process of silicon nitride. These two mechanisms differ in the formation path of the characteristic Si–N bond, e.g., in the gas phase or on the surface of the growing film. In our analysis, we also found no evidence for the existence of amino silanes in the ETP plasma by mass spectrometry, although the presence of the broadband absorption in the cavity ringdown measurements might indicate the presence of larger species. Umemoto et al. suggested that the absence of amino silanes in the hot wire CVD process is caused by the relatively high atomic H fluxes that are created in the thermal decomposition of the injected precursors on the hot filament. In the expanding thermal plasma, the production of atomic H is also very efficient via the dissociative recombination reactions of NH^+ ions with electrons (see Sec. III A). This could explain the absence of amino silanes in the ETP plasma. Alternatively, Murley et al. provided another explanation for the absence of amino silanes, which is related to the residence time of the gas in the reactor. They showed that amino silanes are primarily present for residence times higher than 2–3 s, which is larger than commonly used in the ETP plasma (typically ~0.5 s).

Based on our data of the Ar–NH3–SiH4 plasma, we conclude that the N incorporation in a-SiN_x:H film is most likely dominated by NH2 radicals, which implies that the Si atoms are brought to the surface via SiH3 radicals. This mechanism of Si incorporation by SiH3 radicals is also dominant in the Ar–N2–H2–SiH4 plasma and in the deposition of a-Si:H from Ar–H2–SiH4 plasmas. In the Ar–NH3–SiH4 plasma, we have also observed Si, SiH and SiH radicals by TIMS measurements. A preliminary study has shown that the densities of these radicals are all approximately ~10^11 cm^-3. From this perspective, it is expected that the role of N radicals in the Ar–NH3–SiH4 plasma is similar to their role in the silicon nitride growth mechanism from N2–SiH4 plasmas proposed by Smith et al. and Kessels et al. They showed that N radicals can insert into Si–Si backbonds of an a-Si:H-like layer that is created by impinging SiH3 radicals. NH radicals on the other hand are not reactive with the growing film, as can be deduced from the measured surface reaction probability, while NH2 radicals are reactive on the surface with a reaction probability of ~0.13. This value is much higher than the reaction probability of N radicals (<0.04), indicating a different sticking process on the surface of the growing film. NH2 radicals might stick on dangling bonds on the surface or insert into (strained) Si–Si bonds. Furthermore, NH2 could diffuse over the growing surface in a sort of hot precursor state, similar to the suggested mechanisms for SiH3 in a-Si:H growth.

The actual contribution of the NH2 radicals to the silicon nitride growth depends on the measured densities and the surface reactivity of the radicals. These two parameters determine the N incorporation flux in the a-SiN_x:H film. To consider the feasibility of N incorporation by NH2 radicals, we estimate the N incorporation flux in two different ways. The first one is based on the deposition rate and the N atomic density determined from elastic recoil detection (ERD) measurements and in the second one we use the measured NH2 densities, the reported surface reaction probabilities, and the estimated thermal velocity of the radicals in the plasma. For 1 SCCS injected SiH4, 17 SCCS NH3, and 45 A arc current, the N atomic density of the film was ~3.8 x 10^16 cm^-3 and the deposition rate ~6 nm/s, resulting in a N incorporation flux of 2.3 x 10^16 cm^-2 s^-1. For the calculation of the N incorporation flux from the radical densities on the other hand, we assume a sticking probability of ~0.02 for N radicals, ~0 for NH radicals, and ~0.13 for NH2 radicals based on the discussion in Sec. V B. Now we can calculate the contribution of N, NH, and NH2 radicals to the growth assuming a thermal velocity of ~1600 m/s (corresponding to a gas temperature of 1750 K (Ref. 33)), resulting in 4.9 x 10^15, 0, and 1.6 x 10^16 cm^-2 s^-1 for N, NH, and NH2, respectively. Taking into account the limited experimental accuracy in the sticking probability, the two incorporation fluxes 2.3 x 10^16 and 2.1 x 10^16 cm^-2 s^-1 are in good agreement. Therefore, we conclude that the N incorporation in the a-SiN_x:H film can be explained by the NH2 radical densities and their sticking probabilities. The NH2 radical is the most important radical for N incorporation in the film (roughly 77%), followed by the N radical (roughly 23%). This result is similar to the growth mechanism based on SiH3 and NH2 radicals proposed by Umemoto et al. in a hot wire CVD process.

VI. CONCLUSIONS

The densities of N, NH, and NH2 radicals in the Ar–NH3–SiH4 expanding thermal plasma used for silicon nitride deposition were investigated. The radicals were measured as a function of several plasma parameters such as NH3 flow, SiH4 flow, and arc current. For typical deposition conditions, we found densities of ~5.0 x 10^12 cm^-3 for N radicals, ~2.5 x 10^12 cm^-3 for NH radicals, and ~2.0 x 10^13 cm^-3 for NH2 radicals. In the SiH4 containing plasma the densities of N, NH, and NH2 decrease with increasing SiH4 flow, with the decrease being more prominent for N and NH2. For NH, the decrease is most likely only due to a change in the production rate of the radicals, while N and NH2 radicals decrease also in density as they are incorporated in the a-SiN_x:H film.

Besides the radical densities also the relative consumptions of NH3 and SiH4 in the plasma have been measured by mass spectrometry. For NH3 we found relative consumptions in the range of 90%–40%, while the observed SiH4 consumption lies between 90% and 60%. A large part of the consumed NH3 is converted into H2 and N2 molecules, as was revealed by the large densities of these molecules (typically 10^14 cm^-3) in the plasma. Also the SiH4 consumption contributes significantly to the observed H2 density in the plasma.
Furthermore, we presented evidence that the recombination probability \(y \) of N radicals is lower on a silicon nitride covered wall than on a stainless steel reactor wall. For NH and NH\(_2\) such a difference in recombination probability was not observed. The sticking probability \(s \) for N radicals was also deduced from the measurements and varies with SiH\(_4\) flow from \(~0.01\) to \(~0.04\). Comparison of the N growth flux calculated from the N atomic density in the film with the amorphous silicon like film that is nitrided by N and NH\(_2\) covered wall than on a stainless steel reactor wall. For NH technical assistance. C. C. H. Lamers is gratefully acknowledged.

The authors thank M. J. F. van de Sande, J. F. C. Jansen, A. B. M. Hüsken and H. M. M. de Jong for their skilful technical assistance. C. C. H. Lamers is gratefully acknowledged for her contribution to the measurements. This study has been supported by the Netherlands Foundation for Fundamental Research on Matter (FOM) and by the Netherlands Ministry of Economic Affairs, the Ministry of Education, Culture and Science and the Ministry of Public Housing, Physical Planning and Environment (E.E.T. project “HR-CEL”). The research of one of the authors (W. M. M. K.) has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences (KNAW).

ACKNOWLEDGMENTS

The authors thank M. J. F. van de Sande, J. F. C. Jansen, A. B. M. Hüsken and H. M. M. de Jong for their skilful technical assistance. C. C. H. Lamers is gratefully acknowledged for her contribution to the measurements. This study has been supported by the Netherlands Foundation for Fundamental Research on Matter (FOM) and by the Netherlands Ministry of Economic Affairs, the Ministry of Education, Culture and Science and the Ministry of Public Housing, Physical Planning and Environment (E.E.T. project “HR-CEL”). The research of one of the authors (W. M. M. K.) has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences (KNAW).