Charge transport in charge transfer salts by order parameter fluctuations

Citation for published version (APA):

DOI:
10.1016/0379-6779(87)90327-4

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Apr. 2019
CHARGE TRANSPORT IN CHARGE TRANSFER SALTS BY ORDER PARAMETER FLUCTUATIONS

G.J. KRAMER, H.B. BROM and L.J. DE JONCH
Kamerlingh Onnes Laboratorium, Rijksuniversiteit Leiden,
Postbus 9506, 2300 RA Leiden (The Netherlands)

ABSTRACT
The conduction mechanism in Charge Transfer Salts (CTS) with 1:2 donor to acceptor ratio is investigated. These systems can be characterized by two different order parameters, each corresponding to different realizations of a gap at the Fermi surface. One is the usual Peierls dimerization, the other corresponds to a uniform shift of donor molecules, which induces an alternating potential on the acceptor chain. We show that small, coherent variations of these two-fold order parameter provide a cooperative charge transport mechanism. We argue that this mechanism accounts for some anomalous electrical transport phenomena recently found in substituted morpholinium TCNQ2 compounds.

INTRODUCTION
This paper deals with charge transfer salts with 1:2 donor to acceptor ratio, complete charge transfer and TCNQ as acceptor [1]. In this case the electron-electron interaction (Hubbard's U) is much larger than the bandwidth [2], which justifies us in taking the limit of infinite interaction. The proper Hamiltonian reads [3]

\[\mathcal{H} = Z \sum (t + (-1)^i \tau) (c_i^+ c_{i+1} + h.c.) + E \sum (-1)^i n_i \]

where \(\tau \) is related to an alternation of the charge transfer integral within the unit cell due to a distance alternation between adjacent TCNQ molecules. \(E \) denotes the alternation in local potential, which is a consequence of an asymmetric positioning of the donor molecule with respect to the neighbouring acceptor.
molecules. Fig. 1 shows the generalized schematic configuration within the unit cell together with the phonon spectrum. The gap, \(\Delta \), in the electron spectrum is

\[
\Delta = 2(4\tau^2 + E^2)^{\frac{1}{2}}
\]

(2)

and the electron distribution in the ground state is given by

\[
\rho_{e/o} = \frac{1}{\pi} \left(\frac{2\tau}{E} \right)^2 + 1 \right)^{-\frac{1}{2}} K \left(\frac{1 - (\frac{\tau}{\sqrt{2}E})^2}{1 - (\frac{\tau}{2\sqrt{2}E})^2} \right)
\]

(3)

where \(K \) is a complete elliptic integral of the first kind. Fig. 2 shows the electron distribution and its dependence on both \(\tau \) and \(E \).

Consider a system in which \(E \) and \(\tau \) are constant over a (microscopically) large region, the initial state being \((\tau - \frac{1}{2}\delta \tau, E - \frac{1}{2}\delta E)\) with an electron occupation of \(p \) on odd-numbered sites and \(1-p \) for even sites. Now, a change in the order parameters \(\tau - \frac{1}{2}\delta \tau \rightarrow \tau + \frac{1}{2}\delta \tau \) and \(E - \frac{1}{2}\delta E \rightarrow E + \frac{1}{2}\delta E \) will result in an electron occupation of \(p+\delta p \), resp. \(1-p-\delta p \). Since for all sites the overlap with the left-hand neighbour differs \(2\tau \) from the right-hand overlap, the charge flow which establishes the new equilibrium will have a preferential direction, i.e., will result in a current. This statement can be made quantitative by using Fermi's golden rule: the transition probability for an electron to hop from one site to another is proportional to the square of the overlap. This implies that the prob-
ability difference for charge flow from an even-numbered site to the left or
right equals
\[P(+) - P(+) = \frac{(t + \tau)^2 - (t - \tau)^2}{(t + \tau)^2 + (t - \tau)^2} = \frac{4t\tau}{2t^2 + 2\tau^2} = \frac{2\tau}{t} \quad \text{for } \tau < t \]

Since in the above-described change in the parameter space an amount of charge
dp is redistributed we have for the amount of charge (δQ) that passes along all
even sites:
\[\delta Q = \delta p \cdot (P(+) - P(+) = \delta p \cdot \frac{2\tau}{t} \quad (4) \]

Or, more general
\[\Delta Q = 2 \int_{\text{parameter space}} dp \cdot \frac{\tau}{t} \quad (5) \]

where the integral is taken over parameter space and its value will depend not
only on the end and starting points but also on the path in between. Note that
for odd sites both dp and (P(+) - P(+)) change sign, which implies that δQ is
site-independent and an overall shift of the electron gas is accomplished. It
is important that generally Q is non-zero if one integrates over a closed loop
in parameter space, as the reader may verify by considering fig. 2. For a small
closed trajectory one has
\[q_{\text{eff}} = \oint dp \cdot \frac{2\tau}{t} = \oint \frac{2\tau}{t} \left[\frac{\delta p}{\delta E} \cdot dE + \frac{\delta p}{\delta \tau} \cdot d\tau \right] = \frac{\delta p}{\delta E} \cdot \frac{2A}{t} \quad (6) \]

where \(q_{\text{eff}}\) is the transported charge and \(A\) the area of the closed loop. Since
charge is transported by going along any closed trajectory, an electric field
will manifest itself as a force in (E, \(\tau\))-space.

We conclude that coherent variations of the two order parameters \(\tau\) and \(E\) can
give rise to the cooperative motion of the electron gas, which is impossible
for a commensurate system with just a single order parameter.

OPTICAL PHONONS

So far, we have dealt with a hypothetical chain with a charge density dis-
tortion which was correlated over the entire chain. In the actual situation of
a CTS, the ground state will be characterized by a set of order parameters \(E^*\)
and \(\tau^*\), and at finite temperature lattice vibrations will cause small, local
fluctuations of these order parameters. Since \(\tau\) and \(E\) can be defined at unit
cell level and are determined by intra unit cell distances, variations of \(\tau\) and
\(E\) should be attributed to optical phonons. As a consequence of the above dis-
cussed charge transport arising from variations in \(E\) and \(\tau\), the optical phonon
modes with \(\tau\)- and \(E\)-character respectively will be coupled by the electric
field. If we treat the phonons classically, we can write the local, time-de-
dependent order parameters in terms of phonon contributions:

\[\tau(x,t_R) = \sum \tau_k \sin(kx - \omega_k t_R + \phi_k) \]
(7a)

\[E(x,t_R) = \sum E_k \sin(kx - \omega_k t_R + \phi_k) \]
(7b)

The phonons themselves are - for the unperturbed lattice - solutions of the
equations of motion

\[M \ddot{\tau}(x) - K \tau_{xx}(x) + M \omega^2 \tau_{opt} \tau(x) = 0 \]
(8a)

\[M \ddot{E}(x) - K E_{xx}(x) + M \omega^2 E_{opt} E(x) = 0 \]
(8b)

\(M \), \(M \) denote effective masses; \(K \), \(K \) are spring constants. \(\bar{x} \) denotes the two-
vector of place (x) and time (t_R), while \(\tau_{xx} \) and \(E_{xx} \) are the second derivatives
of \(\tau \) and \(E \) with respect to position. If an electric field is present, an exter-

nal force \(F_E \) will appear on the r.h.s. of eq.(8a,b) as a consequence of
electron-phonon coupling. For the external force (exerted by an electric
field) on a generalized coordinate \(q \), one has \(F_q = -\frac{dW}{dq} \), where \(dW \) is the work
done by the electric field \((E) \), which equals \(q \cdot \Delta Q \) and \(\Delta Q \) is given by eq.(5).

This yields

\[F(\tau, t+\Delta t) = \lim_{\Delta t(x) \to 0} -\frac{\Delta W}{\Delta t} = \lim_{\Delta t(x) \to 0} -\frac{2\varepsilon}{\tau_{opt}(x)} \int dp(\tau(x) \cdot \tau(x)) \]
(9a)

and likewise

\[F_E(\tau, t) = -\frac{2\varepsilon \tau(\tau(x))}{t} \left(\frac{\delta \rho}{\delta E} \right) \tau(x) \]
(9b)

Combining (9) and (8) and transforming to k-space we find that the phonon modes

determine the relations:

\[\tau_k(t_R) + \omega_k^2 \tau_k(t_R) = -\frac{2\varepsilon}{M \tau} \left(\frac{\delta \rho}{\delta E} \right) \tau_{E*} \tau_k(t_R) \]
(10a)

\[E_k(t_R) + \omega_k^2 E_k(t_R) = -\frac{2\varepsilon}{M E} \left(\frac{\delta \rho}{\delta E} \right) \tau_{E*} \tau_k(t_R) \]
(10b)

Let us restrict ourselves to the case where \(\tau* = E* = 0 \), for which \(\frac{dp}{dt} = 0 \). Then

(10a,b) simplify to

\[\tau_k(t_R) + \omega_k^2 \tau_k = 0 \]
(11a)

\[E_k + \gamma_E E_k + \omega_k^2 E_k = -\frac{2\varepsilon}{M E} \left(\frac{\delta \rho}{\delta E} \right) \tau_k(0,0) \]
(11b)
where we have introduced a dissipative term in (11b) to avoid unphysical results \((\gamma \text{ is inversely proportional to the phonon life time})\). Note that the asymmetry in (11) with respect to \(E\) and \(\tau\), could already be anticipated by examining figure 2: the field-induced force will always be perpendicular to contours of equal \(\rho\) as a consequence of (5). The situation is similar to oscillators, of which one \((\tau)\) serves as the driving force for the other \((E)\). The solution of (11) is

\[
\tau_k(t_R) = A \sin(\omega_\tau k t_R), \quad \text{(12a)}
\]

\[
E_k(t_R) = \tilde{E}_k \sin(\omega_\tau k t_R + \phi_k), \quad \text{(12b)}
\]

where

\[
\tilde{E}_k = \frac{2eA}{M_k \epsilon_{T}} \frac{2}{\left(\omega_2^2 - \omega_\tau^2 k^2 \right)} \sin(\phi_{E,k})
\]

The physical interpretation of the above is the following: due to an electric field, part of the \(E\)-mode oscillation amplitude is transferred to frequency \(\omega_\tau\) while being phase-coupled to the \(\tau\)-mode oscillation. We see that the coupling of optical phonons in the presence of an electric field gives indeed rise to coherent variations of \(\tau\) and \(E\), which was shown earlier to be the condition for charge transport. Using eqs. (5) and (7) one finds for the current

\[
I = \sum_k \left(\frac{\partial\omega}{\partial E} E^* \tau^* \right)_k \tilde{E}_k \omega_\tau \frac{1}{\epsilon} \sin(\phi_{E,k})
\]

\[
\text{(13)}
\]

DISCUSSION

It is possible to give an order of magnitude estimate for the current resulting from a pair of coupled phonons. Let us look more closely at two phonons, each of a different branch and ideally coupled in phase. We recall that this phonon pair will cause the system to make tiny revolutions around the ground state configuration \((E^*, \tau^*)\). Using eq. (13) we can write

\[
I = \omega_\tau u^m_k \sin(\phi_{E,k})
\]

\[
\text{(14)}
\]

where \(u^m_\tau\) and \(u^m_E\) are the vibrational amplitudes of both modes for a single phonon, which is (quantum mechanically [4])

\[
u^m_\lambda = \left(\frac{h}{M \omega_\lambda} \right)^{\frac{1}{2}}, \quad \lambda = \tau, E
\]

\[
\text{(15)}
\]

In calculating the actual contribution to the conductivity we take a chain system with \(10^7\) unit cells per cm and \(10^{14}\) chains per \(cm^2\). The reduced mass \(M\), involved in the oscillations will be 10-100 a.m.u. \(dp/du_\tau\) and \(d(\tau/t)/du_\tau\) are

Note: The equations and expressions in the text are not fully rendered or are not clear due to the format limitations in the image.
expected to be of the order of 1 Å⁻¹, which implies that a change in the molecular positions of 1 Å would reverse the charge distribution or dimerization. Using these numerical data, we estimate the current for a system with one coupled pair or phonons per chain to be 0.1-1 Å/cm². In actual systems for which the model may be applicable (like substituted morpholinium TCNQ₂ compounds, the room temperature conductivity is of the order of 1-10 (Ω·cm)⁻¹. At this temperature, optical phonons are rather abundant and one finds that only 1 in every 10⁵ phonons need to be coupled by an electric field of 1 V/cm. Another, perhaps more physical way of expressing the power of the mechanism is to say that the field-induced admixture of one phonon mode into the other at 1 V/cm needs to be only 10⁻⁵ to account for the observed conductivities.

In conclusion we state that the model presented in this paper is able to account for the conductivities found in the class of morpholinium TCNQ₂ salts [5]. Moreover, it predicts temperature-activated conductivity, just as the single electron model does, but here the activation energy is not dependent on the electron gap but rather on the optical phonon energy. It should therefore be expected to contribute whenever single particle conductivity fails because of a large gap-value or low carrier mobility. This different origin of the activation energy would explain the absence of any correlation between the calculated gap (using eq. (2)) and the observed activation energy [6]. Although at present it is not possible to give an explanation for the anomalous field and frequency dependence of the conductivity observed in a number of substituted morpholinium TCNQ₂ salts, examination of the data indicate that the origin is most likely to be found in lattice-coupled charge transport [7] for which our model is certainly a good candidate.

REFERENCES