Technique of uncertainty and sensitivity analysis for sustainable building energy systems performance calculations
Kotek, P.; Filip, J.; Kabele, K.; Hensen, J.L.M.

Published in:
Proceedings of the 10th IBPSA Building Simulation Conference, 3-5 September, Tsinghua University, Beijing

Published: 01/01/2007

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
ABSTRACT
Sustainable buildings design process is typical for modeling and simulation usage. The main reason is because there is generally no experience with such buildings and there is lot of new approaches and technical solutions to be used. Computer simulation could be supporting tool in engineering design process and can bring the good way for reducing energy consumption together with optimization algorithm. For the optimization process we have to know which most sensitive input parametr from many of them has to be investigate. Therefore at first is necessary to perform the sensitivity analysis and find out the “strongest” input parameters which most affecting the results under observation. Also still the simulation tools are mainly using to predict energy consumption, boiler and chiller loads, indoor air quality, etc. before the building is built. The information about the building envelope, schedule and HVAC components are unclear and can bring large uncertainty in results by setting this inputs to the simulation tools. Paper presents preview of uncertainty and sensitivity analysis. This techniques are shown on case study concretely BESTEST case600 with DRYCOLD climate conditions. Also systems VAV (variable volume of air) and water fan-coil system are compared. For this prototype the simulation tool IES <Virtual Environment> was chosen.

KEYWORDS
uncertainty and sensitivity analysis, MonteCarlo, Latin Hypercube sampling, HVAC system VAV, FCU

INTRODUCTION
Building performance simulation (BPS) tools have been significantly improved in quality and depth of analysis capability over the past 35 years. But still all simulation tools are dependent on user entry for significant data about building components, loads, and other typically scheduled inputs. Uncertainty and sensitivity analysis (UA&SA) is not a new subject in the building simulation. In 1999 Macdonald et al assessed a risk in setup of building model in simulation tools and Lomas and Eppel, De Wit, Lam and Hui, and others realized UA&SA in BPS.

The paper shows also the possibility of "randomization" of computationally intensive problems in the sense of the MonteCarlo (MCA) type simulation. Latin Hypercube sampling (LHS) is used, in order to keep the number of required simulations at an acceptable level.

We also present the comparison of two HVAC systems such as 4-pipe fan-coil system and variable volume of air (VAV system) and we will show the uncertainty and sensitivity for these both systems which we implemented in IEA BESTEST case600.

TECHNIQUE OF UNCERTAINTY ANALYSIS (UA)
For simple cases described by easy equation (1) like Energy flux through building envelope

\[y = f(x_1, x_2, ..., x_n) \]

we can use Gauss low (Bartsch 2006) about how the uncertainty in input \([x_i \pm \sigma_i (i = 1, 2, ..., n)]\) influence the output \((y \pm \sigma_y)\). Gauss derivative equation for normal distribution is:

\[\sigma_y = \pm \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \right)^2 \sigma_x^2} \]

This kind of screening analysis is not commonly applied to complex models, because it can be very difficult to implement it and it often requires large amount of human and/or computer time.

For complex cases where are a lot of input parameters with difficult mutual addiction, different distribution in standard deviation and with difficult non-linear relationship inputs x output (logarithmic, polynomic) and where we have to use simulation tool there is important to use different method.

The MonteCarlo simulation technique is chosen.
To analyze the uncertainty of building energy, given the uncertainty on the input parameters, MCA performs multiple evaluations with randomly selected model input parameters and involves the following steps:

To select ranges and distributions for each input parameter characterizing their uncertainty → generation of a sample for each input parameter from the selected distributions → evaluation of the model for each element of the sample → uncertainty analysis.

The pure Monte Carlo simulation cannot be applied for time-consuming problems, as it requires a large number of simulations. A small number of simulations can be used for the acceptable accuracy of statistical characteristics of response using the stratified sampling technique LHS (McKey, Conover 1979).

The LHS strategy has been used by many authors in different fields of engineering and with both simple and very complicated computational model (Novák et al. 1998).

LHS is used to build a E*n sample with E elements of n input parameters. LHS ensures full coverage of all input parameter ranges. The range of each variable is divided into E non-overlapping intervals of equal probability 1/E. One value from each interval is at random selected.

These E values of the first input factor x1 are step-by-step and at random combined with E randomly chosen values of each other input factor (figure 2).

Minimum number of evaluations of the model are required for LHS, i.e. minimum elements of a representative sample, is 1.5 times the number of input factors (SimLab manual).

Application of this technique provides a good coverage of the parameter space with relatively few simulations compared to simple random sampling (crude Monte Carlo).

According to De Wit (2001) we consider two potential uncertainties sources in BPS - only modeling and specification uncertainty from four of them (numerical, scenario are the other ones). The modeling and specification addressing the description of the building model itself.

This study considers uncertainties and total sensitivities. The output uncertainty represents the probability of the occurrence of the design parameter using confidence intervals. The total sensitivities are derived from results based on an input sample matrix that uses different parametric values for each sample. Individual sensitivities, which can be derived from modifying only one parameter in each sample (Morris - analysis) have not been considered.

Also for every single uncertainty in output has to be determined another statistical value for better understanding of uncertainty in results such as skewness and kurtosis value (measure of the "peakedness"), etc. (Bartsch 2006)

Sensitivity analysis (SA) is a method to study, qualitatively or quantitatively, how the uncertainty in the model output is attributed to different sources of variation (Saltelli and Chan, et al. 2000), i.e. boundary conditions, building properties, HVAC equipment and model assumptions (all input parameters with uncertainty). The important input parameter range and distribution are chosen using the LHS strategy. Three well know sensitivity analysis techniques can be used such as differential sensitivity analysis (DSA-Morris method), Monte Carlo analysis (MCA) and stochastic sensitivity analysis (SSA). More in (Lomas and Eppel 1992).

Sensitivity analysis (SA) is a method to study, qualitatively or quantitatively, how the uncertainty in the model output is attributed to different sources of variation (Saltelli and Chan, et al. 2000), i.e. boundary conditions, building properties, HVAC equipment and model assumptions (all input parameters with uncertainty). The important input parameter range and distribution are chosen using the LHS strategy. Three well know sensitivity analysis techniques can be used such as differential sensitivity analysis (DSA-Morris method), Monte Carlo analysis (MCA) and stochastic sensitivity analysis (SSA). More in (Lomas and Eppel 1992).
design parameters are identified and analysed from points of view of peak design loads [kW] (max. heating losses during the coldest day in winter and max. heating gains during the warmest day in summer (with max dry-bulb temperature and direct normal radiation)). For these outputs from thermal building simulations we try to find out the most influence input parameters and we will show also “weak” parameters. The second step is to find out the “strong” and the “weak” input parameters for HVAC systems in point of view of annual heating and cooling [MWh] and system load [kW]. The power of heating and cooling coil in air-handling unit (AHU) and in terminal unit FCU & VAV.

It is believed that sensitivity techniques are useful for assessing thermal responses of building and data variability in building energy simulation and building load profiles.

The “strongest” parameters can be also optimized but these techniques has not been considered in this paper and this is our goal for future (see future work)

We defined only influence coefficient (IC) for the first “strongest” input for heating losses by equation as follow:

\[
IC = \frac{\Delta OP}{\Delta IP} \approx \frac{\partial OP}{\partial IP}
\]

PROGRESSION OF UA&SA

In former times we did (Hensen, Struck, Hopfe, Kotek) also comparison studies of uncertainty and sensitivity analysis between other BPS tools with different background of numerical approximation scheme (e.g. explicit, implicit methods) and for different design phase. DDP x CDP (Detailed Design Phase x Conceptual Design Phase) such as VA114, h.e.n.k., IDA, HAMBase, IES<VE>. We compared uncertainty range in outputs and analyze sesitivity for Bestest case600 and case900.

Here we present only DDP tool named IES <Virtual Environment> v.5.5.1 and HVAC analysis. For this prototyping we used other four tools to make simulation easier and faster. Tools like MS Excel-Visual Basic , Automate, MS WordPad and for sample matrix of input parameters and analyze results we used SimLab 2.2.

The steps in order are:

- Selection input parameters xn for thermal simulation (for case600 we could change 91 – we choosed 48 described building bunderes (conductivity, specific heat capacity, thickness, inside/outside solar absorptivity, inside/outside emissivity), internal gains and air change per hour.(see appendix B) We will define their sensitivies by order from 1 to 48 (table 1).
- For input parameters find out their reasonable uncertainty (e.g. for thermal insulation from developers or according [Clarke and Yaneske 1991] or calculate via European Standard for building materials and product EN ISO 10456) We adjusted normal distribution for whole inputs.
- Generation of the sample matrix E*n applying LHS in SimLab pre-processor.
- Simulating case600 once for each sample in IES with Automate and VisualBasic in MS Excel.
- Results analysis for thermal building simulation.
- Select important input parameters for HVAC systems and find out their uncertainty (e.g. efectivnes for recovery-heater from developers etc.)
- Calculating formulas for HVAC calculation and uncertainty by equation 2 → UA
- Setup inputs for HVAC calculation from appendix C and setup all formulas for HVAC to SimLab.
- Sensitivity analysis for FCU/VAV system.
- Compare outputs with uncertainty for both HVAC systems.

Simlab

Simlab is multi-purpose probabilistic software for statistical, uncertainty, sensitivity analysis and reliability analyses of engineering problems.

MacDonald and Lomas (1992) state in that after processing of 60-80 samples the improvements in the accuracy of the standard deviation, using the MonteCarlo technique, is marginal. This publication exclude the number of uncertain parameters to have an impact on the accuracy of the standard deviation of the results.

Simlab is used to prepare 200 independent Latin Hypercube samples in pre-processor. This number exceeds largely the minimum number of 3/2 * 48 input factors = 72 (SimLab manual). Practically quadruple input parameters we choosed becouse of better accuracy of results. The final sample matrix has E*n = 48 * 200 = 9600 inputs prepare for simulations.

The whole progress of UA&SA shows the figure 4.

For the sensitivity analysis we can find in SimLab a number of different techniques, but we choosed only partial correlation coefficient (PCC) and partial rank correlation coefficients (PRCC). The different analysis techniques differ in their linear or a non-linear relation between the input parameter and the output assumptions. The PCC is for linear relationship and PRCC for non-linear.

Which one is depended of coefficient of determination R2 in results. More information can be found in (Saltelli et al., 2005).
Figure 4 Progress of uncertainty and sensitivity analyses for thermal building model

CASE STUDY - IEA BESTEST

The BESTEST procedure allows an inter-software performance evaluation for a many of predefined cases by defining performance limit. The building model for this paper was chosen:

CASE600 (Light weight construction) cca 90 kg/m²

For this prototype we used IES <VE> which incorporates ApacheSim, a dynamic thermal simulation tool based on first-principles mathematical modeling of building heat transfer processes. It has been tested using ASHREA Standard 140 and qualifies as a Dynamic Model in the CIBSE system of model classification. (Crawley and Hand 2005). For the materials properties and other inputs with their uncertainty see appendix B.

We present here demand of heating losses and heating gains in extremes days and analyze uncertainty for these curves (figure 10,11). These demands are one of the inputs for HVAC calculation from the other ones. (see appendix C and figure 6,7 with marked input and output parameters).

In other words for the extreme days we calculate power for boiler and chiller and calculate UA&SA for them. Also for the whole year we calculated annual heating and cooling and compared results for judged systems.

HVAC

For this prototype we decided to put some people and assumed, that case600 is a small single office.

We put inside 4 people (occupancy density 0.1 pers./m²) and ventilation rates for no smoking people $V_e, occ = 10 \text{l/s/occupant} = 36 \text{m}^3/\text{h/occ}$ according to the CEN-CR 1752, with uncertainty 5 m³/h because some literature or legislative say another little bit different value. Other potential sources of uncertainty in input parameters (figure 6,7) are extract in appendix C. The whole philosophy of both HVAC calculation is based on ASHREA: Fundamentals and ASHREA: Systems and Equipment what we presented in past (Kabele and Kotek 2006).

Uncertainties are calculated via function 2 and sensitiveness by setting equations from ASHREA-Fundamentals Chapter 5,6 for heating, cooling mass transfer, recuperation, mixing, etc to SimLab and analyze the results by post-processor.

The VAV system is calculated with economizer in mixing chamber with respect to t_e and $t_{am}=17\pm2°C$. According to this hypothesis we calculated these potential phase in AHU unit: mixing or no-mixing in chamber and recuperation or no-recuperation in heat-recovery and their combination with consideration of temperature after this modification nearest t_{am} for the whole year.

The figure 6,7,8 shows the calculated output values and principle of systems.
RESULTS – THERMAL SIMULATION

Uncertainty analysis

From 200 simulations, we can see the uncertainty borders (figure 10, 11) for heating and cooling demand in the coldest and the warmest day. In the principle in every hour the results distribution was normal but with skewness $\gamma_1 < \min -0.6; \max +1.39$ and peakedness $\gamma_2 < \min -0.4; \max +6.0$. It means, that in some hour the values are more in higher bound and closer mean value (see figure 3). Anyhow the average values for simulated days are about 0.

Sensitivity analysis

We summarized the results from SA as show table 1.

<table>
<thead>
<tr>
<th>influential parameters x_n case600</th>
<th>heating losses</th>
<th>total heating gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 air change</td>
<td>+0.87</td>
<td>SHC timber floor -0.8</td>
</tr>
<tr>
<td>2 C fiberglass wall +</td>
<td></td>
<td>D timber floor -</td>
</tr>
<tr>
<td>3 T fiberglass wall -</td>
<td></td>
<td>D plasterboard wall -</td>
</tr>
<tr>
<td>4 D timber floor</td>
<td></td>
<td>T timber floor -</td>
</tr>
<tr>
<td>5 IE floor</td>
<td></td>
<td>SHC plasterboard wall-</td>
</tr>
<tr>
<td>44 C insulation floor+</td>
<td></td>
<td>OSA wall -</td>
</tr>
<tr>
<td>45 OSA floor</td>
<td></td>
<td>C fiberglass roof -</td>
</tr>
<tr>
<td>46 D plasterboard roof-</td>
<td></td>
<td>T fiberglass roof +</td>
</tr>
<tr>
<td>47 T plasterboard roof-</td>
<td></td>
<td>C plasterboard roof -</td>
</tr>
<tr>
<td>48 OE floor +0.003</td>
<td></td>
<td>OE wall +0.006</td>
</tr>
</tbody>
</table>

note: + behind x_n means: if x_n increases y_k increases too
- behind x_n means: if x_n increases than y_k decreases
From the table 1 we can see the strongest and the weakest input parameters (for shortcuts see appendix A). As was explained before the results are also interpreted by partial correlation coefficient. This PCC value is in the table behind input parameter.

The figure 11 shows change relationship between the first strongest input xairchange and output yheating

For air change is the influence coefficient from equation 3:

\[IC = \frac{4.14 - 3.94}{0.5 - 0.4} = 2 \]

RESULTS – HVAC SIMULATION

HVAC - uncertainty analysis

We present graphs with heating and cooling load in AHU coils (figure 13, 15) and reheat and recooling coils in terminal unit such as VAVbox and fan-coil unit (figure 14, 16) according to their requirements with their uncertainty based on uncertainty in inputs. The graphs presented here are only for the coldest day in the year because for the warmest day is not unfortunately enough space in this paper.

We can nicely see that the uncertainty in input pretty much influence load mainly in AHU-VAV unit. Instead of cooling it can be requested for heating load and conversely in the afternoon. The table 2 shows the comparison between the systems under consideration.
Figure 12 shows energy saving for VAV 16.7% but the upper bound is higher than the lower bound for FCU.

HVAC - sensitivity analysis

For the SA it is important to decide which situation in the coldest or the warmest day will be under investigation. We present here the strongest and the weakest parameters in calculation for heating and cooling coil in the central unit in point of view: heating losses in summer & winter and heating gains in summer & winter.

From the table 3,4 we can see different strongest input parameters which can be optimize in the future.

Table 3 SA in case of heat losses in winter & summer

<table>
<thead>
<tr>
<th>influentia</th>
<th>in order</th>
<th>FCU - AHU</th>
<th>VAV - AHU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>winter</td>
<td>summer</td>
</tr>
<tr>
<td>strong p.</td>
<td>1</td>
<td>V_e + t_m + t_i - t_i +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>η - t_i - t_m + Q -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>t_m + t_i - η - t_m +</td>
<td></td>
</tr>
<tr>
<td>weak p.</td>
<td>7</td>
<td>Q + Q + Q - p_m +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>t_m + t_i - η +</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 SA in case of heat gains in winter & summer

<table>
<thead>
<tr>
<th>influentia</th>
<th>in order</th>
<th>FCU - AHU</th>
<th>VAV - AHU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>winter</td>
<td>summer</td>
</tr>
<tr>
<td>strong p.</td>
<td>1</td>
<td>t_m + t_m + Q + t_e -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>η - V_e - V_e,occ + Ti +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>V_e + t_i - Te - Q +</td>
<td></td>
</tr>
<tr>
<td>weak p.</td>
<td>7</td>
<td>Q - Q + t_m - η -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>t_m - t_i - η +</td>
<td></td>
</tr>
</tbody>
</table>

note: + behind x_k means: if x_k increases y_k increases too - behind x_k means: if x_k increases y_k decreases

CONCLUSION

As we presented above it is necessary to estimate uncertainty in building performance simulation. The uncertainty for the HVAC system can bring mishmash in controls of heating and cooling coils. The sensitivity analysis is important for finding out the most influential input parameter, which can be further optimized. And upon the whole this kind of process is way how to reduce energy consumption.

FUTURE WORK

Future work will be optimization process for the strongest input parameters by using GenOpt. The HVAC system will be setup in TRNSYS and for HVAC optimization will be used also GenOpt. For future investigation we will use HVAC BESTEST instead of IEA BESTEST.

ACKNOWLEDGMENT

The authors thank for support CTU research aim No. CEZ MSM 6840770003.

REFERENCES

Crawley B.D., Hand W.J. 2005. Contrasting the capabilities of building energy performance simulation programs, United States Department of Energy, University of Strathclyde, Wisconsin

Macdonald I. A., 2002. Quantifying the Effects of Uncertainty in Building Simulation, PhD Thesis, University of Strathclyde, Department of Mechanical Engineering, Glasgow,
Appendix A - Nomenclature

t ... temperature [°C]
η … effectiveness of heat recovery [%]
c, SHC ... specific heat capacity [kJ/kg.K]
ρ, D ... density [kg/m³]
patm ... atmospheric pressure [kPa]
 T ... thickness [m]
C ... conductivity [W/m.K]
IE, OE ... internal / external emissivity [-]
ISA, OSA ... inside / external solar absorptivity [-]
R² the coefficient of determination

indexes

am after modification
e, i exterior, interior
e' after recuperation
ht, co heating, cooling
c circulation (index in HVAC equation)
AHU Air handling unit (central unit)
VAV variable volume of air (terminal reheat coil)
FCU fan-coil

Appendix B - Inputs with deviations for BESTEST

<table>
<thead>
<tr>
<th>Material</th>
<th>Mean Value</th>
<th>% St. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHC plasterboard wall</td>
<td>840</td>
<td>17.5</td>
</tr>
<tr>
<td>SHC fiberglass wall</td>
<td>840</td>
<td>6.0</td>
</tr>
<tr>
<td>SHC wood Aidiny wall</td>
<td>900</td>
<td>30.0</td>
</tr>
<tr>
<td>SHC timber floor</td>
<td>1200</td>
<td>30.0</td>
</tr>
<tr>
<td>SHC insulation floor</td>
<td>2060</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Appendix C - Input with deviations for HVAC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean Value</th>
<th>% St. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qth, gains</td>
<td>according to the thermal simulations [kW]</td>
<td></td>
</tr>
<tr>
<td>te</td>
<td>t_e ± 2 [°C]</td>
<td></td>
</tr>
<tr>
<td>V occ</td>
<td>36 ± 5 [m³/h.occupant]</td>
<td></td>
</tr>
<tr>
<td>n occup</td>
<td>60 ± 5 [%]</td>
<td></td>
</tr>
<tr>
<td>t_i</td>
<td>t_i ± 1.5 [°C]</td>
<td></td>
</tr>
<tr>
<td>p atm</td>
<td>100 ± 1 [kPa]</td>
<td></td>
</tr>
<tr>
<td>c sub.xxx</td>
<td>(1010 + 0.12 * t sub.xxx) [kJ/kg.K]</td>
<td></td>
</tr>
<tr>
<td>ρ sub.xxx</td>
<td>p atm/(287 * (273.15 + t sub.xxx)) [kg/m³]</td>
<td></td>
</tr>
<tr>
<td>t atm, FCU</td>
<td>20 ± 2 summer, 17 ± 2 winter [°C]</td>
<td></td>
</tr>
<tr>
<td>t atm,VAV</td>
<td>17 ± 2 [°C] whole year</td>
<td></td>
</tr>
<tr>
<td>sh, FCU</td>
<td>24±2 [°C]</td>
<td></td>
</tr>
<tr>
<td>sh, VAV</td>
<td>26±2 [°C]</td>
<td></td>
</tr>
</tbody>
</table>