Comment on "entropy production and the Ostwald step rule".

Citation for published version (APA):

DOI:
10.1021/j100312a053

Document status and date:
Published: 01/01/1988

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
COMMENTS

Comment on “Entropy Production and the Ostwald Step Rule”

Sir: Ostwald’s step rule teaches that crystallization from solution commonly proceeds via thermodynamically unstable phases. This means that a process is described in which successive phases are formed as a function of time. Ostwald’s step rule applies to a situation that is far from steady state. Concentrations change as a function of time.

The paper by Casey studies a consecutive reaction scheme, by solving its kinetic equation with the steady-state assumption, a condition where Ostwald’s step rule has no relevance. Casey shows that if the steady condition is satisfied all processes occur with identical net overall rate of entropy production. This is a well-known result from irreversible thermodynamics, as is the result not demonstrated by Casey that at steady state entropy production is a minimum.1

Casey also claims that an earlier paper2 contains an error. In fact relations 13 and 18 of ref 2 are identical to Casey’s expression 15 and 18. So mathematically the results of both papers do not differ. However, in ref 2 an extra relation, valid under steady-state conditions, is used between the rate constant of the overall indirect process and the rate constants of the individual steps. One then finds that under stationary conditions entropy production in the indirect process becomes less than in the direct process, if one supposes that the rate constant of the direct process equals that of the individual steps in the indirect process.

So Casey’s conclusion, that a difference in overall reaction rate is required to find differences in entropy production between reaction taking place with multiple reaction paths, is correct if the steady-state condition is satisfied. However, this result is already contained in formula 18 derived in ref 2. Since the Ostwald step rule applies to non-steady-state conditions, the postulate proposed in the earlier paper,2 that the rate of entropy condition can become less if the number of intermediate steps increases, cannot be considered to have been rejected. The physical picture explaining this behavior is that the reaction by using intermediate steps proceeds closest to reversible conditions, which minimizes entropy production.

Koninklijke/Shell Laboratorium
Shell Research B.V.
1003 AA Amsterdam, The Netherlands

R. A. van Santen

Received: January 8, 1987
