A priori results in linear-quadratic optimal control theory (preliminary draft)
Geerts, A.H.W.

Published: 01/01/1989

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 07. Dec. 2018
A PRIORI RESULTS IN
LINEAR-QUADRATIC OPTIMAL
CONTROL THEORY
(preliminary draft)

Ton Geerts

Eindhoven, January 1989
The Netherlands
A PRIORI RESULTS IN LINEAR–QUADRATIC OPTIMAL CONTROL THEORY

Ton Geerts,
Department of Mathematics & Computing Science,
Eindhoven University of Technology,
P.O. Box 513,
5600 MB Eindhoven, the Netherlands.

Let us consider the linear, time-invariant, finite-dimensional system

\[\Sigma: \dot{x} = Ax + Bu, \quad x(0) = x_0, \quad u(\cdot) \text{ locally square integrable over } \mathbb{R}^+, \]

together with the quadratic cost criterion

\[J(x_0, u) = \int_0^\infty w(x, u) dt, \quad w(x, u) = x^TQx + 2u'Sx + u'Ru, \quad Q = Q', \quad R = R'. \]

If \(T \) denotes a given subspace, then we define the linear–quadratic control problem with stability modulo \(T \) (LQCP) as follows: For all \(x_0 \), determine

\[J_T(x_0) := \inf \{ J(x_0, u) \mid u \in U(x_0) \text{ such that } (x(x_0, u))/T(\infty) = 0 \}. \]

Here \(U(x_0) \) stands for the set of locally square integrable inputs for which \(J(x_0, u) \) is either real, \(+\infty \) or \(-\infty \). If we assume that \((A, B) \) is stabilizable, then, for all \(x_0 \), \(U(x_0) \) is not empty. Also, it is easily seen that \(J_T(x_0) \neq -\infty \) only if \(R \geq 0 \). Now we introduce the dissipation inequality (1)

\[F(K) = \begin{bmatrix} Q + A'K + KA & KB + S' \\ B'K + S & R \end{bmatrix} \geq 0, \]

with \(K \) a real, symmetric matrix. Let \(\Gamma := \{ K = K' \mid F(K) \geq 0 \} \) and \(\Gamma_{\min} := \{ K \mid K \in \Gamma, \text{ rank } (F(K)) = \inf_{K \in \Gamma} \text{ rank } (F(K)) \}. \)
Standing assumption

(A, B) is stabilizable and \(\exists K_0 \in \Gamma : K_0 \preceq 0 \).

Remark: If \(w \geq 0 \), then \(K_0 = 0 \in \Gamma \).

Theorem

For every \(T \) and \(x_0 \), \(J_T(x_0) \) is real, and it equals \(x_0'K_Tx_0 \) with \(K_T \) a real, symmetric matrix. It holds that \(\rho := \inf_{K \in \Gamma} \text{rank } (F(K)) \) is fixed and, since \(\Gamma_{\text{min}} \) is not empty, \(\rho = \min_{K \in \Gamma} \text{rank } (F(K)) \). Moreover, \(K_T \in \Gamma_{\text{min}} \).

Hence the set \(\Gamma_{\text{min}} \) is of intrinsic importance since it contains all possible candidates for representing optimal costs for linear–quadratic control problems. In a final paper we would like to provide a structural method for computing \(\Gamma_{\text{min}} \). This technique is based upon work done in [2].

Next, we observe that for all \(T > 0 \) and for all \(u ([1]) \),

\[
\int_0^T w(x, u) \, dt + ((x(T))'K_Tx(T)) = \int_0^T y_{K_T}'y_{K_T} \, dt + x_0'K_Tx_0,
\]

where \(y_{K_T} = C_{K_T}x + D_{K_T}u \), the latter two matrices determined by the factorization \(F(K_T) = [C_{K_T} \quad D_{K_T}][C_{K_T} \quad D_{K_T}] \).

Then, we state the following
Theorem

Let \(u \in U(x_0) \) be such that \(J(x_0, u) \) is real and \((x(x_0, u)/T)(\infty) = 0 \).

i) It holds that \(J(x_0, u) \geq \int_0^\infty y_{K_T}^T y_{K_T} \, dt + x_0^T K_T x_0 \).

ii) If \(\lim_{T \to \infty} ((x(\cdot))' K_T x(\cdot))_\infty := 1 \) and \(((x(T))' K_T x(\cdot))_\infty \), then this limit exists and it is \(\leq 0 \).

iii) \(J(x_0, u) = x_0^T K_T x_0 \) if and only if \(\{x(x(\cdot))' K_T x(\cdot)\}_\infty = 0 \) and \(y_{K_T} = 0 \).

iv) \(\inf \{ \int_0^\infty y_{K_T}^T y_{K_T} \, dt | u \text{ such that } (x(x_0, u)/T)(\infty) = 0 \} = 0 \).

The theorem given above turns out to be a powerful instrument to obtain a priori results on LQCP's, apart from the fact that it contains such results itself. A few examples:

a) Let \(R > 0 \) (the regular problems). Then it is directly found that optimal inputs are state feedback laws. Furthermore, the optimal cost can be found with no difficulty.

b) Assume that \(w \succeq 0 \) (the non-negative definite problems). Then always \(K_T \succeq 0 \) and hence (ii) \((x(x_0, u)/\ker(K_T))(\infty) = 0 \). It follows that \(J_T(x_0) = J_{\ker(K_T)}(x_0) \).

c) Assume that \(R \) is merely positive semi-definite. Then (measurable) optimal inputs need not exist ([3]). One way out of this problem is, to introduce distributions of the kind presented in [3] with respect to the system \(\Sigma_{K_T} = (A, B, C_{K_T}, D_{K_T}) \). This makes sense, since we can prove that the set of distributions that yield regular outputs \(y_{K_T} \) is independent of \(K_T \). Moreover, the space of strongly reachable states \(W(\Sigma_{K_T}) =: W_{K_T} \) ([3], [2]) is \(K_T \)-independent and it is computed together with \(\Gamma_{\min} \).
Finally, we mention the next

Conjecture

Let $\Gamma^0_{\min} := \{K \in \Gamma_{\min} | J_{\ker(K)}(x_0) = x_0'Kx_0\}$, then $K_T \in \Gamma^0_{\min}$.

If this conjecture would be true in general, then $K_{\|Rn}$ is the smallest element of Γ^0_{\min}. Note that always $K^+ := K_0 \in \Gamma^0_{\min}$. Also, the conjecture is true for $w \geq 0$ and/or $R > 0$!

References

