The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection
Gayet, M.C.W.; van der Aa, A.A.M.A.; Beerlage, H.P.; Schrier, B.P.; Mulders, P.F.A.; Wijkstra, H.
Published in:
BJU International

DOI:
10.1111/bju.13247

Published: 01/03/2016

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 18. Dec. 2018
The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection: a systematic review

Maudy Gayet*, Anouk van der Aa*, Harrie P. Beerlage*, Bart Ph. Schrier*, Peter F.A. Mulders† and Hessel Wijkstra†§

*Department of Urology, Jeroen Bosch Hospital, ’s-Hertogenbosch, †Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, ‡Department of Urology, Radboudumc University Hospital, Nijmegen, and §Department of Urology, AMC University Hospital, Amsterdam, The Netherlands

Despite limitations considering the presence, staging and aggressiveness of prostate cancer, ultrasonography (US)-guided systematic biopsies (SBs) are still the ‘gold standard’ for the diagnosis of prostate cancer. Recently, promising results have been published for targeted prostate biopsies (TBs) using magnetic resonance imaging (MRI) and ultrasonography (MRI/US)-fusion platforms. Different platforms are USA Food and Drug Administration registered and have, mostly subjective, strengths and weaknesses. To our knowledge, no systematic review exists that objectively compares prostate cancer detection rates between the different platforms available. To assess the value of the different MRI/US-fusion platforms in prostate cancer detection, we compared platform-guided TB with SB, and other ways of MRI TB (cognitive fusion or in-bore MR fusion). We performed a systematic review of well-designed prospective randomised and non-randomised trials in the English language published between 1 January 2004 and 17 February 2015, using PubMed, Embase and Cochrane Library databases. Search terms included: ‘prostate cancer’, ‘MR/ ultrasound(US) fusion’ and ‘targeted biopsies’. Extraction of articles was performed by two authors (M.G. and A.A.) and were evaluated by the other authors. Randomised and non-randomised prospective clinical trials comparing TB using MRI/US-fusion platforms and SB, or other ways of TB (cognitive fusion or MR in-bore fusion) were included. In all, 11 of 1865 studies met the inclusion criteria, involving seven different fusion platforms and 2626 patients: 1119 biopsy naive, 1433 with prior negative biopsy, 50 not mentioned (either biopsy naive or with prior negative biopsy) and 24 on active surveillance (who were disregarded). The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to assess the quality of included articles. No clear advantage of MRI/US fusion-guided TBs was seen for cancer detection rates (CDRs) of all prostate cancers. However, MRI/US fusion-guided TBs tended to give higher CDRs for clinically significant prostate cancers in our analysis.

Important limitations of the present systematic review include: the limited number of included studies, lack of a general definition of ‘clinically significant’ prostate cancer, the heterogeneous study population, and a reference test with low sensitivity and specificity. Today, a limited number of prospective studies have reported the CDRs of fusion platforms. Although MRI/US fusion-guided TB has proved its value in men with prior negative biopsies, general use of this technique in diagnosing prostate cancer should only be performed after critical consideration. Before bringing MRI/US fusion-guided TB into general practice, there is a need for more prospective studies on prostate cancer diagnosis.

Keywords
prostate, cancer, fusion, biopsy, MRI, ultrasound

Introduction

Diagnostic tools for prostate cancer consist of DRE, serum PSA measurements, and definite diagnosis is always based on pathological evaluation of TRUS-guided systematic biopsies (SBs). However, TRUS-guided biopsy has several limitations. As 25–39% of the prostate carcinomas are iso-echoic on grey scale TRUS, biopsies cannot be limited to lesion-directed biopsies and therefore SBs have to be taken [1,2]. Limitations of SB include the low negative predictive value (NPV) and poor correlation with pathology results after radical prostatectomy (RP) [3].

To overcome these problems, in the last decade, the focus has been on developing more accurate imaging methods for taking targeted biopsies (TBs). Research has been focused on multiparametric MRI (mpMRI), elastography, dynamic contrast-enhanced ultrasonography (DCEUS), histoscanning,
and artificial neuronal network analysis (ANNA)/computerised TRUS (C-TRUS). In general, mpMRI includes two or three MRI modalities: T2-weighted imaging, diffusion-weighted imaging (DWI), and in most cases dynamic contrast-enhancement MRI (DCE-MRI), and sometimes four, adding MR-spectroscopy. mpMRI has been reported to have a high accuracy for the detection of prostate cancer [4], and has already been recommended for patients with a persistent clinical suspicion of prostate cancer after prior negative biopsies in the European Society of Urogenital Radiology (ESUR) prostate MR guidelines 2012 [5] and in the European Association of Urology guidelines on Prostate Cancer 2014 [6].

TRUS is a non-invasive procedure used to guide the needle for taking prostate biopsies. Image fusion can combine advantages of both TRUS and mpMRI. Approaches of taking MRI-guided TBs of the prostate include ‘in-bore’ MRI-guided biopsies, cognitive fusion, and MRI/ultrasonography (MRI/US) software-based image-fusion techniques. In in-bore MRI-guided techniques, TBs are taken during real-time MRI. With fusion techniques, MRI is performed before taking US-guided TBs, using cognitive or software-based MRI–US image fusion. A higher detection rate of clinically significant disease was assessed using any of the three techniques [7]. Recently, a comparison has been made between MRI TBs and randomised TRUS-guided SBs by Van Hove et al. [8]. They concluded that no clear advantage of TBs over the current standard of SBs could be seen in biopsy naïve men, but in cases of prior negative biopsies, TBs tended to have improved prostate cancer detection rates (CDRs).

Eight fusion platforms were USA Food and Drug Administration (FDA) registered at the time this review was performed. They all require a pre-biopsy MRI for real-time TRUS fusion; however, great differences between the platforms exist. Of most importance is the difference between ‘rigid’ and ‘elastic’ registration. Often, the shape of the prostate differs significantly between MRI and TRUS imaging. Elastic methods stretch or warp one of the image datasets, so that the shapes correlate with each other. Other differences include mechanical vs manually controlled arm, patient movement compensation, and accuracy of three-dimensional modelling. To the best of our knowledge, no systematic review has been performed to compare different MRI/US-fusion platforms for taking prostate TBs.

The aim of the present review was to assess the CDRs of different MRI/US-fusion platforms for prostate cancer detection by comparing MRI/US-fusion TB to random SB and to the other MRI/US-fusion techniques, in-bore and cognitive fusion-guided TB. Only well-designed and prospective randomised and non-randomised trials were included in the review.

Patients and Methods

Eligibility Criteria

Randomised and non-randomised prospective clinical trials comparing prostate CDRs between MRI/US fusion-guided TB or another way of MRI TB, such as cognitive or in-bore MR/US-fusion, and SB were selected. Participants of any age with a clinical suspicion on prostate cancer because of high PSA level and/or abnormal DRE were considered. The primary outcome measure was (clinically significant) prostate CDRs per patient.

Study Selection

Studies were identified by searching on-line databases. A systematic literature review of PubMed, Embase and Cochrane Library was performed. The last search was conducted on 17 February 2015. The following search terms were used: prostate cancer AND ((MRI/US fusion) OR (MRI/US fusion) OR (MR/ultrasound fusion) OR (MRI/ultrasound fusion) OR (ultrasound fusion) OR (targeted biopsy) OR (targeted biopsies)) with the limitations: English, humans, 01 January 2004 till 17 February 2015, full text.

Eligibility assessment was performed by two reviewers (M.G. and A.A.). Disagreements were resolved by consensus. All abstracts published before January 2004 were excluded, as in this year the first MRI/US-fusion platform was FDA registered. Articles only including patients on active surveillance were also excluded, because the objective was to assess CDRs for prostate cancer diagnosis.

Data Extraction

One review author (M.G.) extracted the following data: type of fusion platform, number and type of patients, method, comparison, outcome measures, and results, and entered the information in a data extraction sheet. All other authors checked these data and disagreements were resolved by discussion and consensus. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool [9] was used to assess the quality of included the articles.

The primary outcome measure was the prostate CDR in MRI/US fusion platform-guided TB compared with SB or another way of MRI-guided TB, such as cognitive or in-bore.

Results

Characteristics of Included Studies

In all, 2098 records were identified during the systematic literature search. After adjusting for duplicates 1865 records remained, of which 130 titles seemed relevant. Of these, 107 records were excluded because after analysing abstracts the
papers did not meet the inclusion criteria. Next, the content of 23 papers were screened on relevance, and finally 11 studies met all our inclusion criteria. A flowchart of study selection is provided in Figure 1. All 11 studies finally selected were prospective non-randomised controlled trials or in-patient control studies published in English between January 2004 and February 2015. Of the 11 included studies, there were eight studies comparing transrectal MRI/US-fusion TBs with SBs and three studies comparing transperineal MRI/US-fusion TBs with SBs. Unfortunately, no study comparing MRI/US-fusion TB with in-bore TB, was detected.

Participants
The included studies involved 2626 patients: 1119 biopsy naïve men, 1433 after prior negative biopsy, 50 not mentioned (either biopsy naïve or after prior negative biopsy) and 24 on active surveillance. Despite active surveillance being an exclusion criterion, one study including 125 patients of whom 24 patients were on active surveillance was included in the present review, because the authors presented a separate analysis for the active surveillance group, so that these men could be disregarded.

Intervention
Table 1 shows the characteristics of the 11 included studies. For the intervention, a pre-biopsy 1.5 T or 3.0 T mpMRI including at least T2-weighted imaging, DWI and DCE modalities, with or without endorectal coil, was used. MRI/US-fusion TBs were performed first in eight studies, SBs were performed first in the other three studies. The physician taking SBs was ‘blinded’ to the MRI images in five studies. In two studies, the physician taking the SBs was not blinded to the MRI images, and in the other four studies, blinding was not mentioned.

The mpMRI lesions were scored using the Prostate Imaging-Reporting And Data System (PI-RADS), Likert score or National Institutes of Health (NIH) score. MRI/US-fusion TBs were taken transrectally in eight studies and transperineally in three studies, with the mean number of cores taken ranging from 1.5 to 8.9 per patient.

Outcomes
In all studies, the primary or secondary outcome assessed was the CDR of all prostate cancer and/or the CDR of clinically significant prostate cancer. When clinically significant...
Table 1 Characteristics of the 11 included studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Fusion platform</th>
<th>Sample size, n</th>
<th>Patients</th>
<th>MRI</th>
<th>Strength, T</th>
<th>Sequences</th>
<th>Endorectal coil</th>
<th>Score</th>
<th>Patients with positive MRI, %</th>
<th>MRI/US fusion-guided TB</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Borkowetz et al. [10]</td>
<td>BioJet</td>
<td>263</td>
<td>Biopsy naive (68), prior negative biopsy (195)</td>
<td>3.0</td>
<td>T1, T2, DWI, DCE</td>
<td>No</td>
<td>PI-RADS</td>
<td>100.0</td>
<td>TP</td>
<td>8.9</td>
<td>Yes</td>
</tr>
<tr>
<td>Delongchamps et al. [14]</td>
<td>Virtual Navigator and Urostation</td>
<td>391</td>
<td>Biopsy naive</td>
<td>1.5</td>
<td>T2, DWL, DCE</td>
<td>Yes</td>
<td>NIH</td>
<td>40.7</td>
<td>TR</td>
<td>3.6</td>
<td>No</td>
</tr>
<tr>
<td>Fiard et al. [17]</td>
<td>Logiq 9</td>
<td>50</td>
<td>Biopsy naive (13), prior negative biopsy (17)</td>
<td>3.0</td>
<td>T2, DWL, DCE</td>
<td>No</td>
<td>PI-RADS</td>
<td>66.7</td>
<td>TR</td>
<td>1.5</td>
<td>No</td>
</tr>
<tr>
<td>Junker et al. [21]</td>
<td>BiopSee</td>
<td>347</td>
<td>Biopsy naive (177), prior negative biopsy (170)</td>
<td>3.0</td>
<td>T1, T2, DWI, DCE, spectroscopy</td>
<td>No</td>
<td>NIH</td>
<td>72.9</td>
<td>TP</td>
<td>4.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Kuru et al. [19]</td>
<td>Urostation</td>
<td>152</td>
<td>Biopsy naive</td>
<td>1.5</td>
<td>T2, DWL, DCE</td>
<td>No</td>
<td>Likert</td>
<td>100.0</td>
<td>TR</td>
<td>2.0</td>
<td>No</td>
</tr>
<tr>
<td>Mozer et al. [15]</td>
<td>UroNav</td>
<td>105</td>
<td>Biopsy naive (35), prior negative biopsy (70)</td>
<td>3.0</td>
<td>T2, DWL, DCE</td>
<td>No</td>
<td>NIH</td>
<td>100.0</td>
<td>TR</td>
<td>3.9</td>
<td>Yes</td>
</tr>
<tr>
<td>Rastinejad et al. [11]</td>
<td>UroNav</td>
<td>140</td>
<td>Prior negative biopsy</td>
<td>3.0</td>
<td>T2, DWL, DCE</td>
<td>Yes</td>
<td>Likert</td>
<td>100.0</td>
<td>TR</td>
<td>NM</td>
<td>Yes</td>
</tr>
<tr>
<td>Salami et al. [12]</td>
<td>BiopSee</td>
<td>20</td>
<td>Biopsy naive</td>
<td>1.5</td>
<td>T2, DWL, DCE</td>
<td>No</td>
<td>PI-RADS</td>
<td>100.0</td>
<td>TP</td>
<td>NM</td>
<td>Yes</td>
</tr>
<tr>
<td>Shoji et al. [16]</td>
<td>UroNav</td>
<td>1003</td>
<td>Biopsy naive (196), prior negative biopsy (807)</td>
<td>3.0</td>
<td>T2, DWL, DCE</td>
<td>Yes</td>
<td>NIH</td>
<td>100.0</td>
<td>TR</td>
<td>54</td>
<td>Yes</td>
</tr>
<tr>
<td>Siddiqui et al. [18]</td>
<td>Artemis</td>
<td>125</td>
<td>Biopsy naive (67), prior negative biopsy (34), AS (24)</td>
<td>3.0</td>
<td>T2, DWL, DCE</td>
<td>No</td>
<td>Likert</td>
<td>100.0</td>
<td>TR</td>
<td>2.8</td>
<td>Yes</td>
</tr>
</tbody>
</table>

AS, active surveillance; NM, not mentioned; TR, transrectal; TP, transperineal; T1, T1-weighted imaging; T2, T2-weighted imaging.

© 2015 The Authors

BJU International © 2015 BJU International
Results of Individual Studies

The CDR of all prostate studies and when mentioned, clinically significant prostate cancers, per patient of individual studies are presented in Table 3. A sub-analysis with the CDRs for low- vs moderate- to high-risk lesions, graded on mpMRI is presented in Table 4.

Syntheses of Results

In all, 11 studies were included in this systematic review, using Virtual Navigator (one study, [14]), Urostation (three studies [14,15,17]), Logiq 9 (one study [21]), UroNav (three studies [11,12,18]), Artemis (one study [13]), BiopSee (one study [19]) and BioJet (two studies, [10,16]).

The CDRs per patient were available for all 11 trials, including 2626 patients. Excluding the 24 patients on active surveillance results for 2602 patients were available for analysis.

Borkowetz et al. [10] compared transperineal MRI/US-fusion TB, using the BioJet platform, to transrectal SB in 263 patients. The overall CDR was 52%. For both the CDRs of all prostate cancers and clinically significant prostate cancer, MRI/US-fusion TB detected significantly more cancer than SB (44.1% vs 34.6% and 35.7% vs 28.5% respectively).

Delongchamps et al. [14] made a comparison of the accuracy of visually estimated TB (VE-TB) vs MRI/US-guided TB using a rigid (Virtual Navigator) or elastic (Urostation) approach, all compared to standard 12-core SB. In all, 391 biopsy naive men were included and divided into three groups (VE-TB, rigid fusion, elastic fusion). In conclusion, MRI/US-guided TB performed significantly better (CDRs of 79.5% and 75.6% for Virtual Navigator and Urostation, respectively) than SB (ranging from 33.1% to 45.8% in all three groups), whereas VE-TB did not (74.1%).

Fiard et al. [17] included 30 patients with a clinical suspicion of prostate cancer, 17 men with prior negative biopsy and 13

Risk of Bias Within Studies

For a transparent rating of bias and applicability of diagnostic accuracy studies, the QUADAS-2 tool was used to assess the quality of included articles (Table 2). In all studies, patient selection and index test were defined as low risk of bias. Risk of bias concerning the reference test was assessed high in all included studies because of the low accuracy of prostate SBs. Applicability of the index test was scored as a high risk of bias in all studies, because of the different fusion platforms and strategies for MRI/US fusion-guided prostate TB. The item ‘flow and timing’ was assessed as high risk of bias in a few studies, because time from mpMRI until prostate TB was not mentioned.

Table 2 QUADAS-2 results.

<table>
<thead>
<tr>
<th>Study</th>
<th>Judgments on bias</th>
<th>Judgments on applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patient selection</td>
<td>Index test</td>
</tr>
<tr>
<td>Borkowetz et al. [10]</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Delongchamps et al. [14]</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Fiard et al. [17]</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Junker et al. [21]</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Kuru et al. [19]</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Mozer et al. [15]</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Rastinehad et al. [11]</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Siddiqui et al. [18]</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Wysock et al. [13]</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
</tbody>
</table>
biopsy naive men. Suspicous area(s) were found on MRI in 20 cases. MRI/US-fusion TBs were performed using the Urostation. The CDRs of MRI/US-guided TB and SB were 55.0% and 43.3%, no further statistical analysis was made. The NPVs of SB and TB were 94% and 85%.

Junker et al. [21] analysed 50 patients using the Logiq 9 fusion system. The CDRs of TB and SB were 46% and 36%, resulting in a sensitivity of 69.2% for SB (18/26) and 88.5% for TB (23/26), respectively.

Kuru et al. [19] made a comparison between transrectal US-guided transperineal-fusion TB, using the BiopSee platform, and transperineal SB. The CDRs of all prostate cancers were equal in both SB and TB (50.4% and 50.6% respectively). However, there was a difference in the CDR in favour of TB for clinically significant prostate cancers according to the NCCN guidelines (41.1% for TB vs 38.0% for SB).

Mozzer et al. [15] included 152 biopsy naive men. The CDRs of all prostate cancers for TB and SB were 55.0% and 43.3%, respectively, but there was a statistical significant difference in the CDRs of clinically significant prostate cancer between the two protocols in favour of TB (43.3% vs 36.8%).

The value of the UroNav platform was examined by Rastinehad et al. [11]. In all, 105 patients were included in their trial. The CDRs of all prostate cancers by TB vs SB were 50.5% and 48.8%, respectively. For clinically significant disease, the CDRs were 44.8% and 32.4%, respectively, which was a statistically significant difference.

The UroNav platform was also used by Salami et al. [12] in 140 patients with prior negative biopsy. The CDRs of MRI/US fusion-guided TB was 52.1% and 47.9% for all prostate cancers and clinically significant prostate cancers, respectively. The CDR of standard 12-core SB was 48.6% and 30.7% for all prostate cancers and clinically significant prostate cancers, respectively. The CDRs of MRI/US-guided TB and SB were not statistically significantly different, but MRI/US fusion-guided TBs detected more clinically significant prostate cancer when compared with SBs.

Shoji et al. [16] made a comparison between transperineal TB and SB, using the BioJet platform; 20 patients were included in their analysis, with CDRs for TB and SB of 36.8% and 28.5%, respectively. Siddiqui et al. [18] included 1003 patients in their prospective cohort study. SBs and TBs, using the UroNav platform, were taken. The CDRs of all prostate cancers by TB vs SB were not different (46.0% and 46.8%, respectively). However, TB diagnosed 30% more high-risk cancers than SB (17.2% vs 12.2%, respectively).

Wysock et al. [13] included 125 patients, of whom 67 were biopsy naive, 34 had prior negative biopsy and 24 were on active surveillance. Overall, the CDR per patient was 23.2% and 19.2% for MRI/US-guided TB and VE-TB, respectively.

<table>
<thead>
<tr>
<th>Study</th>
<th>Platform</th>
<th>MRI/US-fusion TB</th>
<th>VE-TB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total CDR, n/N (%)</td>
<td>CDR of clinically significant prostate cancer, n/N (%)</td>
<td>Total CDR, n/N (%)</td>
<td>CDR of clinically significant prostate cancer, n/N (%)</td>
</tr>
<tr>
<td>Borkowitz et al. [10]</td>
<td>BioJet</td>
<td>116/263 (44.1)</td>
<td>94/263 (35.7)</td>
<td>–</td>
</tr>
<tr>
<td>Delongchamps et al. [14]</td>
<td>Virtual Navigator and Urostation</td>
<td>–</td>
<td>62/78 (79.5)</td>
<td>–</td>
</tr>
<tr>
<td>Fiard et al. [17]</td>
<td>Urostation</td>
<td>82/152 (53.9)</td>
<td>66/152 (43.4)</td>
<td>–</td>
</tr>
<tr>
<td>Junker et al. [21]</td>
<td>Logiq 9</td>
<td>23/50 (46.0)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Kuru et al. [19]</td>
<td>BiopSee</td>
<td>103/253 (40.7)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mozzer et al. [15]</td>
<td>Urostation</td>
<td>82/152 (53.9)</td>
<td>66/152 (43.4)</td>
<td>–</td>
</tr>
<tr>
<td>Rastinehad et al. [11]</td>
<td>UroNav</td>
<td>53/105 (50.5)</td>
<td>47/105 (44.8)</td>
<td>–</td>
</tr>
<tr>
<td>Salami et al. [12]</td>
<td>UroNav</td>
<td>73/140 (52.1)</td>
<td>67/140 (47.9)</td>
<td>–</td>
</tr>
<tr>
<td>Shoji et al. [16]</td>
<td>BioJet</td>
<td>14/20 (70.0)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Siddiqui et al. [18]</td>
<td>UroNav</td>
<td>461/1003 (46.0)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Wysock et al. [13]</td>
<td>Artemis</td>
<td>34/101 (33.7)</td>
<td>31/101 (30.7)</td>
<td>–</td>
</tr>
</tbody>
</table>
with the difference being statistically insignificant. For the 101 biopsy naïve patients or with prior negative biopsy only, the total CDR was 33.7% vs 30.7% for the MRI/US-guided TBs vs VE-TBs. Pooled TBs (MRI/US-guided TB and VE-TB together) compared with SB in 67 biopsy naïve men showed a lower overall CDR (40.3% vs 55.2%) and less Gleason score 6 disease (7.5% vs 22.4%), but detected an equivalent number of Gleason score ≥7 disease (32.8% vs 32.8%).

A sub-analysis was made of low- vs moderate- to high-risk lesions, graded on mpMRI.

Moderate- to high-risk lesions include 4–5 lesions on a 5-point scale and 2–3 lesions on a 3-point scale. Four studies gave an overall sub-analysis, with CDRs for low-risk lesions ranging from 24.2% to 47.5% and for moderate- to high-risk lesions from 41.6% to 83.3%.

Five studies made a sub-analysis for TB of low- vs moderate- to high-risk lesions, but only two of these studies also gave a sub-analysis of SB. Within these two studies, including 245 patients, the CDRs in low-risk lesions were almost equal in TB and SB (CDRs of 26.5–32.5% in TB and 35.0–36.8% in SB) with a difference in CDRs in moderate- to high-risk lesions in favour of TB (CDRs 61.5–76.4% in TB and 56.9–59.7% in SB).

Discussion

In the present review, the value of different MRI/US platforms in prostate cancer detection was assessed by comparing the CDRs of MRI/US-fusion TBs with SB, and to other MRI/US-fusion techniques, such as in-bore and VE-TB. Most importantly, seven of eight FDA registered MRI/US-fusion platforms have been validated using prospective studies comparing CDRs of MRI/US-guided TBs with VE-TBs or SBs in the diagnosis of prostate cancer.

To date, the diagnosis of prostate cancer has had substantial limitations. First of all, biopsy Gleason score upgrading after pathological assessment of RP specimens shows a discrepancy between grading in TRUS-guided SBs and RP specimens [22]. Because of this discrepancy and due to the lack of large cohort studies, a good prediction of clinically significant disease is hampered.

Secondly, there is an ongoing debate about the definition of ‘clinically significant’ disease and in addition, with the introduction of TB, the question arises as to whether the same definition for clinically significant prostate cancer should be maintained for cores obtained with SB and TB. To overcome over-diagnosis and overtreatment, it is important to limit the diagnosis of clinically insignificant prostate cancer. There is some evidence that the criteria for clinically significant prostate cancer suggested by Epstein et al. [23] have a high likelihood for identifying organ-confined disease but not clinically insignificant disease [24,25].

Therefore, the most ideal development in prostate cancer diagnosis would be a test with high positive predictive values (PPVs) and NPVs for clinically significant disease. A recently published systematic review by Fütterer et al. [26] showed NPVs and PPVs for clinically significant prostate cancer with mpMRI ranging from 63% to 98% and 34% to 68%, respectively. The overall sensitivity and specificity of mpMRI reported are promising, but the additional value of DCE-MRI is still questioned [27]. Also, of great importance is the evidence that there are statistically significant histological differences between detected and missed prostate cancers on mpMRI [28], with detected prostate cancers on mpMRI showing more clinically significant features. The CDR in patients with prior negative biopsy with in-bore MR-guided TB varies from 52% to 59% [29,30], TB especially may play a role in improving anterior prostate cancer detection [31].
In our present analysis, no clear advantage of MRI/US fusion-guided TBs could be seen for the CDRs of all prostate cancers, but MRI/US fusion-guided TBs tended to give a higher CDR for clinically significant prostate cancers. This is consistent with the results of the systematic reviews of Valerio et al. [32] and Van Hove et al. [8]. It would be interesting to see whether there is a difference between CDRs in low- vs high-risk lesions on mpMRI when comparing TB with SB. Unfortunately, only two studies made this sub-analysis, showing contradictory results. While the study of Rastinehad et al. [11] showed no clear difference between TB and SB, the study of Salami et al. [12] tended to give a higher CDR in high-risk lesions with TB.

There are some general limitations in assessing the value of MRI/US-fusion TBs. First of all, the range in CDRs at SB suggests that there is a difference in the quality of taking biopsies. Furthermore, it seems plausible that the strength of the MRI magnet and the use of an endorectal or pelvic coils determine the quality of MR images and the experience of the radiologist and physician performing the biopsy determines the quality of the biopsy cores, which determines the CDR. However, this has not been properly studied. In most of the included studies, men with negative mpMRI were disregarded, which creates selection bias and makes the results less applicable to clinical practice. And although direct visualisation of the biopsy needle inside the suspicious area is technically possible [33], in common practice, it is almost never used.

The present systematic review has several limitations. First of all, 11 studies met our inclusion criteria, including 2626 patients. Because of this limited number of included studies, no statement can be made about the difference in the CDRs between the different fusion platforms. Another important limitation is the lack of a general definition of clinically significant prostate cancer. As shown in our present results, in the 11 included articles, four different definitions are being used. The aim of our present systematic review was to assess the CDRs in MRI/US-fusion TB vs SB in the diagnosis of prostate cancer. Patients included in the original studies are heterogeneous, containing biopsy naïve men and men with one, two or sometimes more prior negative biopsies. Because previous studies show that the CDR is dependent on biopsy session number [34,35], the included studies are difficult to compare. On the other hand, these results are applicable to clinical practice. A general limitation of studies using SB as a reference test is that it lacks accuracy, i.e. has low sensitivity and specificity [3]. It is used because a good gold standard, such as RP, is unethical to use.

Conclusion

Although MRI/US-fusion TB has proved its value in men with prior negative biopsies, general use of this technique in the diagnosis of prostate cancer should only be performed after critical consideration because in our present analysis, no clear advantage of MRI/US fusion-guided TB could be found for CDRs of all prostate cancers; however, MRI/US fusion-guided TBs tended to give a higher CDR for clinically significant prostate cancers. Before bringing MRI/US fusion-guided TB in to general practice, there is a need for more prospective studies on its effectiveness for prostate cancer diagnosis.

Parallel to our research question about CDRs, is the important question of whether SB can be omitted, because this will have an impact on clinical practice. There is also a need for more research into how many prostate cancers are missed by TB, and their clinical relevance. Moreover, individual quality of taking prostate biopsies is an under-reported problem that causes bias.

Acknowledgements

The present systemic review was undertaken with a research grant from Astellas Pharma Netherlands B.V. Astellas has not influenced the content of this manuscript.

Conflicts of Interest

None disclosed.

References

Review

12 Salami SS, Ben-Levi E, Yaskiv O et al. In patients with a previous negative prostate biopsy and a suspicious lesion on MRI, is a 12-core biopsy still necessary in addition to a targeted biopsy? BJU Int 2015; 115: 562–70

15 Mozer P, Roupret M, Le Cossec C et al. First round of targeted biopsies using magnetic resonance imaging/ultrasound fusion compared with conventional transrectal ultrasound-guided biopsies for the diagnosis of localised prostate cancer. BJU Int 2015; 115: 50–7

22 Ploussard G, Salomon I, Xylinas E et al. Pathological findings and prostate specific antigen outcomes after radical prostatectomy in men eligible for active surveillance–does the risk of misclassification vary according to biopsy criteria? J Urol 2010; 183: 539–44

23 Epstein JL, Walsh PC, Carmichael M, Brendler CB. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 1999; 271: 368–74

28 Rosenkrantz AB, Mendirinos S, Babb JS, Taneja SS. Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J Urol 2012; 187: 2032–8

34 Djavan B, Ravery V, Zlotta A et al. Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop? J Urol 2001; 166: 1679–83

Correspondence: Maudy Gayet, Department of Urology, Jeroen Bosch Hospital, Postbox 90153, Den Bosch 5200 ME, The Netherlands.

e-mail: M.Gayet@jbz.nl

Abbreviations: CDR, cancer detection rate; DCE, dynamic contrast enhanced; FDA, USA Food and Drug Administration; mpMRI, multiparametric MRI; NCCN, National Comprehensive Cancer Network; NIH, National Institutes of Health; PI-RADS, Prostate Imaging-Reporting And Data System; (N)(P)PV, (negative) (positive) predictive value; QUADAS, Quality Assessment of Diagnostic Accuracy Studies; RP, radical prostatectomy; SB, systematic biopsy; (VE-)TB, (visually estimated) targeted biopsy.