Characterizing lambda-terms with equal reduction behavior

Citation for published version (APA):

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Characterizing λ-terms with equal reduction behavior

by

Fairouz Kamareddine and Roel Bloo and Rob Nederpelt

ISSN 0926-4515

All rights reserved
editors: proÞ dr. J.C.M. Baeten
 prof. dr. P.A.J. Hilbers

Reports are available at:
http://www.win.tue.nl/win/cs

Computing Science Reports 00/16
Eindhoven. October 2000
Characterizing λ-terms with equal reduction behavior*

Fairouz Kamareddine1 and Roel Bloo2 and Rob Nederpelt2

1 Computing and Electrical Engineering, Heriot-Watt Univ., Riccarton, Edinburgh EH14 4AS, Scotland, fairouz@see.hw.ac.uk
2 Mathematics and Computing Science, Eindhoven Univ. of Technology, P.O.Box 513, 5600 MB Eindhoven, the Netherlands, {c.j.bloo, r.p.nederpelt}@tue.nl

Abstract. We define an equivalence relation on λ-terms called shuffle-equivalence which attempts to capture the notion of reductional equivalence on strongly normalizing terms. The aim of reductional equivalence is to characterize the evaluation behavior of programs. The shuffle-equivalence classes are shown to divide the classes of β-equal strongly normalising terms (programs which lead to the same final value/output) into smaller ones consisting of terms with similar evaluation behavior. We refine β-reduction from a relation on terms to a relation on shuffle-equivalence classes, called shuffle-reduction, and show that this refinement captures existing generalisations of β-reduction. Shuffle-reduction allows one to make more redexes visible and to contract these newly visible redexes. Moreover, it allows more freedom in choosing the reduction path of a term, which can result in smaller terms along the reduction path if a clever reduction strategy is used. This can benefit both programming languages and theorem provers since this flexibility and freedom in choosing reduction paths can be exploited to produce the shortest program evaluation paths and optimal proofs.

Keywords: specification, semantics and rewriting of programs

1 Introduction

The λ-calculus plays a major role in the semantics of programming languages through its mechanisms for modeling evaluation strategies (e.g., call by name, call by value, etc.). Due to this basic role, the λ-calculus must be informative not only of the final value of the program (the normal form of the λ-term representing the program), but also of the consecutive values before the final value is reached. In particular, if we have two programs P_1 and P_2 that return the same final value, we want to know if these programs have equivalent evaluation paths in the sense that each evaluation path from P_1 to the final value (going through all the intermediate programs), corresponds (in a strong evaluation sense) to an evaluation path from P_2 to the final value, and vice versa. This will mean that P_1 and P_2 are equivalent programs even though they are written differently. Each intermediate value a_1 along the evaluation path from one of these programs to the final value corresponds to a unique intermediate value a_2 along the evaluation path of the other program to the final value, and the number of evaluation steps to reach a_1 from the first program is equal to the number of evaluation steps to reach a_2 from the second program. Of course this does not constitute a formal definition of what we call reductional equivalence. Reductional equivalence is difficult to define and is also undecidable. In this paper, we attempt to formally define a decidable approximation of reductional equivalence which we call shuffle equivalence.

For this, we attempt to observe the reduction behavior of λ-terms (which represent programs). β-equality of two terms A and B is — by the Church-Rosser property — equivalent to the existence of a common reduct C. Nothing can be said about the nature of the two reduction paths $A \rightarrow_{\beta} C$ and $B \rightarrow_{\beta} C$. It can be that both paths consist of the same number of steps, or that one of them is larger than the other. Also, the reduction behavior of A and B can be very different, as is the case if $A \equiv \text{KIF}$.

* We are grateful for enlightening discussions and useful feedback and comments received from Henk Barendregt, Twan Laan and Joe Wells.
and \(B \equiv K I I \), where \(K \) and \(I \) are the well known combinators with \(K x y \rightarrow_{\beta} x \) and \(I x \rightarrow_{\beta} x \), and
\(\Omega \equiv (A z . x z)(A z . x z) \). Both \(A \) and \(B \) have the common reduct \(I \) but although \(B \) is strongly normalizing (i.e., it allows no infinite reduction path), \(A \) is not (\(\Omega \) infinitely reduces to itself). Our problem is to characterize terms with equivalent reduction behavior in the sense that reduction paths from one can be mapped to reduction paths from the other. This is different from studying the behavior of programs using bisimulation. We are concerned with the syntactic analysis of programs written as \(\lambda \)-terms.

In order to conduct our syntactic study of reductional equivalence of programs written as \(\lambda \)-terms, we need to use a \(\lambda \)-notation that enables us to detect more redexes in a term than can be visible in the known classical notation \(\lambda \)-calculus [3]. For this purpose, we will use the item notation whose advantages are discussed in [7]. [6] explains that it is not feasible to syntactically describe generalised reduction in classical notation and therefore item notation is indispensable for our study of reductional equivalence which depends on extended and generalised redexes.

In Section 2 we introduce informally reductional equivalence, potential future redexes and the motivation for the preferred reductionally equivalent term \(TS(A) \) of a \(\lambda \)-term \(A \). \(TS(A) \) makes visible as many redexes of \(A \) as possible.

In Section 3 we introduce what is needed of the item notation and other formal machinery that will enable us to syntactically describe potential future redexes and will help us approximate reductional equivalence.

In Section 4 we introduce shuffle equivalence which we will use to approximate reductional equivalence. An important phenomenon that results from this definition is the ability to partition terms elegantly into parts which are informative as to where redexes occur.

In Section 5 we extend the usual \(\beta \)-reduction \(\rightarrow_{\beta} \) on \(\lambda \)-terms to \(\sim_{\beta} \) on classes of terms modulo shuffle equivalence. We establish that our extended reduction \(\sim_{\beta} \) is a generalisation of \(\rightarrow_{\beta} \) which enables one to have more freedom in choosing the reduction path of a term. In fact, a clever reduction algorithm might know how to choose the shortest reduction path and it is likely that this reduction path does not exist when usual reduction is used. We also establish that shuffle equivalence is a decidable approximation of reductional equivalence.

In Section 6 we compare our work with existing literature on generalising reduction and conclude that our notion of reduction in this paper subsumes all of this reported previous work.

2 Informal introduction to shuffle and reductional equivalence

2.1 Making as many redexes as possible visible

\textbf{Example 1} Consider the terms: \(A \equiv (\lambda_{\beta}. \lambda_{\pi}. \lambda_{f}. f y) x \alpha \) and \(B \equiv (\lambda_{\beta}. (\lambda_{\pi}. \lambda_{f}. f y) x) \alpha \). Both terms have the term \(\lambda_f . f x \) as a reduct, so \(A \rightarrow_{\beta} B \). However, \(B \) has two redexes whereas \(A \) has only one. Yet, our paper will establish that the terms \(A \) and \(B \) are reductionally equivalent. We will do so by extending the notion of redexes and by considering for each \(E \), the preferred reductionally equivalent term \(TS(E) \) which makes visible as many redexes of \(E \) as possible. First, note that initially, one will only see the following redexes of \(B \):

\(r_1 = (\lambda_{\beta}. (\lambda_{\pi}. \lambda_{f}. f y) x) \alpha \). Observe that \(B \xrightarrow{r_1} (\lambda_{\pi}. \lambda_{f}. f y) x \).

\(r_2 = (\lambda_{\pi}. \lambda_{f}. f y) x \). Observe that \(B \xrightarrow{r_2} (\lambda_{\beta}. \lambda_{f}. f x) \alpha \).

In \(A \), the only obvious redex is: \(r_1' = (\lambda_{\pi}. \lambda_{\pi}. \lambda_{f}. f y) x) \alpha \). Observe that \(A \xrightarrow{r_1'} (\lambda_{\pi}. \lambda_{f}. f y) x \).

\(r_2' = (\lambda_{\beta}. (\lambda_{\pi}. \lambda_{f}. f y) x) \alpha \). Observe that \(A \xrightarrow{r_2'} (\lambda_{\beta}. \lambda_{f}. f x) \alpha \).

Note that \(r_1 \) in \(B \) and \(r_1' \) in \(A \) are both based on the redex \((\lambda_{\beta}. \rightarrow) x \alpha \) and contracting \(r_1 \) in \(B \) results in the same term as contracting \(r_1' \) in \(A \).

A closer look at \(A \) enables us to see that in \(A \) (as in \(B \)), \(\lambda_{\pi} \) will get matched with \(x \) resulting in a redex \(r_2'' = (\lambda_{\pi}. \rightarrow) x \). There are differences however between \(r_2 \) in \(B \) and \(r_2'' \) in \(A \). \(r_2 \) in \(B \) is completely visible and may be contracted before \(r_1 \) in \(B \). \(r_2' \) on the other hand is a future redex in \(A \). In fact, it is not a redex of \(A \) itself but a redex of a contractum of \(A \), namely \((\lambda_{\pi}. \lambda_{f}. f y) x \), the result of contracting the redex \(r_1' \) in \(A \).
We could guess from \(A \) itself the presence of the future redex. That is, looking at \(A \) itself, we see that \(A_\alpha \) is matched with \(\alpha \) and \(A_\nu \) is matched with \(x \).

This has been noted by many researchers and hence rules like \((\lambda_x.N)PQ \rightarrow (\lambda_x.NQ)P\) have been introduced in many articles with different purposes [1,5,8,9,11,12,14,16,17,19–21,23]. Such rules enable one to rewrite \(A \) so that both redexes become visible in \(A \).

Note that:

\[
(A_\alpha.Ar.A_f.jy)x \quad \text{---} \quad (A_\alpha.(Ar.A_f.jy)x).
\]

These transformations are rather powerful in that they can group together terms with equal reducational behavior. Let us give here this example:

Example 2 Consider \(E_1, E_2, E_3, E_4 \) as follows:

\[
E_1 \equiv ((\lambda_f.\lambda_x.\lambda_y.fxy)+m)n, \quad E_2 \equiv ((\lambda_f.\lambda_x.\lambda_y.fxy)m)+n, \quad E_3 \equiv (\lambda_f.((\lambda_x.\lambda_y.fxy)m)n)+, \quad E_4 \equiv (\lambda_f.((\lambda_x.\lambda_y.fxy)m)n)+.
\]

Note that \(E_1 \equiv E_4 \). The visible redexes in each of these terms are as follows:

In \(E_1 \):

- \((\lambda_f.\lambda_x.\lambda_y.fxy) \).

In \(E_2 \):

- \((\lambda_f.\lambda_x.\lambda_y.fxy)m \) and \((\lambda_x.\lambda_y.fxy)m \).

In \(E_3 \):

- \((\lambda_f.((\lambda_x.\lambda_y.fxy)m)n)+ \) and \((\lambda_x.((\lambda_x.\lambda_y.fxy)n)m)+ \).

Moreover, one can see potential future redexes as follows:

In \(E_1 \):

- \(\lambda_x._ \) will eventually be applied to \(m \) and \(\lambda_y._ \) will be eventually applied to \(n \).

In \(E_2 \):

- \(\lambda_y._ \) will eventually be applied to \(n \).

In \(E_4 \):

- \(\lambda_y._ \) will eventually be applied to \(n \).

Note that \(E_1 \rightarrow E_2 \rightarrow E_3 \rightarrow E_4 \) and that by transforming \(E_1 \) to \(E_2 \) (resp. \(E_3 \) to \(E_4 \)), an extra redex becomes visible. In \(E_4 \) all redexes are visible and \(E_4 \) is in \(\theta \)-normal form.

Based on this, one wonders if one could classify terms according to their transformational relationship as in \(E_1, E_2, E_3, E_4 \). One has to be careful however as the example below shows that we need to base reduction on classes.

Example 3 If \(A_1 \equiv ((\lambda_x.((\lambda_y.\lambda_z.\lambda_t.E)C)B)A) \) and \(A_2 \equiv ((\lambda_x.((\lambda_y.\lambda_z.\lambda_t.E)A)D)B)C \). Then, \(A_1 \not\rightarrow_{\theta} A_2 \) and \(A_2 \not\rightarrow_{\theta} A_1 \). But, these two terms have the same \(\theta \)-normal form and are reducationally equivalent. We will show in Section 4 that classes will be able to represent this.

In this paper, we propose to define for each term \(M \), a term \(TS(M) \) (the \(\theta \)-normal form of \(M \)) that makes as many redexes as possible visible. We consider the equivalence class of a term \(M \) to be \(\{M' \mid TS(M) \equiv TS(M') \} \). As \(\rightarrow_{\theta} \) is Church Rosser and strongly normalizing, then if \(M_1 \equiv_{\theta} M_2 \) we get \(TS(M_1) \equiv TS(M_2) \). We set out to show that the notion of equivalence classes modulo \(TS \) helps us to capture reductional equivalence on terms that are strongly normalizing. For Examples 1 and 2, \(TS \) will help us establish that \(A \) and \(B \) are reducationally equivalent and that \(E_1, \ldots, E_4 \) are all reducationally equivalent.

2.2 Reductional Equivalence

In order to discuss reductional equivalence between terms, redexes will be extended (cf. Definition 24) so that a potential future redex like \((\lambda_y._x) \) in \(A \) of Example 1 will be treated as a first class redex and will be contracted in \(A \) even before the originator \((\lambda_y.\lambda_f.fy)\alpha \) has been contracted. Hence, with our extended notion of redexes and reduction we get in \(A \) another redex:

\[
r_2' = (\lambda_y.\lambda_f.fy)x, \quad \text{which when contracted in } A \text{ results in } (\lambda_y.\lambda_f.fy)x.
\]

Note that \(r_2' \) is \(\lambda_y \) matched with \(x \) (exactly as \(r_2 \) in \(B \)). Note moreover that contracting \(r_2' \) in \(A \) gives the same result as contracting \(r_2 \) in \(B \).

With this notion of extended redex, we observe that there is a bijective correspondence between the (extended) redexes of \(A \) and \(B \) of Example 1. That is, \(r_1 \) corresponds to \(r_1' \) and \(r_2 \) corresponds to \(r_2' \). Moreover, if one redex is contracted in \(A \), the reduct is syntactically equal to the reduct which results from contracting the corresponding redex in \(B \) and vice versa. That is, \(r_1 \) and \(r_1' \) yield the same values; similarly \(r_2 \) and \(r_2' \) yield the same values. This is illustrated by this example:
Example 4 The reduction paths from A and B of Example 1 are as follows:

\[\begin{align*}
A\text{-Path}_1 & : (\lambda_f.\lambda_y.\lambda_f.fy)x \rightarrow_{r_1} (\lambda_f.\lambda_f.fy)x \\
A\text{-Path}_2 & : (\lambda_f.\lambda_y.\lambda_f.fy)x \rightarrow_{r_2} (\lambda_f.\lambda_f.fy)x
\end{align*}\]

\[\begin{align*}
B\text{-Path}_1 & : (\lambda_f.\lambda_y.\lambda_f.fy)x \rightarrow_{r_1} (\lambda_f.\lambda_f.fy)x \\
B\text{-Path}_2 & : (\lambda_f.\lambda_y.\lambda_f.fy)x \rightarrow_{r_2} (\lambda_f.\lambda_f.fy)x
\end{align*}\]

It is clear that A and B have the same number of possible paths before reaching the normal form and that there is a bijective correspondence between the paths A\text{-Path}_1 and B\text{-Path}_1, and between A\text{-Path}_2 and B\text{-Path}_2.

These considerations lead us to define reductional equivalence \(\sim_{\text{equi}}\) by:

Definition 5 We say that A and B are reductionally equivalent and write \(A \sim_{\text{equi}} B\) iff

1. If A or B is in normal form then A is syntactically equal to B.
2. There is a bijective correspondence between the (extended) redexes of A and B.
3. Contracting an (extended) redex in A results in a value syntactically equal \((\equiv)\) or reductionally equivalent \(\sim_{\text{equi}}\) to the result of contracting the corresponding redex in B and vice versa.

Example 6 A \(\sim_{\text{equi}} B\) for A, B as in Example 1. Also \(E_1 \sim_{\text{equi}} E_2 \sim_{\text{equi}} E_3 \sim_{\text{equi}} E_4\) for \(E_1, E_2, E_3, E_4\) as in Example 2. But, due to clause 2 of the above definition, it is not the case that \(K_1 \sim_{\text{equi}} K_2\).

Remark 7 Note that the above clauses cannot handle the following two situations:

- Forbidding the reductional equivalence of terms such as: \((\lambda_y.I)\) and \((\lambda_y.I)\).
- Ensuring the compositionality of reductional equivalence in the sense that if \(A_1 \sim_{\text{equi}} A_2\) then \(A_1B \sim_{\text{equi}} A_2B\) and \(\lambda_x.A_1 \sim_{\text{equi}} \lambda_x.A_2\). For example, if \(A_1 \equiv \lambda_y.\lambda_x.y\) and \(A_2 \equiv \lambda_y.\lambda_x.y\), then \(A_1 \sim_{\text{equi}} A_2\) but \(A_1(\Pi) \not\sim_{\text{equi}} A_2(\Pi)\).

In order to handle the above situations, we need to add the following fourth clause to Definition 5:

4. Arguments of corresponding (extended) redexes are syntactically equal or reductionally equivalent.

We conjecture that in general it is undecidable whether two terms are reductionally equivalent.

Conjecture 8 It is undecidable whether two terms are reductionally equivalent.

2.3 Shuffle-equivalence, shuffle-reduction and summary of results

We settle in this paper for a new notion that we call shuffle-equivalence. Shuffle-equivalence is particularly related to \(\theta\) and to the notion of term-reshuffling of [8]. First, the term-reshuffling of [8] is the \(\theta\)-normal form. Moreover, shuffle-equivalence equates terms modulo term-reshuffling. Hence, if \(A \rightarrow_{\theta} B\) or \(A\) term-reshuffles to \(B\) then \(A\) and \(B\) are shuffle-equivalent. There are many cases however where \(A\) and \(B\) are shuffle-equivalent without \(A\) and \(B\) being \(\theta\)-related since shuffle-equivalence looks for the class of all terms that have the same term-reshuffling.

In order to give an intuition why we take classes modulo term-reshuffling, observe that extended redexes can be shuffled to “classical” (i.e., non extended) redexes without losing reductional equivalence. This can be seen by our terms \(A\) and \(B\) of Example 1. The extended redex \(r_1\) in \(A\) becomes classical in \(B\). We call \(B\) the reshuffled version of \(A\). We have seen that \(A \sim_{\text{equi}} B\).

Now to decide on the shuffle-equivalence of two terms \(A\) and \(B\), we reshuffle both \(A\) and \(B\) and if we get in both cases the same result, then we say that \(A\) and \(B\) are shuffle-equivalent. We denote the reshuffled version of a term \(A\) by \(TS(A)\); \(TS\) will be defined in Section 4.

It will be easier to understand what the operation \(TS\) does if we change the classical notation we have been using so far. So we depart from those researchers who use \(\theta\), by using an extended form of \(\theta\) based on the term-reshuffling of [8] (which turns out to be the \(\theta\)-normal form). Furthermore, we depart from [8] by working with the equivalence classes modulo term-reshuffling rather than the terms.
normalizing terms, two shuffle-equivalent terms are reductionally equivalent, i.e., shuffle-equivalence is

term reshuffling, etc., to apply to classes rather than terms. As classes capture existing extensions of reductions such as

λ-terms, we believe this is the closest decidable and does not coincide with reductional equivalence (which we conjecture to be undecidable).

Certainly, our notion of shuffle-equivalence captures existing extensions of reductions. For example, if $A \rightarrow B$ then A and B are shuffle-equivalent. The converse is not true (cf. Example 23).

Once we have an approximation to reductional equivalence, we will extend the notion of β-reduction to apply to classes rather than terms. As classes capture existing extensions of reductions such as θ, term reshuffling, etc., β-reduction over classes will capture all these notions. We say A shuffle-reduces to A' and we write $A \rightarrow_{\text{sh}} A'$ if $\exists B \in [A] \exists B' \in [A']$ such that $B \rightarrow_{\beta} B'$. We show (cf. Lemma 26) that both \rightarrow_{β} and the generalised reduction \rightarrow_{sh} of [4] are captured by \rightarrow_{sh}.

3 The formal machinery

The classical notation cannot extend the notion of redexes or enable reshuffling in an easy way. Item notation however can ([7] discusses various advantages of this notation). Let V be an infinite collection of variables over which x, y, z, \ldots range. In item notation, terms of the λ-calculus are:

$\mathcal{T} := V \cup (\mathcal{T}\mathcal{T}) \cup (\mathcal{V}\mathcal{T})$. We take A, B, C, \ldots to range over \mathcal{T}. We call $(A\delta)$ a δ-item, A the body of the item and $(A\delta)B$ means apply B to A (note the order). (λ_x) is called a λ-item. A redex starts with a δ-item (i.e., $(A\delta)$) next to a λ-item (i.e., (λ_x)).

Example 9 It is easy to see that $A \equiv (u\delta)(v\delta)(\lambda_x)(u\delta)(\lambda_y)(x\delta)(y\delta)x$ in item notation. By moving the item $(u\delta)$ to the right until it is next to its 'matching partner' (λ_x), this A reshuffles to $\mathcal{T}\mathcal{S}(A) \equiv (u\delta)(\lambda_x)(v\delta)(\lambda_y)(u\delta)(\lambda_x)(x\delta)(y\delta)x$.

Such a reshuffling in item notation is clearer than reshuffling in classical notation where the term

$((\lambda_x.(\lambda_y.xyz)v)w)u$ is reshuffled to $((\lambda_x.(\lambda_y.(\lambda_x.xyz)v)u)w$.

Note furthermore that the shuffling is not problematic because we use the Barendregt Convention (see below) which means that no free variable will become unnecessarily bound after reshuffling due to the fact that names of bound and free variables are distinct.

Example 10 E_1 of Example 2 reads $(\lambda_y.fxy)m$ corresponds to a \(\delta\)-pair' followed by the body of the abstraction, as follows:

$\lambda_y.fxy)m$ can be an infinite

As above, we will use obvious notions throughout like partner, match, bachelor, etc. In Figure 2, $(+\delta)$ and (λ_f) match or are partnered. So are the items $(n\delta)$ and (λ_y). $(y\delta)$ and $(x\delta)$ on the other hand are bachelor. The adjacent item pair $(+\delta)(\lambda_f)$ is called a \(\delta\)-pair and the non-adjacent items $(n\delta)(\lambda_y)$ form a \(\lambda\)-couple.

Term reshuffling amounts to moving \(\delta\)-items to occur next to their matching \(\lambda\)-items. Hence E_1 of Example 2 is reshuffled to $(+\delta)(\lambda_f)(n\delta)(\lambda_x)(n\delta)(\lambda_y)(y\delta)(x\delta)f$ and Figure 1 changes to Figure 4 (which represents E_2). Furthermore, Figures 2 and 3 (which represent E_2 and E_3) also change to Figure 4.

According to our shuffle-equivalence, E_4, E_5, E_6 and E_4 belong to the same class and are \sim_{equi}.
In item notation, each term A is the concatenation of zero or more items and a variable: $A \equiv s_1s_2 \cdots s_nx$ where each s_i is either a λ-item or a δ-item, and $x \in V$. These items s_1, s_2, \ldots, s_n are called the main items of A, x is called the heart of A, notation $\mathcal{O}(A)$.\footnote{Note that the term head variable used in [2] is a special case of our notion of heart. The head variable of a term in head normal form is the heart of the term. It is not the case however that the heart of a term is always a head variable.} We use s, s_1, s_i, \ldots to range over items. A concatenation of zero or more items $s_1s_2 \cdots s_n$ is called a segment. We use $\overline{s}, \overline{s}_1, \overline{s}_i, \ldots$ as meta-variables for segments. We write \emptyset for the empty segment. The items s_1, s_2, \ldots, s_n (if any) are called the main items of the segment. A concatenation of adjacent main items $s_m \cdots s_{m+k}$ is called a main segment. A $\delta\lambda$-segment is a δ-item immediately followed by a λ-item.

The weight of a segment \overline{s}, weight(\overline{s}), is the number of main items that compose the segment. Moreover, we define weight($\overline{s}x$) = weight(\overline{s}) for $x \in V$.

In reduction, the matching of the δ and the λ in question is the important thing. Well-balanced segments (w-b) separate matching δ and λ-items. Well-balanced segments are given inductively by:

(i) \emptyset is w-b, (ii) if \overline{s} is w-b then $(A\delta)\overline{s}(\lambda_x)$ is w-b, (iii) if $\overline{s}_1, \overline{s}_2, \ldots, \overline{s}_n$ are w-b, then the concatenation $\overline{s}_1 \overline{s}_2 \cdots \overline{s}_n$ is w-b.

In Figures 1, 2, 3, and 4, all segments that occur under a hat are w-b.

Lemma 11 Every term has one of the following three forms: (i) $(A_1\delta) \cdots (A_n\delta)x$, where $x \in V$ and $n \geq 0$, (ii) $(\lambda_x)B$, and (iii) $(A_1\delta) \cdots (A_n\delta)(B\delta)(\lambda_x)D$, where $n \geq 0$.

Definition 12 We say that two terms A and B are semantically equivalent iff $A \equiv B$.

Bound and free variables and substitution are defined as usual. We write $BV(A)$ and $FV(A)$ to represent the bound and free variables of A respectively. Note that in item notation, the scope of a λ-item is anything to the right of it. We write $A[x := B]$ to denote the term where all the free occurrences of x in A have been replaced by B. We take terms to be equivalent up to variable renaming and use \equiv to denote syntactical equality of terms. We assume the usual Barendregt variable convention BC and definition of compatibility (cf. [3]). We say that A is strongly normalizing with respect to a reduction relation \Rightarrow (written $SN_{\Rightarrow}(A)$) iff every \Rightarrow-reduction path starting at A terminates.

4 Shuffle-equivalence

In this section we follow [8] and rewrite terms so that all the newly visible redexes can be subject to \Rightarrow. We shall show that this term rewriting function is correct in the sense that $A \equiv B$ $TS(A)$, i.e., A
and \(\text{TS}(A)\) are semantically equivalent (cf. Lemma 18). Furthermore, we show that shuffle-equivalence is stronger than \(\rightarrow_e\) and than the term-reshuffling of [8] (cf. Lemma 22 and Example 23) and that shuffle-equivalence classes are decidable (cf. Lemma 21). In Section 5 (cf. Lemma 40), we show that shuffle-equivalence is indeed a (decidable) approximation of reductional equivalence.

Definition 13 The reshuffling function \(\text{TS}\) is defined such that:

\[
\begin{align*}
\text{TS}((\lambda x)C) &= (\lambda x)\text{TS}(C), \\
\text{TS}((\lambda x)\delta \cdots (\lambda x)\delta) z &= (\lambda x)\text{TS}(\text{TS}(B_1)\delta \cdots (\lambda x)\delta) z, \quad \text{if } z \in V, \\
\text{TS}((\lambda x)\delta \cdots (\lambda x)\delta)(\lambda x)E) &= (\lambda x)\text{TS}(\lambda x)\text{TS}((\lambda x)\delta \cdots (\lambda x)\delta)(\lambda x)E).
\end{align*}
\]

Note that the second and third clauses also apply for \(n = 0\).

Note that in this definition we use the notions of the previous section: if a term starts with a \(\lambda x\)-item then this item is bachelor. If a term starts with a partnered \(\delta\)-item then the last clause above applies. If a term starts with a bachelor \(\delta\)-item then the term starts with a positive number of bachelor \(\delta\)-items followed by either a variable in which case the second clause applies or a well-balanced segment in which case the last clause applies. With term reshuffling, well-balanced segments are rewritten so that \(\delta\lambda\)-couples become \(\delta\lambda\)-pair and all bachelor main \(\delta\)-items are moved to the right of all well-balanced main segments.

Example 14 The term \((\lambda x)(wJ)(xJ)(yJ)(vJ)(A,)(x6)(A,)(w6)(s6)t\)

will be reshuffled to the term \((\lambda x)(yJ)(vJ)(A,)(xJ)(A,)(A,)(vJ)(wJ)(sJ)t\).

It can be seen that for any \(A\), \(\text{TS}(A)\) is of the form \(\bar{s}_0 \bar{s}_1 x\) where \(x \in V\), \(\bar{s}_1\) consists of all bachelor main \(\delta\)-items of \(A\) and \(\bar{s}_0\) is of the form \(\bar{s}_2 \bar{s}_3 \cdots \bar{s}_n\) where \(\bar{s}_i\) is either a \(\delta\lambda\)-pair or a bachelor main \(\lambda\)-item.

Now, the following lemmas show some properties of \(\text{TS}\).

Lemma 15 (Decidability of \(\text{TS}\)) For any \(A, B\), it is decidable whether \(\text{TS}(A) \equiv \text{TS}(B)\).

Proof: This is obvious as \(\equiv\) is decidable.

Lemma 16

1. For all terms \(M\), \(\text{FS}(M)\) is well defined.
2. \(\text{FS}(M) = \text{FS}(\text{TS}(M))\)
3. If \(\bar{s}\) is well-balanced, then \(\text{TS}(A_1\delta \cdots (A_n\delta)B) \equiv \text{TS}(\bar{s}A_1\delta \cdots (A_n\delta)B)\).

Proof: 1. Every time at most one case of the definition of \(\text{TS}(M)\) is applicable, and weights of the resulting terms to which \(\text{TS}\) is applied become smaller or \(\text{TS}\) disappears. 2. Induction on the structure of \(M\). 3. By induction on weight(\(\bar{s}\)).

Lemma 17 For a term \(A\), \(\text{TS}(A) \equiv \bar{s}_0 \bar{s}_1 \bar{s}_2 A\), where \(\bar{s}_2\) consists of the term reshuftlings of all bachelor main \(\delta\)-items of \(A\) and \(\bar{s}_0\) is a sequence of term reshuftlings of main \(\delta\lambda\)-segments and bachelor main \(\lambda\)-items.

Proof: By induction on weight(\(A\)).

- Case \(A \equiv (\lambda x)C\), use IH on \(C\). Case \(A \equiv (B_1\delta \cdots (B_n\delta)x\), \(x \in V\), then \(\bar{s}_0\) is empty.
- \(A \equiv (B_1\delta \cdots (B_n\delta)(C\delta)(\lambda x)E\). Then \(\text{TS}(A) \equiv (\text{TS}(C)\delta)(\lambda x)\text{TS}((B_1\delta \cdots (B_n\delta)E). By the induction hypothesis \(\text{TS}((B_1\delta \cdots (B_n\delta)E)\) is of the form \(\bar{s}_0 \bar{s}_1 \bar{s}_2 E\) \(\equiv \bar{s}_0 \bar{s}_1 \bar{s}_2 A\).
Lemma 18 For all terms A, B and variable x:
1. $TS(A) = TS(TS(A))$, 2. $TS(A[x := B]) = TS(TS(A)[x := TS(B)])$, and 3. $A =_β TS(A)$.

Proof:
2. Induction on the number of symbols in A, using 1.
3. By induction on the number of symbols in A.

If $A ≡ (A_1δ)⋯(A_δδ)x$ where $x \in V$ or $A ≡ (λ_x)A_2$ then use the induction hypothesis.

If $A ≡ (A_1δ)⋯(A_δδ)(B_δ)(A_2\lambda_2)D$ then $TS(A) ≡ (TS(B_δ)(A_2\lambda_2)TS((A_1δ)⋯(A_δδ)D) ≡_β\lambda_2$

$(B_δ(A_1δ)⋯(A_δδ)D) =_β (A_1δ)⋯(A_δδ)D[x := B] ≡_β (A_1δ)⋯(A_δδ)(B_δ)(A_2\lambda_2)D$

Corollary 19 For all terms A, B, $TS(A) =_β TS(B)$ iff $A =_β B$.

Definition 20 (Shuffle-class and shuffle-equivalence) For a term A, we define $[A]$, the shuffle class of A, to be $\{B | TS(A) ≡ TS(B)\}$. We say that A and B are shuffle-equivalent iff $[A] = [B]$.

Lemma 21 For any A, B, it is decidable whether $A \rightarrow_θ B$. Moreover, if $A \in [B]$ then $A =_β B$.

Proof: Follows from Lemma 15 and Corollary 19.

The following shows that shuffle-equivalence contains $\rightarrow_θ$ and the term-reshuffling of $[A]$.

Lemma 22 If $A \rightarrow_θ B$ or A term-reshuffles to B in the sense of $[A]$, then A and B are shuffle-equivalent.

Proof: TS formalizes term-reshuffling of $[A]$ and the latter captures $\rightarrow_θ$.

The other way round does not always hold however:

Example 23 Let $A ≡ (A_1\lambda_1)(A_2\lambda_2)(A_3\lambda_3)(A_4\lambda_4)(A_5\lambda_5)A_4$ and $B ≡ (A_5\lambda_5)(A_3\lambda_3)(A_2\lambda_2)(A_1\lambda_1)(A_4\lambda_4)A_4$. A and B are shuffle-equivalent but are not related by $\rightarrow_θ$ (there exists $C \notin A$ however such that $B \rightarrow_θ C$ and $A \rightarrow_θ C$). Moreover, neither $A \equiv TS(B)$ nor $B \equiv TS(A)$, but $TS(A) = TS(B)$.

5 Shuffle-reduction

In this section, we introduce shuffle-reduction $\sim_β$, show that it is Church-Rosser and that shuffle-equivalence preserves reduction in the sense that if $A \rightarrow_β B$ then $A \sim_β B$. We show that shuffle-equivalence implies reductional equivalence on SN terms (Definition 5) and that shuffle-reduction on classes makes more redexes visible and allows for smaller terms during reductions.

Definition 24 (Shuffle-reduction, extended redexes and $\leftrightarrow_β$) – One-step shuffle-reduction $\sim_β$ is the least compatible relation generated by:

$A \sim_β B$ iff $\exists A' \in [A] \exists B' \in [B] [A' \rightarrow_β B']$

Many-step shuffle-reduction $\leftrightarrow_β$ is the reflexive and transitive closure of $\sim_β$ and $\approx_β$ is the least equivalence relation generated by $\sim_β$.

- An extended redex starts with the $δ$-item of a $δ$-couple (i.e. is of the form $(Cδ)\tilde{λ}(A_λ)A$ where $\tilde{λ}$ is well-balanced).
- $\leftrightarrow_β$ is the least compatible relation generated by $(B_1δ)\tilde{λ}(A_λ)B_2 \rightarrow_β \tilde{λ}(B_2[x := B_1])$ for $\tilde{λ}$ well-balanced, that is, $\leftrightarrow_β$-reduction contracts an (extended) redex. $\leftrightarrow_β$ is the reflexive and transitive closure of $\sim_β$ and $\approx_β$ the least equivalence relation closed under $\leftrightarrow_β$.

Example 25 Let $A ≡ (zδ)(wδ)(λ_x)(λ_y)y$. Then $[A] = \{A, (wδ)(λ_x)(zδ)(λ_y)y\}$. Moreover, $A \sim_β (wδ)(λ_x)z$ and $A \sim_β (zδ)(λ_y)y$.

$\leftrightarrow_β$ has been used in [4,8] where it was shown to be more general than other generalised notions of reduction introduced in the literature (such as γ of Section 6). The following lemma shows that $\sim_β$ is more general than $\rightarrow_β$ (the generalised reduction of [4,8]) and that it captures classical $β$-reduction.
Lemma 26 $\to_{\beta} \subseteq \to_{\beta} \subseteq \to_{\beta}$.

Proof: It suffices to show $(A\delta)(\lambda_x)C \to_{\beta} C[x := A]$ and $(A\delta)\beta(\lambda_x)C \to_{\beta} \beta C[x := A]$. $(A\delta)(\lambda_x)C \equiv (A\delta)\beta(\lambda_x)C \to_{\beta} 0C[x := A] \equiv C[x := A]$. Also, by Lemma 16, we know that $(A\delta)\beta(\lambda_x)C \in \beta(\delta)(\lambda_x)C$, and since $\beta(\delta)(\lambda_x)C \to_{\beta} \beta C[x := A]$ we have $(A\delta)\beta(\lambda_x)C \to_{\beta} \beta C[x := A]$. It is easy to show that these inclusions are strict. For example, if $A_1 \equiv (A\delta)(B\delta)(\lambda_x)(C\delta)(\delta)(\lambda_y)(\lambda_z)(\lambda_\epsilon)B$ and $A_2 \equiv (C\delta)(B\delta)(\lambda_x)(D\delta)(\lambda_y)(\lambda_z)(\lambda_\epsilon)E[t := A]$ (which have respectively the bracketing structures $[1][1][1]$ and $[1][1][1]$), then $A_1 \not\to_{\beta} A_2$ but $A_1 \not\to_{\beta} A_2$. Similarly, $(A\delta)(B\delta)(\lambda_x)(\lambda_y)C \to_{\beta} (B\delta)(\lambda_x)(\lambda_y)C[y := A]$ but $(A\delta)(B\delta)(\lambda_x)(\lambda_y)C \not\to_{\beta} (B\delta)(\lambda_x)(\lambda_y)C[y := A]. \Box$

Corollary 27 $\to_{\beta} \subseteq \not\to_{\beta} \subseteq \not\to_{\beta}$. \hfill \Box

Remark 28 It is not in general true that $A \to_{\beta} B \Rightarrow \exists A' \in [A] \exists B' \in [B] [A' \to_{\beta} B']$. This can be seen by the following counterexample:

Let $A \equiv ((\lambda_u)(\lambda_v)v)(\lambda_x)(\lambda_y)(\lambda_z)(\lambda_w)x$ and $B \equiv (w\delta)(\lambda_\nu)w$. Then $A \to_{\beta} \not\to_{\beta} (w\delta)(\lambda_\nu)w \not\to_{\beta} B$. But $[A]$ has three elements: $A, (w\delta)((\lambda_u)(\lambda_v)v)(\lambda_x)(\lambda_y)x$ and $(w\delta)(w\delta)((\lambda_u)(\lambda_v)v)(\lambda_x)x, [B] = \{B\}$ and if $A' \in [A]$ then the only \to_{β} reduct of A' is $(w\delta)(\lambda_\nu)w$, which doesn't $\not\to_{\beta}$ reduce to B. In Lemma 36 however, we find a correspondence between $\not\to_{\beta}$ on classes and \to_{β} on terms.

Lemma 29 $TS(A) \to_{\beta} B$ iff $TS(A) \to_{\beta} B$.

Proof: This is a direct consequence of Lemma 17. \hfill \Box

Lemma 30 If $A \to_{\beta} B$ then for all $A' \in [A]$, for all $B' \in [B]$, $A' \to_{\beta} B'$.

Proof: As $A \to_{\beta} B$ then $\exists A_1 \in [A] \exists B_1 \in [B] [A_1 \to_{\beta} B_1]$. Let $A', B' \in [A],[B]$ respectively. Then $A_1 \in [A'], B_1 \in [B'], A_1 \to_{\beta} B_1$. So $A' \to_{\beta} B'$. \hfill \Box

Corollary 31 $A \to_{\beta} B$ iff $TS(A) \to_{\beta} TS(B)$.

Remark 32 Note that $A \to_{\beta} B \not\Rightarrow TS(A) \not\to_{\beta} TS(B)$ nor do we have $A \to_{\beta} B \Rightarrow TS(A) \to_{\beta} TS(B)$. Take for example A and B where $A \equiv ((\lambda_u)(\lambda_v)v)(\lambda_x)(\lambda_y)(\lambda_z)(\lambda_w)x$ and $B \equiv (y\delta)(y\delta)(\lambda_u)(\lambda_v)v$. It is obvious that $A \to_{\beta} B$ (hence $A \not\to_{\beta} B$) yet $TS(A) \equiv A \not\to_{\beta} B$ nor $\not\to_{\beta} TS(B) \equiv B \not\to_{\beta} B$. The following lemma helps establish that \to_{β} is Church-Rosser:

Lemma 33 If $A \to_{\beta} B$ then $A \equiv_{\beta} B$.

Proof: Say $A' \in [A], B' \in [B], A' \to_{\beta} B'$. Then by Lemma 18: $A \equiv_{\beta} TS(A) \equiv TS(A') \equiv_{\beta} A' \equiv_{\beta} B' \equiv_{\beta} TS(B') \equiv TS(B) \equiv_{\beta} B$. \hfill \Box

Corollary 34

1. If $A \equiv_{\beta} B$ then $A \equiv_{\beta} B$.
2. $A \equiv_{\beta} B$ iff $A \equiv_{\beta} B$ iff $TS(A) \equiv_{\beta} TS(B)$. \hfill \Box

Theorem 35 (The general Church Rosser theorem for \equiv_{β})

If $A \equiv_{\beta} B$ and $A \equiv_{\beta} C$, then there exists D such that $B \equiv_{\beta} D$ and $C \equiv_{\beta} D$.

Proof: As $A \equiv_{\beta} B$ and $A \equiv_{\beta} C$ then by Corollary 34, $A \equiv_{\beta} B$ and $A \equiv_{\beta} C$. Hence, $B \equiv_{\beta} C$ and by CR for \equiv_{β}, there exists D such that $B \equiv_{\beta} D$ and $C \equiv_{\beta} D$. But, $M \equiv_{\beta} N$ implies $M \equiv_{\beta} N$. Hence we are done. \hfill \Box

As we noted in Remark 32, we can have $TS(C) \to_{\beta} D$ where $D \not\equiv_{\beta} TS(D)$. Nevertheless, term reshuffling preserves β-reduction. This is a generalisation of the result in [8] to equivalence classes.

Lemma 36 If $A, B \in T$ and $A \equiv_{\beta} B$ then $(\exists B' \in [B]) [TS(A) \to_{\beta} B']$. In other words, the following diagram commutes:

```
  A ---\to_{\beta} B
    \ |
    \ |  TS(A) \not\to_{\beta} B' \in [B]
    \ |  \
    \ |  \
    \ |  
```

Reductional behavior for lambda-terms 9
Hence we have provided a relation between terms which approximates reductional equivalence. Here we prove by induction on the structure of A' that if A' \rightarrow_{\beta} B' \in [B], then for some B'', TS(A') \rightarrow_{\beta} B'' \in [B]. The compatibility cases are easy, distinguish cases according to the definition of TS. If A' \equiv (C\delta)(\lambda x)E and B' \equiv E[x := C] \in [B] then TS(A') \equiv (TS(C)\delta)(\lambda x)TS(E) \rightarrow_{\beta} TS(E)[x := TS(C)] and by Lemma 18, TS(TS(E)[x := TS(C)]) \equiv TS(E[x := C]) \in [B].

Corollary 37 If A \sim_{\beta} B then there exist A_0, A_1, \ldots, A_n such that
(A \equiv A_0) \land (TS(A_0) \rightarrow_{\beta} A_1) \land (TS(A_1) \rightarrow_{\beta} A_2) \land \cdots \land (TS(A_{n-1}) \rightarrow_{\beta} A_n) \in [B])

Proof: By induction on \sim_{\beta}.

Now we show that shuffle-equivalence preserves strong normalization:

Lemma 38 Let A \in SN_{\sim_{\beta}}. Then for all A' \in [A], A' \in SN_{\sim_{\beta}}.

Proof: \forall B, A' \sim_{\beta} B implies A \sim_{\beta} B by Lemma 30. Hence, A' must be in SN_{\sim_{\beta}}.

Moreover, shuffle-reduction preserves \beta-strong normalization:

Lemma 39 A \in SN_{\sim_{\beta}} iff A \in SN_{\sim_{\beta}}.

Proof: As \rightarrow_{\beta} C \sim_{\beta} \Rightarrow is immediate. \Leftarrow is by using a result of \cite{20} which states that the length of the longest reduction of a term is invariant by \sigma-equivalence and by noting that shuffle-reduction is isomorphic to \beta-reduction modulo \sigma-equivalence. Another way of showing \Leftarrow is by induction on \langle d(A), A \rangle ordered by the lexicographic product ordering where d(A) denotes the maximum length of a \beta-reduction of A to its \beta-normal form. Case d(A) = 0 is trivial. Case d(A) \neq 0, we use induction on the structure of A as given in Lemma 11. The interesting case when A \equiv (A_1 \delta) \cdots (A_n \delta)(B\delta)(\lambda x)D, for n \geq 0 can be done by noting that (A_1 \delta) \cdots (A_n \delta)(B\delta)(\lambda x)D \rightarrow_{\beta} (A_1 \delta) \cdots (A_n \delta)(D[x := B]) which satisfies IH. Another way is to follow the lines of \cite{6}.

Now we show that shuffle-equivalence for SN terms implies reductional equivalence:

Lemma 40 Let A \in SN_{\sim_{\beta}}. Then for all A' \in [A], A' \sim_{equi} A.

Proof: It is sufficient to show that (B\delta)\overline{C} \sim_{equi} \overline{B}\delta)\overline{C} if \overline{C} is well-balanced and (B\delta)\overline{C} \in SN_{\sim_{\beta}}. We prove this by induction on the maximal length of \sim_{\beta}-reduction paths of (B\delta)\overline{C}.

If (B\delta)\overline{C} is in normal form then \overline{C} \equiv \emptyset so (B\delta)\overline{C} \equiv \overline{B}\delta)\overline{C}. If (B\delta)\overline{C} is not in normal form then contraction of some redex yields a term which is either of the form (B'\delta)\overline{C}' (if the redex was inside B, \overline{C} or C) or of the form \overline{C}' if the redex consisted of (B\delta) and its partnered item.

Then in the first case \overline{B}(B'\delta)\overline{C}' can reduce to \overline{B}'(B'\delta)'\overline{C}' by contracting the corresponding redex, now by the induction hypothesis (B'\delta)'\overline{C}' is reducibly equivalent to \overline{B}'(B'\delta)'\overline{C}'. In the second case, \overline{B}\delta)'\overline{C}' also reduces to \overline{C}'. Hence (B\delta)\overline{C} is reducibly equivalent to \overline{B}\delta)\overline{C}.

Hence we have provided a relation between terms which approximates reductional equivalence. Here are some facts on this relation and on reducational equivalence:

Fact 41 The following holds:
1. Let A \in SN_{\sim_{\beta}}. If TS(A) \equiv TS(B) then A \sim_{equi} B (Lemma 40).
2. TS(A) \equiv TS(B) does not necessarily imply A \sim_{equi} B (Example 42).
3. A \sim_{equi} B does not necessarily imply TS(A) \equiv TS(B) (Example 43 below).
4. TS(A) \equiv TS(B) is decidable (Lemma 15).
5. Let A \in SN_{\sim_{\beta}}. Then for all A' \in [A], A' \in SN_{\sim_{\beta}}.

Example 42 Let A \equiv (a\delta)(b\delta)(\lambda x)(\lambda y)((\lambda x)(x\delta)z)(\lambda z)(x\delta)z (i.e., (\lambda x)(\lambda y)(\lambda z)ba) and B \equiv (bb)(\lambda x)(a\delta)(\lambda y)((\lambda x)(x\delta)z)(\lambda z)(x\delta)z (i.e., (\lambda x)(\lambda y)(\lambda z)ba) for \Omega \equiv (\lambda x)(x\delta)(\lambda x)(x\delta). Now, TS(A) \equiv TS(B) but A \not\sim_{equi} B since contracting \Omega will not result in syntactically equivalent terms. This shows in 1. of Fact 41 that one cannot drop the assumption that A is strongly normalizing.

Example 43 Let A \equiv ((a\delta)(\lambda x)(x\delta)(\lambda y)y and B \equiv (a\delta)(\lambda x)(x\delta)(\lambda x)y. We have A \sim_{equi} B but TS(A) \not\equiv TS(B). The same holds for the terms (a\delta)(\lambda y)(y\delta)y and (a\delta)(\lambda y)(y\delta)y. This shows that the converse of 1. in Fact 41 does not hold.
We finish by showing that due to the fact that shuffle-reduction on classes makes more redexes visible, it allows for smaller terms during reductions.

Example 44 Let $M \equiv (\lambda_x.\lambda_y.(Czx\cdots x))B(\lambda_z.\bar{u})$ where B is a BIG term and \bar{u} is in normal form, $z \notin FV(\bar{u})$. Then $M \rightarrow_B (\lambda_y.\lambda_z.(CBB\cdots B))(\lambda_z.\bar{u}) \rightarrow_B (\lambda_z.\bar{u})(CBB\cdots B) \rightarrow_B \bar{u}$. Now the first and second redacts both contain $CBB\cdots B$, so they are very long. Shuffle reduction allows us to reduce M in such a way that all the new terms are of smaller size than M. This can be seen as follows:

$$TS(M) \equiv (\lambda_x.\lambda_y.(Czx\cdots x))\lambda_z.\bar{u}B \rightarrow (\lambda_x.\lambda_y.(Czx\cdots x))\lambda_z.\bar{u}B \rightarrow_B (\lambda_z.\bar{u})B \rightarrow_B \bar{u}.$$ So shuffle reduction might allow us to define clever strategies that reduce terms via paths of relatively small terms.

6 Comparison with previous work and Conclusion

The last decade has seen an explosion in new notions of reductions which can be used for various purposes. Attempts at generalising reduction can be summarized by four axioms:

$$\begin{align*}
\theta & \quad ((\lambda_x.N)P)Q \rightarrow (\lambda_x.NQ)P \\
\gamma & \quad (\lambda_x.\lambda_y.N)P \rightarrow (\lambda_y.(\lambda_x.N)P)Q \\
\gamma_C & \quad ((\lambda_x.\lambda_y.N)P)Q \rightarrow (\lambda_y.(\lambda_x.N)P)Q \\
g & \quad ((\lambda_x.\lambda_y.N)P)Q \rightarrow (\lambda_x.N[y:=Q])P
\end{align*}$$

These rules attempt to make more redexes visible and to contract non-visible redexes. γ is a combination of a θ-step with a β-step. γ_C makes sure that λ_y and Q form a redex even before the redex based on λ_x is contracted. By compatibility, γ implies γ_C. Moreover, $((\lambda_x.\lambda_y.N)P)Q \rightarrow (\lambda_y.(\lambda_x.N)P)P$ and hence both θ and γ_C put λ adjacently next to its matching argument. θ moves the argument next to its matching λ whereas γ_C moves the λ next to its matching argument. γ can be equally applied to explicitly and implicitly typed systems. The transfer of γ or γ_C to explicitly typed systems is not straightforward however, since in these systems, the type of y may be affected by the reducible pair $\lambda_x.\bar{P}$. E.g., it is fine to write $((\lambda_{x,y}.(\lambda_{y,z}.y))z)u \rightarrow (\lambda_{x,y}.(\lambda_{y,z}.y))zu$ but not to write $((\lambda_{x,y}.(\lambda_{y,z}.y))z)u \rightarrow (\lambda_{x,y}.(\lambda_{y,z}.y))zu$. Hence, we study η-like rules in this paper (which imply g-like rules).

Now, we discuss where generalised reduction has been used (cf. [13,9]). [19] introduces the notion of a premier redex which is similar to the redex based on λ_y and Q in the rule θ (above which we call generalised redex). [20] uses θ and γ (and calls the combination σ) to show that the perpetual reduction strategy finds the longest reduction path when the term is Strongly Normalizing (SN). [23] also introduces reductions similar to those of [20]. Furthermore, [11] uses θ (and other reductions) to show that typability in ML is equivalent to acyclic semi-unification. [21] uses a reduction which has some common themes with θ. Nederpelt’s thesis in [18] and [5] use θ whereas [14] uses γ to reduce the problem of β-strong normalization to the problem of weak normalization (WN) for related reductions. [12] uses θ and γ to reduce typability in the rank-2 restriction of the 2nd order λ-calculus to the problem of acyclic semi-unification. [16, 24, 22, 15] use related reductions to reduce SN to WN and [10] uses similar notions in SN proofs. [1] uses θ (called “let-C!”) as a part of an analysis of how to implement sharing in a real language interpreter in a way that directly corresponds to a formal calculus. [8] uses a more extended version of η (called term-reshuffling) and of g (called generalised reduction) where Q and N are not only separated by the redex $(\lambda_x.N)P$ but by many redexes (ordinary and generalised).

After looking carefully at all these attempts, we realised that none of the extensions of reductions introduced so far can play as general a role as approximating reductional equivalence. Of course all these notions have influenced our choice of the relation shuffle equivalence which we consider to be the best approximation of reductional equivalence.

This paper unifies all this previous work by looking for the class of reductionally equivalent terms. Such a class is conjectured to be undecidable but a decidable approximation of it which does indeed capture the existing new notions of reduction, is given in this paper. Our shuffle-equivalence is the closest decidable approximation to reductional equivalence up to now. Moreover, if $A \rightarrow B$ where \rightarrow is a new notion of reduction given by the existing accounts (such as those of Moggi, Ariola et al, Regnier, Kfoury and Wells, Vidal, Kamaredine and Nederpelt, etc.) then A and B belong to the same shuffle-equivalence class under our approach of this paper. Furthermore, shuffle-equivalence classes partition β-equivalence classes into smaller parts.
In addition to the many notions of reduction where $A \rightarrow B$ implies A and B have the same reductional behavior, we find many extensions \rightarrow_β of β-reduction \rightarrow_β where if $A \rightarrow_\beta B$ then $A \rightarrow_\epsilon B$ and where the equivalence relation generated by \rightarrow_ϵ is just β-equality. These extensions make more redexes visible and hence allow for more flexibility in reducing a term.

We propose shuffle-reduction as a generalisation of these extensions. Shuffle-reduction does indeed accommodate the existing accounts and achieve their goals. In particular, we show that using the Church-Rosser property, and that the equivalence relation generated by shuffle-reduction is just β-equality.

We used the item-notation to give a clearer description of shuffle-equivalence and shuffle-reduction. We think that the item-notation is a good candidate for answering the two questions posed in the conclusions of [20] concerning the existence of a syntax for terms realising shuffle-equivalence (which Regnier [20] calls ϵ-equivalence).

References

17. E. Moggi. Computational \lambda-calculus and monads. LICS'89, 1989.
If you want to receive reports, send an email to: m.m.j.philips@tue.nl (we cannot guarantee the availability of the requested reports)

In this series appeared:

97/06 M. Franssen Tools for the Construction of Correct Programs: an Overview, p. 33.
97/07 J.C.M. Baeten and J.A. Bergstra Bounded Stacks, Bags and Queues, p. 15.
97/08 P. Hoogendijk and R.C. Backhouse When do datatypes commute? p. 35.
97/13 W.M.P. van der Aalst Exploring the Process Dimension of Workflow Management, p. 56.
97/14 J.F. Groote, F. Monin and J. Springintveld A computer checked algebraic verification of a distributed summation algorithm, p. 28.
97/15 M. Franssen \(\lambda P \): A Pure Type System for First Order Logic with Automated Theorem Proving, p. 35.
97/16 W.M.P. van der Aalst On the verification of inter-organizational workflows, p. 23.
97/17 M. Vaccari and R.C. Backhouse Calculating a Round-Robin Scheduler, p. 23.
98/02 M. Voorhoeve State / Event Net Equivalence, p. 25
98/03 J.C.M. Baeten and J.A. Bergstra Deadlock Behaviour in Split and ST Bisimulation Semantics, p. 15.
98/04 R.C. Backhouse Pair Algebras and Galois Connections, p. 14
98/05 D. Dams Flat Fragments of CTL and CTL*; Separating the Expressive and Distinguishing Powers. P. 22.
98/10 T. Basten and J. Hooman Process Algebra in PVS
98/11 J. Zwanenburg The Proof-assistant Yarrow, p. 15
98/14 T. Verhoeff (artikel volgt) Checking verifications of protocols and distributed systems by computer. Extended version of a tutorial at CONCUR'98, p. 27.
99/01 V. Bos and J.J.T. Kleijn Structured Operational Semantics of Z , p. 27
99/02 H.M.W. Verbeek, T. Basten and W.M.P. van der Aalst Diagnosing Workflow Processes using Woflan, p. 44
99/03 R.C. Backhouse and P. Hoogendijk Final Dialgebra: From Categories to Allegories, p. 26
99/04 S. Andova Process Algebra with Interleaving Probabilistic Parallel Composition, p. 81
99/06 T. Basten and W. v.d. Aalst Inheritance of Workflows: An Approach to tackling problems related to change, p. 66
99/10 T.A.C. Willemse The Analysis of a Conveyor Belt System, a case study in Hybrid Systems and timed µ CRL, p. 44
99/14 A. Engels and S. Mauw Why men (and octopuses) cannot juggle a four ball cascade, p. 10
99/18 J.C.M. Baeten and T. Basten Partial-Order Process Algebra (and its Relation to Petri Nets), p. 79
00/01 J.C.M. Baeten and J.A. Bergstra Mode Transfer in process Algebra, p. 14
00/02 J.C.M. Baeten Process Algebra with Explicit Termination, p. 17.
00/03 S. Mauw and M.A. Reniers A process algebra for interworkings, p. 63.
00/04 R. Bloo, J. Hooman and E. de Jong Semantical Aspects of an Architecture for Distributed Embedded Systems*, p. 47.
<table>
<thead>
<tr>
<th>Date</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>00/05</td>
<td>J.F. Groote and M.A. Reniers</td>
<td>Algebraic Process Verification, p. 65.</td>
</tr>
<tr>
<td>00/06</td>
<td>J.F. Groote and J. v. Warnel</td>
<td>The Parallel Composition of Uniform Processes with Data, p. 19</td>
</tr>
<tr>
<td>00/07</td>
<td>C.A. Middelburg</td>
<td>Variable Binding Operators in Transition System Specifications, p. 27</td>
</tr>
<tr>
<td>00/08</td>
<td>I.D. van den Ende</td>
<td>Grammars Compared: A study on determining a suitable grammar for parsing and generating natural language sentences in order to facilitate the translation of natural language and MSC use cases, p. 33.</td>
</tr>
<tr>
<td>00/09</td>
<td>R.R. Hoogerwoord</td>
<td>A Formal Development of Distributed Summation, p. 35</td>
</tr>
<tr>
<td>00/11</td>
<td>T. Basten and D. Bošnački</td>
<td>Enhancing Partial-Order Reduction via Process Clustering, p. 14</td>
</tr>
<tr>
<td>00/12</td>
<td>S. Mauw, M.A. Reniers and T.A.C. Willemse</td>
<td>Message Sequence Charts in the Software Engineering Process, p. 26</td>
</tr>
<tr>
<td>00/13</td>
<td>J.C.M. Baeten, M.A. Reniers</td>
<td>Termination in Timed Process Algebra, p. 36</td>
</tr>
<tr>
<td>00/14</td>
<td>M. Voorhoeve, S. Mauw</td>
<td>Impossible Futures and Determinism, p. 14</td>
</tr>
<tr>
<td>00/15</td>
<td>M. Oostdijk</td>
<td>An Interactive Viewer for Mathematical Content based on Type Theory, p. 24.</td>
</tr>
</tbody>
</table>