Hybrid composites based on polyethylene and carbon fibres. Part 4: Influence of hybrid design on impact strength

Citation for published version (APA):

DOI:
10.1007/BF00744101

Document status and date:
Published: 01/01/1991

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Hybrid composites possess unique features that can be used to meet different design requirements with respect to strength, stiffness and impact resistance. A key parameter in hybrid composite structures is the arrangement of fibres within the hybrid, as demonstrated by studies on hybrid systems based on carbon, glass or aramid fibres. It was shown that the hybrid design strongly affects a variety of flexural properties such as the modulus \[1\], strength \[2\], fracture energy \[3-6\] and fatigue behaviour \[7\]. Hybridization of relatively brittle carbon fibres with tough, high-performance polyethylene (HP-PE) fibres has proven to be highly effective in improving the impact properties of carbon fibre-reinforced composites \[8-10\]. By varying the HP-PE/carbon fibre ratio, laminate design and adhesion level of the HP-PE fibres, impact properties of such hybrid composites can be tailored to a specific application requiring either improved energy absorption or damage tolerance. Previous studies on layered HP-PE/carbon hybrids were directed towards optimizing impact properties with respect to improved elastic energy absorption and enhanced damage tolerance \[8, 10\]. Related studies showed that intermingled hybrids, incorporating HP-PE fibres possessing low levels of adhesion exhibited a strong positive hybrid effect, i.e. a positive deviation from the properties predicted by the rule of mixtures, with reference to the total energy absorption under Charpy impact conditions \[9\]. These type of hybrids, exhibiting synergistic effects with respect to energy absorption, are quite promising for applications requiring kinetic energy dissipation such as crash-impacts. In this letter the influence of the fibre arrangement within the hybrid on this positive synergistic effect is discussed.

In order to study this influence, hybrids were prepared, varying greatly in degree of hybridization, but with a constant total fibre volume fraction and a constant carbon/HP-PE fibre ratio. Consequently, any change in the impact properties can only be the result of a difference in degree of hybridization. The following laminate constructions were prepared (Fig. 1): (1) plain HP-PE (A) and plain carbon composites (B), as a reference to determine the rule-of-mixtures behaviour; (2) sandwich constructions with three layer exchanges with either a carbon core (C) or HP-PE core (D); (3) hybrids with a more intimate stacking with respectively nine (E) and 16 (F) layer exchanges and, finally, (4) intermingled hybrids (G) with the highest degree of hybridization, in which the carbon and HP-PE fibres were dispersed on the level of the individual strands.

Hybrid composites were made of epoxy resin (Araldite, Ciba-Geigy, LY 556/HY 917/DY 070) reinforced with HP-PE fibres (Spectra 1000, 7.22 g cm\(^{-1}\)) and surface-treated carbon fibres (Graphite, XA-S/3K). In the case of the HP-PE fibres no surface treatment was carried out. Composites were manufactured from prepregs that were prepared using a drum winding technique. Intermingled prepregs were prepared by simultaneous winding of HP-PE and carbon yarns. The laminated composite structures were prepared by stacking the prepregs unidirectionally into a mould in the desired lay-up. These laminates were cured, using a vacuum bag, for 90 min in a hot press at 110 °C and a pressure of 700 kPa. Finally, the composites were post-cured for 12 h at 110 °C. The composite plates, with a thickness of 5 mm, had a total fibre volume fraction of 55% and in the case of hybrids a carbon/HP-PE fibre ratio of 1:1. From these plates, samples were cut with a length of 60 mm and a width of 10 mm, using a diamond cutting wheel.

Charpy impact tests were conducted utilizing a hydraulic tensile machine (Zwick Rel) equipped with a Charpy impact test-configuration. The samples were loaded on the lower side, over a span of 40 mm at a velocity of 3 m s\(^{-1}\). The tensile machine
instrumentation produced a load–time curve of the impact event from which the initiation, propagation and total energy absorption could be determined. The Charpy impact energies were calculated by dividing the total absorbed energies by the cross-sectional area of the sample. The experimental accuracy of all quoted impact energy values is within 8%. A dimensionless parameter called the “ductility index” (DI) has also been calculated. This DI is defined as the ratio of propagation energy to initiation energy [11], and it is an indication of the brittleness or ductility of a material. High values represent ductile materials and low values represent brittle behaviour.

Fig. 2 shows the load–time traces of the various laminate constructions. Fig. 2a clearly demonstrates the differences in failure mode between the brittle carbon composite and the more ductile HP-PE composite. Fig. 2b shows that the behaviour of the plain carbon and HP-PE composites is retained more when these components are positioned in the core of the hybrid. This is caused by the shear-dominated failure mode due to the low span-to-depth ratio of 8:1 in this dynamic three-point bending test. Since the highest shear stresses occur at the midplane of the composite beam, properties are controlled more by the properties of the core under these types of loading conditions.

Fig. 3 shows the test specimens after the impacts, revealing interlaminar delaminations especially at the interface of carbon and HP-PE, due to differences in stiffness between both components. Other energy-absorption mechanisms are the breakage of carbon fibres and debonding of HP-PE fibres. However, almost no HP-PE fibre fracture occurred in the HP-PE and hybrid specimens.

Fig. a and b shows the initiation energy and total impact energy, respectively, versus the number of layer exchanges in the hybrid. It shows that in this test set-up plain carbon composites (B) absorb more energy than plain HP-PE composites (A). Since HP-PE composites have a low shear strength compared with carbon composites, the carbon composite will have a higher total energy absorption. The first general observation with respect to the hybrid composites is that the initiation energy exhibits a negative hybrid effect (Fig. 4a), whereas the total absorbed energy shows a significant positive hybrid effect (Fig. 4b).

The effect that the energy absorption shifts from the initiation to the propagation phase results in an increase in DI-values as listed in Table I. In the case
of an intimately mixed hybrid, failure by delamination involves creating a larger amount of new surface than in a segregated hybrid. Since the positive hybrid effect is a result of an increase in damage, the amount of increase will be dependent on the number of sites that can initiate shear failure. Sandwich hybrids have the lowest number of layer exchanges and consequently the lowest energy absorption, whereas intermingled hybrids have the maximum number of shear failure sites and consequently the optimum composition for numerous delaminations and maximum energy absorption capability.

The hybrid composites with 16 layers (F) demonstrate, contrary to the other hybrids with a high degree of hybridization, a low energy absorption. This is caused by the test setup. Upon loading, the HP-PE layers will fail at relatively low loadings, leading to a stacking of partly separated thin carbon layers. The stiffness is now reduced to such an extent that the sample will be flexible enough to be pushed simply through the span without fracture of the carbon layers. Consequently, the carbon layers are not fully loaded until failure, which will lead to a lower energy absorption.

This short investigation shows that the impact performance of carbon-epoxy composites can be significantly improved by hybridization with HP-PE fibres. Hybridization leads to a significant positive hybrid effect in the absorbed impact energy, due to an increase in the amount of damage. This positive hybrid effect is influenced by the degree of hybridization. When the degree of hybridization is increased, the hybrid effect approaches a constant maximum value, which is obtained in the case of an intimately mixed hybrid.

Table I Ductility index values for HP-PE, carbon and hybrid composites

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Number of layer exchanges</th>
<th>Ductility index</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>11.1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>4.9</td>
</tr>
<tr>
<td>E</td>
<td>9</td>
<td>6.6</td>
</tr>
<tr>
<td>F</td>
<td>16</td>
<td>7.0</td>
</tr>
<tr>
<td>G</td>
<td>Intermingled</td>
<td>7.4</td>
</tr>
</tbody>
</table>

References

Received 11 December 1990
and accepted 6 February 1991