In situ ellipsometry during plasma etching of silica films on Si

Citation for published version (APA):

DOI:
10.1116/1.584779

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
In situ ellipsometry during plasma etching of SiO₂ films on Si

Citation: Journal of Vacuum Science & Technology B 7, 529 (1989); doi: 10.1116/1.584779
View online: http://dx.doi.org/10.1116/1.584779
View Table of Contents: http://scitation.aip.org/content/avs/journal/jvstb/7/3?ver=pdfcov
Published by the AVS: Science & Technology of Materials, Interfaces, and Processing

Articles you may be interested in

In situ infrared reflection absorption spectroscopic characterization of plasma enhanced chemical vapor deposited SiO₂ films
J. Appl. Phys. 64, 4704 (1988); 10.1063/1.341207

An in situ infrared study on the interaction of oxygen plasmas with Si and fluorine plasmas with SiO₂ surfaces
J. Vac. Sci. Technol. B 5, 1450 (1987); 10.1116/1.583840

In situ observation of lamp zone melting of Si films on patterned SiO₂
Appl. Phys. Lett. 48, 350 (1986); 10.1063/1.96548

A kinetic study of the plasma-etching process. I. A model for the etching of Si and SiO₂ in CₙFₘ/H₂ and CₙFₘ/O₂ plasmas

In situ Auger electron spectroscopy of Si and SiO₂ surfaces plasma etched in CF₄-H₂ glow discharges
J. Appl. Phys. 50, 5210 (1979); 10.1063/1.326660
In situ ellipsometry during plasma etching of SiO$_2$ films on Si

M. Haverlag, G. M. W. Kroesen, C. J. H. de Zeeuw,a* Y. Creyghton, T. H. J. Bisschops,
and F. J. de Hoog

Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, the Netherlands

(Received 10 October 1988; accepted 11 February 1989)

The etching of SiO$_2$ films on a Si substrate in an rf plasma in CF$_4$ has been studied with in situ ellipsometry. The etch rate was measured as a function of flow, rf power and pressure. An accurate analysis of the experimental data using numerical simulations based on multilayer models has yielded information both on the refractive index of the etched SiO$_2$ film and on the existence of a top layer. It could be established that a layer is present on top of the SiO$_2$ during etching, which is probably caused by roughening of the SiO$_2$ layer. Furthermore at high pressures (> 8 Pa) it was demonstrated that after the complete removal of the SiO$_2$ film a polymer layer starts growing on the Si substrate.

I. INTRODUCTION

Various methods are being used to determine the etch rate of plasma etching processes. They can be classified roughly into two groups: real time in situ methods which continuously monitor the effect of the plasma on the etching process and stylus methods where the effect of the plasma on the wafer is only observed after completion of the etching process. Within the first group, in addition to the use of an oscillating quartz crystal, several optical methods have been developed: determination of the change in reflected intensity of a quartz crystal,1,2 several optical methods which continuously monitor the effect of the plasma on the wafer,3,4 reflectometry,5,6 ellipsometry,7 and Diagnostics, like e.g., mass spectroscopy, microwave flow controller. The gas flow and the pressure can be varied independently by changing the pumping speed with a Balzers IB 063 throttle valve. The rf excitation voltage is provided by a combination of a Hewlett Packard 8116A function generator and an ENI 3100 LA rf power amplifier. The rf power is fed into the reactor through an inductively coupled matching network. One of the two parallel, cylindrically shaped electrodes is rf powered, the other one is electrically isolated from the vacuum system which is grounded, so its voltage can be controlled. The wafer can be mounted on either one of the electrodes. By selecting the appropriate conditions the reactor can operate in the plasma etching as well as in the reactive ion etching (RIE) mode. The wafers investigated in this study consist of a silicon (100) surface covered with an ~1.0 µm thick layer of SiO$_2$, which was formed by thermal oxidation. Typical experimental conditions are given in Table I.

The rotating analyzer ellipsometer (RAE) used for the experiments described has the standard polarizer sample analyzer (PSA) configuration. This type of ellipsometer has been discussed extensively by Aspnes and Studna.7 The light source is a stabilized He–Ne laser14 which produces linearly polarized light. The beam is circularly polarized by a quarter wave plate (to have enough light intensity at all settings of the polarizer angle). After this the beam passes through a fixed polarizer. The now linearly polarized beam is incident on the sample at an angle of 69.8 deg. The angle of

The single-wafer plasma etch reactor used in this experiment is designed to carry one 2-inch wafer. The vacuum vessel has a height of 0.2 m and a diam of 0.5 m, and holds a number of ports and windows to allow the execution of various diagnostics,11,12 like e.g., mass spectroscopy, microwave spectroscopy, and ellipsometry. The pumping system consists of a Pfeiffer WKP 250 rootsblower combined with a Pfeiffer DUO 030 A primary pump. The absolute gas pressure is measured with a MKS 370 HS-10 Baratron pressure gauge. The gas (CF$_4$) is fed through a Tylan FC 260 mass flow controller. The gas flow and the pressure can be varied independently by changing the pumping speed with a Balzers IB 063 throttle valve. The rf excitation voltage is provided by a combination of a Hewlett Packard 8116A function generator and an ENI 3100 LA rf power amplifier. The rf power is fed into the reactor through an inductively coupled matching network. One of the two parallel, cylindrically shaped electrodes is rf powered, the other one is electrically isolated from the vacuum system which is grounded, so its voltage can be controlled. The wafer can be mounted on either one of the electrodes. By selecting the appropriate conditions the reactor can operate in the plasma etching as well as in the reactive ion etching (RIE) mode. The wafers investigated in this study consist of a silicon (100) surface covered with an ~1.0 µm thick layer of SiO$_2$, which was formed by thermal oxidation. Typical experimental conditions are given in Table I.

The rotating analyzer ellipsometer (RAE) used for the experiments described has the standard polarizer sample analyzer (PSA) configuration. This type of ellipsometer has been discussed extensively by Aspnes and Studna.7 The light source is a stabilized He–Ne laser14 which produces linearly polarized light. The beam is circularly polarized by a quarter wave plate (to have enough light intensity at all settings of the polarizer angle). After this the beam passes through a fixed polarizer. The now linearly polarized beam is incident on the sample at an angle of 69.8 deg. The angle of

| TABLE I. Experimental conditions in the single-wafer etch reactor. |
|-----------------------------|-----------|
| Gas used | CF$_4$ |
| Gas flow | 0–50 sccm |
| Absolute pressure | 1.5–20 Pa |
| rf power | 5–30 W |
| Wafer diam | 2 in. |
| Electrode diam | 80 mm |
| Electrode spacing | 20 mm |
| rf frequency | 13.6 MHz |

incidence was measured using a geometrical method. The reflected beam passes an analyzer which rotates with a frequency of 50 Hz and impinges on the detector, an EG&G SGD 100A pin diode. The detector signal is sampled by a 12 bits ADC which is triggered 128 times every revolution of the analyzer by pulses produced by an optical encoder mounted on the analyzer. The data thus produced are processed by a microcomputer system based on the Motorola M6800 microprocessor. With this setup it is possible to measure a value of Δ and ψ (see Analysis of Data) each second. The relative accuracy of Δ and ψ is then within 0.01 deg in the region where Δ is around 90 deg. A schematic view of the reactor is given in Fig. 1.

III. ANALYSIS OF DATA

If the complex ratio ρ of the reflection coefficients R_s and R_a of light polarized respectively parallel and perpendicular to the plane of incidence on the sample is expressed in the two real angles φ and Δ

$$\rho = R_p/R_s = \tan \varphi \exp(i\Delta),$$

(1)

the intensity at the detector can be calculated to be

$$I(t) = g[a \cos 2A(t) + b \sin 2A(t) + 1],$$

(2)

where

$$a = \frac{\cos 2\varphi - \cos 2\psi}{1 - \cos 2 \varphi \cos 2 \psi},$$

(3)

$$b = \frac{\sin 2\varphi \cos \Delta \sin 2\psi}{1 - \cos 2 \varphi \cos 2 \psi},$$

(4)

$$g = F(R_s^2 + R_a^2)(1 - \cos 2 \varphi \cos 2 \psi).$$

(5)

Here F represents the amplification of the system which does not depend on the sample, P is the polarizer angle and $A(t)$ the analyzer angle as a function of time. In our case the polarizer angle P is chosen to be 45 deg and the analyzer angle A is a linear function of time, so the coefficients a and b and the angles Δ and φ can be obtained from Fourier analysis of the detector signal. The polarizer and analyzer angles were calibrated using the residue method. The birefringence of the vacuum windows was not measured but was accounted for in the data analysis.

Using the Fresnel equations, the relation between the ellipsometric angles Δ and ψ and the various experimental parameters can be calculated for a single gas-solid interface from

$$n_1 = n_0 \tan \varphi_0 \left(1 - \frac{4\rho}{(1+\rho)^2 \sin^2 \varphi_0}\right)^{1/2},$$

(6)

where n_1 and n_0 are the complex refractive indices of the solid and the gas respectively, φ_0 is the angle of incidence and ρ is the complex number defined in Eq. (1). If the solid is covered by a thin film with refractive index n_f and thickness d one obtains

$$\rho = \frac{A + Bx + Cx^2}{D + Ex + Fx^2},$$

(7)

with $x = \exp\left[\frac{-4\pi T}{A}(n_f^2 - n_0^2 \sin^2 \varphi_0)^{1/2}\right].$

(8)

Here λ represents the wavelength of the incident light, and $A, B, C, D, E,$ and F are functions of the Fresnel coefficients of the two interfaces (see Azzam and Bashara). If the refractive indices and the layer thickness are known the complex number ρ can be calculated. If a second layer is placed on top of the first one, one first calculates ρ for the substrate and the first layer with Eqs. (7) and (8). Then the system of substrate and first layer is treated as a new seminfinite substrate of which the effective refractive index can be evaluated from Eq. (6). Applying Eqs. (7) and (8) and using both the calculated effective refractive index and the parameters of the top layer the angles Δ and φ for the complete system can be calculated. By repeating this procedure it is possible to calculate the ellipsometric parameters of a system with an arbitrary number of layers. If the refractive index is a continuous function of the distance from the substrate the system may be treated as a large number of very thin, but homogeneous films.

The common way to represent ellipsometric data of an evolving system is to plot the measured points in the $\Delta-\psi$ plane. In our case this yields an egg shaped curve in the $\Delta-\psi$ plane. The shape of this curve gives information on the refractive index profile of the layer. An alternative way to represent the data is to plot the measured points in the $a-b$ plane. With this representation the effect of several parameters (like the real and imaginary part of the refractive index of the SiO$_2$ layer, the thickness and refractive index of the top layer, and window errors) can be more or less distinguished. Therefore the values of these parameters can be estimated through use of a trial and error fitting procedure. Once the evolution of the refractive index profile is known the etch rate can be accurately deduced from the time dependence of Δ and ψ or a and b.

IV. $\Delta-\psi$ CURVES

In Fig. 2 and 3 typical examples of $\Delta-\psi$ curves are shown as they are measured during etching in the RIE mode (see Table I for experimental conditions). The contours have a good resemblance to the model contour obtained through use of a numerical simulation model that calculates the ellipsometric effects of a substrate with a homogeneous layer.
The most important results of this simulation are listed in Table II.

In the case of a CF$_4$ plasma and pressures below 8 Pa, the curve stops at $\Delta = 180$, and $\psi = 12$ deg, showing that only a Si substrate remains, with possibly an undetectably thin fluorocarbon film on top of this. 18 Since no change of Δ and ψ is observed after this, roughening of the Si surface does not occur significantly. Above 8 Pa, the curves do not reach the point where $\Delta \approx 180$ deg but inverse in direction and proceed in a different direction in the $\Delta-\psi$ plane. This indicates that a thick polymer layer with a refractive index of ~ 1.50 is deposited on the Si surface. The refractive index of this layer agrees fairly well with the value of 1.48 obtained by Oehrlein et al.19 The polymer composition will probably Teflon-like, in correspondence with the results of Thomas et al.19 The position on the ellipsometric “egg” where the curve starts to deviate depends on the pressure. This behavior can be explained if we take into account that the SiO$_2$ layer is roughened during etching (see Sec. V). Therefore the thickness of the SiO$_2$ layer is not constant over the surface. Thus at the endpoint of the etching process some parts of the SiO$_2$ will already be etched completely, while other parts are still being etched. At higher pressures a fluorocarbon layer starts to deposit on the etched parts. Therefore the effective layer thickness will not reach zero at a high pressure. Since the ion bombardment is less effective20 at higher pressures, the etch rate is decreased in this situation (see etch rates). Thus the point where the effective layer thickness starts to increase, causing the curve to reverse direction, gives information about the roughness of the SiO$_2$ layer during etching. Our measurements yielded a value of 15–20 nm for the highest pressure used.

V. $a-b$ CURVES

Representation of the data in the $a-b$ plane offers the possibility to obtain more information about the layer on top of the SiO$_2$. To study the ellipsometric effects due to this layer, we have used a model in which the layer is simulated by a thin homogeneous layer. Furthermore we have included a simulation of the birefringence of the vacuum windows, since this was not measured during the experiments (Fig 4). The effects of the top layer and windows in the $a-b$ plane are shown in Fig. 5.

For the top layer two different refractive indices can make the simulations fit with the experimental data. The first one yields a refractive index of 1.2 and a thickness of ~ 250 Å. The second yields a refractive index of 2.0 with possibly a small imaginary part and a layer thickness of ~ 35 Å. The first possibility points to a SiO$_2$ layer with a roughened top layer of ~ 250 Å, which compares well with the value found from the endpoint behavior. The thickness of the top layer

Table II: Results of numerical simulation of the $\Delta-\psi$ curve described during RIE etching.

<table>
<thead>
<tr>
<th>Total layer thickness</th>
<th>1 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etch rate</td>
<td>1.5 nm/s (at 8 Pa)</td>
</tr>
<tr>
<td>Refractive index Si</td>
<td>3.88 - 0.059i</td>
</tr>
<tr>
<td>Refractive index SiO$_2$</td>
<td>1.45 - 0.001i</td>
</tr>
<tr>
<td>Thickness of polymer layer</td>
<td>15-20 nm (at 20 Pa)</td>
</tr>
<tr>
<td>Refractive index polymer layer</td>
<td>1.50</td>
</tr>
<tr>
<td>Thickness of top layer</td>
<td>20-25 nm (at all pressures)</td>
</tr>
<tr>
<td>Refractive index top layer</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fig. 2. Measured $\Delta-\psi$ contour, $p = 30$ Pa, flow = 20 std cm3/min (scm), $P_e = 31$ W. Each full revolution of the egg-shaped curve corresponds to an etched thickness of ~ 280 nm. At the end of the process (see insert) a deviation of the ideal curve is observed caused by deposition of a fluorocarbon layer.

Fig. 3. Measured $\Delta-\psi$ contour, $p = 5$ Pa, flow = 30 scm, $P_e = 31$ W. In this case the curve does not reverse direction after the endpoint (see insert). This indicates that no thick polymer film starts growing at lower pressures ($p < 8$ Pa).

Fig. 4. Simulation model used to calculate the ellipsometric effects of $a-b$ layer on top of the SiO$_2$. **Fig. 5.** Total layer thickness of polymer layer: $T = 40$ std cm3/min. Other process parameters remain the same as for Fig. 1, except the pressure, which is 8 Pa.
was almost constant during the etching process. This suggests that the morphology of the top layer is changed by the CF$_4$ plasma, as already known from transmission electron microscopy (TEM) and reflection high-energy electron diffraction (RHEED) studies.21,22 Small amounts of electrode material which are sputtered by the ion bombardment may well be responsible for this.23,24 The second possibility suggests that a thin fluorocarbon layer with a large carbon-to-fluorine ratio (comparable to layers found on Si18,25) and therefore a high refractive index is present on top of the SiO$_2$ during etching. The thickness is much higher than the one
found by Oehrlein et al. who used x-ray photoelectron spectroscopy (XPS) after partly etching of SiO$_2$ in a CF$_4$/40% H$_2$ plasma. The second model is therefore not very likely.

VI. ETCH RATES

The etch rate has been determined as a function of gas pressure, flow, and rf power (Figs. 6(a)–8) and appears to be at best 1.5 nm/s, which is a standard value for the type of reactor used. Also included are values of the average electron density, as measured with microwave techniques in the same reactor. The results indicate that the etch rate increases as a function of flow and rf-power, and decreases as a function of pressure above 8 Pa. These results can be related to the total flux of positive ions. The ion flux bombarding the grounded electrode has been measured by Bisschops, discriminated on both mass and energy of the ions. Results of these measurements are given in Figs. 6(b)–7(b).

If the trends of the ion flux on the grounded electrode as a function of pressure and rf power are compared with the etch rates, we can see that a strong correlation exists between the two. At low power levels, the etch rate and the ion flux decrease dramatically. The increase in the etch rate with flow may be caused by a decreasing recombination of positive and negative ions. To study this, densities of negative ions as a function of flow are needed. An attempt to determine these densities will be carried out in future.

VII. CONCLUSIONS

It has been shown that in situ ellipsometry can provide for an excellent monitor of the etching process during single wafer etching of an SiO$_2$ film on a Si substrate. Not only an accurate determination of the etch rate is possible but also the refractive index of the SiO$_2$ film and thickness of a top layer or an emerging polymer layer can be obtained. The top layer is caused by roughening of the SiO$_2$ layer and its thickness is estimated to be 200 Å. Under the conditions used in this study, the etch rate is found to be at best 1.5 Å/s, which is a typical value for these conditions. The refractive index of the SiO$_2$ film was 1.45, and was constant over the entire depth. The imaginary part of the refractive index of the SiO$_2$ layer was $\sim 10^{-3}$. The strong correlation between the etch rate and the total ion flux as a function of pressure, and rf power indicates once more that positive ions play an important role in the etch reaction.

ACKNOWLEDGMENTS

We would like to thank Ries van der Sande for technical assistance, Serge Radulovic for assistance in some of the experiments, Lex Straaijer for fruitful discussion and Philips Research Laboratories for putting at our disposal the wafers used in the experiments.