One-parameter co-semigroups on sequentially complete locally convex topological vector spaces

Citation for published version (APA):

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
One-parameter c_0-semigroups on sequentially complete locally convex topological vector spaces

by

S.J.L. van Eijndhoven and M.M.A. de Rijcke
Introduction

In the past decades research has been done on one-parameter \(c_0\)-semigroups of continuous linear operators on complete, locally convex, vectorspaces, mainly with the intention to find alternatives for the celebrated Hille–Yosida theorem for one parameter \(c_0\)-semigroups on Banach spaces. But the simple example of the translation group on the Fréchet space \(C(\mathbb{R})\) of continuous functions from \(\mathbb{R}\) into \(\mathbb{C}\) illustrates that the resolvent set of the infinitesimal generator of a \(c_0\) group on a Fréchet space can be empty. So a characterization of the infinitesimal generator in terms of the resolvent is not likely and one replaces the notion of resolvent by the notion of asymptotic resolvent (cf. [Wa], [Ok]) and distributional resolvent (cf. [Kom]). Also we refer to [Bab] and [Dem].

The intentions of this paper are different. We analyse one-parameter \(c_0\)-semigroups \((\pi_t)_{t \geq 0}\) on locally convex vectorspaces \(V\) by exploring the relationship between \((\pi_t)_{t \geq 0}\) and the \(c_0\)-semigroup \((\sigma_t)_{t \geq 0}\) of translations on \(C(\mathbb{R}^+, V)\), the space of continuous functions from \(\mathbb{R}^+\) into \(V\). Techniques, used in the aforementioned papers, becomes more transparent and get a natural setting. Let us first introduce some notational conventions.

Throughout this paper by \(V\) a sequentially complete, locally convex, vector space is denoted. The locally convex topology of \(V\) is assumed to be brought about by a separating collection of seminorms, \(\{s_\nu \mid \nu \in \mathcal{D}\}\), where \(\mathcal{D}\) is a directed set such that for all \(\nu_1, \nu_2 \in \mathcal{D}\)

\[
\nu_1 \leq \nu_2 \Rightarrow \forall x \in V : s_{\nu_1}(x) \leq s_{\nu_2}(x).
\]

Since each finite subset of \(\mathcal{D}\) has an upperbound a linear operator \(L\) from \(V\) into \(V\) is continuous if and only if

\[
(0.1) \quad \forall \nu \in \mathcal{D} \exists \rho \in \mathcal{D} \exists C > 0 \forall x \in V : s_\nu(Lx) \leq Cs_\rho(x).
\]

Further, a collection \(\Lambda\) of linear operators on \(V\) is equicontinuous if and only if

\[
(0.2) \quad \forall \nu \in \mathcal{D} \exists \rho \in \mathcal{D} \exists C > 0 \forall \nu \in \mathcal{A} \forall x \in V : s_\nu(Lx) \leq Cs_\rho(x).
\]

The concepts (0.1) and (0.2) are used frequently in this paper. For other elementary topics of the theory of locally convex vector spaces we refer to the monographs of Conway [Con], Schaefer [Sch] and Treves [Tre]. They are used without further reference.

Let \((\pi_t)_{t \geq 0}\) be a locally equicontinuous \(c_0\)-semigroup of continuous linear mappings on \(V\). Then the flow operator \(\mathcal{F}_x\) on \(V\), defined by

\[
(0.3) \quad (\mathcal{F}_x(t))(t) = \pi_t x, \quad t \in \mathbb{R}^+, \quad x \in V,
\]

is a continuous linear mapping from \(V\) into \(C(\mathbb{R}^+, V)\) where the latter space is endowed with the compact–open topology, i.e. the topology of uniform convergence on compacta. For \((\sigma_t)_{t \geq 0}\) denoting the translation semigroup on \(C(\mathbb{R}^+, V)\)

\[
(0.4) \quad (\sigma_t f)(\tau) = f(t + \tau), \quad t, \tau \in \mathbb{R}^+, \quad f \in C(\mathbb{R}^+, V),
\]

is a continuous linear mapping from \(C(\mathbb{R}^+, V)\) into \(C(\mathbb{R}^+, V)\).
there is the intertwining relation

\[(0.5) \quad \sigma_t \mathcal{F}_r = \mathcal{F}_r \pi_t, \quad t \in \mathbb{R}^+ .\]

The basic idea of the paper is first to study properties of the special semigroup \((\sigma_t)_{t \geq 0}\) on \(C(\mathbb{R}^+, V)\) which then carry over to arbitrary locally equicontinuous semigroups \((\sigma_t)_{t \geq 0}\) by means of the flow operator \(\mathcal{F}_r\) using (0.5). We sketch briefly the results of this paper.

First we introduce integration and differentiation in \(C(\mathbb{R}^+, V)\). For that we introduce \(\text{bv}_c(\mathbb{R}^+)\) as the collection of all left continuous functions from \(\mathbb{R}\) into \(C\), with bounded variation so that for some \(T > 0\) dependent of the choice of \(\mu\)

\[
\mu(t) = 0, \quad t \leq 0 \text{ and } \mu(t) = \mu(T), \quad t \geq T .
\]

Each \(\mu \in \text{bv}_c(\mathbb{R}^+)\) induces an integration operator \(I[\mu]\) on \(C(\mathbb{R}^+, V)\),

\[
I[\mu]f = \int_{\mathbb{R}^+} f(\tau) d\mu(\tau), \quad \text{(Riemann–Stieltjes)},
\]

and \(I[\mu]\) is continuous from \(C(\mathbb{R}^+, V)\) into \(V\). With this concept of integration, we define the concept of differentiation, introducing the spaces \(C^k(\mathbb{R}^+, V)\) of \(k\)-times differentiable functions from \(\mathbb{R}^+\) into \(V\) together with the differentiation operator \(\mathcal{D}\). We prove that \(\mathcal{D}\) is the infinitesimal generator of the semigroup \((\sigma_t)_{t \geq 0}\). One of the key results is the following

\[(0.6) \quad \text{Let } p \text{ be a polynomial. Then } p(\mathcal{D}) \text{ with domain } C^k(\mathbb{R}^+, V) \text{ where } k = \text{degree}(p) \text{ is closed as a densely defined operator in } C(\mathbb{R}^+, V). \text{(cf. theorem 2.5.)}\]

For the proof of this statement, we show as an auxiliary result that \(p(\mathcal{D})\) has a continuous right inverse and that its null space

\[
\{ f \in C^k(\mathbb{R}^+, V) \mid p(\mathcal{D}) f = 0 \}
\]

is closed.

The set \(\text{bv}_c(\mathbb{R}^+)\) is a convolution ring with identity and without zero divisors. We introduce the convolution operators on \(C(\mathbb{R}^+, V)\),

\[(0.7) \quad \sigma[\mu]f = \int_{\mathbb{R}^+} \sigma_t f d\mu(t), \quad f \in C(\mathbb{R}^+, V), \quad \mu \in \text{bv}_c(\mathbb{R}^+)\]

and with it the concept of approximate identity, i.e. a sequence \((\mu_k)_{k \in \mathbb{N}}\) in \(\text{bv}_c(\mathbb{R}^+) \cap C^\infty(\mathbb{R})\) satisfying

\[(0.8) \quad \sigma[\mu_k]f \to f \text{ as } k \to \infty \]

for all \(f \in C(\mathbb{R}^+, V)\). The collection \(\text{bv}_c(\mathbb{R}^+) \cap C^\infty(\mathbb{R})\) consists of mollifiers, so
By (0.8) and (0.9), $C^\infty(\mathbb{R}^+, V)$ is sequentially dense in $C(\mathbb{R}^+, V)$. The above results for the translation semigroup $(\sigma_t)_{t\geq 0}$ are applied to prove the following for a locally equicontinuous c_0-semigroup $(\pi_t)_{t\geq 0}$ on V.

(0.10) Let (δ_x) denote the infinitesimal generator of $(\pi_t)_{t\geq 0}$ with domain $\text{dom}(\delta_x)$. Then for all $k \in \mathbb{N}$, $x \in \text{dom}(\delta^k_x) \Rightarrow \mathcal{F}_x x \in C^k(\mathbb{R}^+, V)$. (Cf. Lemma 5.1.)

(0.11) Let p be a polynomial. Then $p(\delta_x)$ with domain $\text{dom}(\delta^k_x)$, $k = \text{degree}(p)$, is closed as a densely defined operator in V. (Cf. Theorem 5.4.)

(0.12) For $\mu \in \text{bv}_c(\mathbb{R}^+)$ define $\pi[\mu]$ on V by

$$\pi[\mu]x = \int_{\mathbb{R}^+} \pi_t x \, d\mu(t), \quad x \in V.$$

Then $\sigma[\mu]\mathcal{F}_x = \mathcal{F}_x \pi[\mu]$, and if $\mu \in C^\infty(\mathbb{R})$

$$\forall x \in V : \pi[\mu]x \in \text{dom}^\infty(\delta_x).$$

(0.13) There exists a sequence $(\mu_k)_{k \in \mathbb{N}}$ in $\text{bv}_c(\mathbb{R}^+) \cap C^\infty(\mathbb{R})$ such $\pi[\mu_k]x \to x$ as $k \to \infty$ for all $x \in V$. (Cf. Lemma 4.7.)

(0.14) Let $M \subset V$ be a closed subspace with $\pi_t(M) \subseteq M$ for all $t \in \mathbb{R}^+$. Then $\pi[\mu](M) \subseteq M$ for all $\mu \in \text{bv}_c(\mathbb{R}^+)$ and $M \cap \text{dom}^\infty(\delta_x)$ is dense in M. (Cf. Lemma 6.2 and 6.3.)

(0.15) Let K be a densely defined closed linear operator in V satisfying

$$\forall t \in \mathbb{R}^+ \pi_t(\text{dom}(K)) \subseteq \text{dom}(K), \quad \text{dom}^\infty(\delta_x) \subseteq \text{dom}(K)$$

and

$$\forall t \in \mathbb{R}^+ \forall x \in \text{dom}(K) K \pi_t x = \pi_t K x.$$

Then $\text{dom}^\infty(\delta_x)$ is a core for K, i.e.

$$\text{graph}(K) = \{ [x; Kx] \mid x \in \text{dom}^\infty(\delta_x) \}.$$

(Cf. Theorem 6.7.)

1 The space $C(\mathbb{R}^+, V)$, integration

By $C(\mathbb{R}^+, V)$ we denote the vector space of all continuous functions from \mathbb{R}^+ into V. Here \mathbb{R}^+ is the closed semi–infinite interval $[0, \infty)$. So a function $f : \mathbb{R}^+ \to V$ belongs to $C(\mathbb{R}^+, V)$ if and only if

$$\forall t \in \mathbb{R}^+ \forall \nu \in D \forall \epsilon > 0 \exists \delta > 0 \forall s \in \mathbb{R} : |t - s| < \delta \Rightarrow s_\nu(f(t) - f(s)) < \epsilon.$$
The triangle inequality ensures that \(t \mapsto s_\nu(f(t)) \) is continuous from \(\mathbb{R}^+ \) into \(\mathbb{R}^+ \) for each \(\nu \in \mathbb{D} \). Hence on \(C(\mathbb{R}^+, V) \) the following seminorms are defined: for \(\nu \in \mathbb{D} \) and \(K \subset \mathbb{R}^+ \) compact,

\[
s_{\nu,K}(f) := \max_{t \in K} s_\nu(f(t)) ;
\]

\(C(\mathbb{R}^+, V) \) is endowed with the related locally convex topology. In fact, this is the compact-open topology; so a net in \(C(\mathbb{R}^+, V) \) is convergent iff it converges uniformly on each compact subset \(K \) of \(\mathbb{R}^+ \).

Sequential completeness of \(V \) transfers to the space \(C(\mathbb{R}^+, V) \).

Proposition 1.1. The locally convex space \(C(\mathbb{R}^+, V) \) is sequentially complete.

Also, as in the classical situation with \(V = C \) we have

Proposition 1.2. For each \(K \subset \mathbb{R}^+ \) compact and each \(f \in C(\mathbb{R}^+, V) \), the restriction \(f|_K \) is uniformly continuous from \(K \) into \(V \), i.e.

\[
\forall \nu \in \mathbb{D} \quad \forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall t, s \in K : |t - s| < \delta \Rightarrow s_\nu(f(t) - f(s)) < \epsilon .
\]

Next we introduce Riemann–Stieltjes integration on \(C(\mathbb{R}^+, V) \). As in [DS] we define the space \(bV(\mathbb{R}^+) \) consisting of all left-continuous functions \(\mu \) from \(\mathbb{R} \) into \(C \) with \(\mu(t) = 0 \), \(t \leq 0 \) for which there is \(A > 0 \) such that for any \(m \in \mathbb{N} \) and ordered \(m \)-tuple, \(0 = t_0 < t_1 < ... < t_m \),

\[
\sum_{j=1}^{m} |\mu(t_j) - \mu(t_{j-1})| \leq A .
\]

Then \(\text{var}(\mu) \), the variation of \(\mu \), is the infimum of all constants \(A \) which satisfy (*)'. By \(b\text{v}_c(\mathbb{R}^+) \) the subspace of \(bV(\mathbb{R}^+) \) is denoted, consisting of those \(\mu \in bV(\mathbb{R}^+) \) for which \(T > 0 \) exists such that \(\mu(t) = \mu(T) \) for \(t \geq T \).

Now take a fixed \(\mu \in b\text{v}_c(\mathbb{R}^+) \), with corresponding \(T > 0 \). Let \(\mathcal{P}[0,T] \) denote the set of all partitions of \([0,T]\) with the usual partial ordering and define for \(\alpha \in \mathcal{P}[0,T] \), \(\alpha = < m; t_0, ..., t_m > \) the linear operator \(I_{\mu,\alpha} \) on \(C(\mathbb{R}^+, V) \) by

\[
I_{\mu,\alpha} f = \sum_{j=1}^{m} (\mu(t_j) - \mu(t_{j-1})) f(t_{j-1}) .
\]

Then \(I_{\mu,\alpha} \) is continuous from \(C(\mathbb{R}^+, V) \) into \(V \). In particular with

\[
\alpha_n = < 2^n; t_{n,0}, ..., t_{n,2^n} > , \quad t_{n,j} = \frac{j}{2^n} T ,
\]

we have \(\alpha_n \prec \alpha_{n+1} \) and for each \(f \in C(\mathbb{R}^+, V) \) due to the uniform continuity of \(f \) on \([0,T]\), the sequence \((I_{\mu,\alpha_n} f)\) is Cauchy in \(V \). Let \(I_{\mu} f \) denote its limit. Again the uniform continuity of \(f \) on \([0,T]\) guarantees that the net \((I_{\mu,\alpha} f)_{\alpha \in \mathcal{P}[0,T]}\) converges to \(I_{\mu} f \). Instead of \(I_{\mu} f \) we use also the more suggestive integral notation
From the above construction it follows that for each \(\nu \in \mathcal{M} \), \(\mu \in \text{bv}_c(\mathbb{R}^+) \) and \(f \in C(\mathbb{R}^+, V) \)

\[
\int \nu f d\mu \quad \text{or} \quad \int f(\tau) d\mu(\tau).
\]

with \(K = [0, T], T \) sufficiently large. So \(I_\mu \) is a continuous linear operator from \(C(\mathbb{R}^+, V) \) into \(V \). Besides, for each continuous linear functional \(\mathcal{L} \) on \(V \) and \(f \in C(\mathbb{R}^+, V) \)

\[
(\mathcal{L} \circ I_\mu)(f) = \int_{\mathbb{R}^+} \mathcal{L}(f(t)) d\mu(t)
\]
as an ordinary Riemann–Stieltjes integral.

By taking \(\mu_{a,b} \in \text{bv}_c(\mathbb{R}^+) \) with

\[
\mu_{a,b}(t) = \begin{cases}
0 , & t < a , \\
 t - a , & a \leq t < b , \\
b - a , & t \geq b ,
\end{cases}
\]

we define for \(f \in C(\mathbb{R}^+, V) \)

\[
\int_{a}^{b} f(\tau) d\tau := \int_{\mathbb{R}^+} f d\mu_{a,b}.
\]

We shall use frequently the following simple observation

Proposition 1.3. For each complex valued \(\varphi \in C(\mathbb{R}) \) and \(f \in C(\mathbb{R}^+, V) \), \(t \mapsto \varphi(t) f(t) \) from \(\mathbb{R}^+ \) into \(V \) is continuous.

We proceed by introducing the "primitivation" operator \(J \) on \(C(\mathbb{R}^+, V) \). For \(f \in C(\mathbb{R}^+, V) \) we let \(Jf : \mathbb{R}^+ \to V \) be defined by

\[
(Jf)(t) = \int_{0}^{t} f(\tau) d\tau , \quad t \in \mathbb{R}^+ .
\]

Then \(Jf \in C(\mathbb{R}^+, V) \), because for \(t, s \in [0, a], a > 0, \)

\[
s_\nu(Jf(t) - Jf(s)) \leq |t - s| s_\nu(0,a)(f) ,
\]

which shows also that \(J \) is continuous, from \(C(\mathbb{R}^+, V) \) into \(C(\mathbb{R}^+, V) \).

Next we show that \(J \) is injective. Let \(Jf = 0 \). Then for all continuous linear functionals \(\mathcal{L} \) on \(V \) and all \(t \in \mathbb{R}^+ \)
\[0 = \mathcal{L}(J f(t)) = \int_0^t \mathcal{L}(f(\tau))d\tau. \]

So from ordinary calculus we get \(\mathcal{L}(f(t)) = 0 \) for all \(t \in \mathbb{R}^+ \) and \(\mathcal{L} \in V^* \). We conclude that \(f = 0 \).

It follows that for all \(k \in \mathbb{N} \) the operator \(J^k \) is injective, and because for all \(\mathcal{L} \in V^* \)

\[\mathcal{L}(J^k f(t)) = \int_0^t \int_0^t \cdots \int_0^t \mathcal{L}(f(t_k))dx_k\ldots dx_1 = \int_0^t \frac{(t - \tau)^{k-1}}{(k-1)!} \mathcal{L}(f(\tau))d\tau \]

we see that

\[(J^k f)(t) = \int_0^t \frac{(t - \tau)^{k-1}}{(k-1)!} f(\tau)d\tau. \]

For \(\lambda \in C \) we define \(\mathcal{E}_\lambda \) on \(C(\mathbb{R}^+, V) \) by

\[(\mathcal{E}_\lambda f)(t) = e^{-\lambda t} f(t), \quad t \in \mathbb{R}^+, \]

and \(J(\lambda) \) by

\[J(\lambda) = \mathcal{E}_{-\lambda} J \mathcal{E}_\lambda. \]

Then \(\mathcal{E}_\lambda \) and \(J(\lambda) \) are continuous from \(C(\mathbb{R}^+, V) \) into \(C(\mathbb{R}^+, V) \) with \(J(\lambda)^k = \mathcal{E}_\lambda J^k \mathcal{E}_{-\lambda} \) so that

\[(J(\lambda)^k f)(t) = \int_0^t \frac{(t - \tau)^{k-1}}{(k-1)!} e^{\lambda(t-\tau)} f(\tau)d\tau. \]

2 The spaces \(C^k(\mathbb{R}^+, V) \), differentiation

In this section we define the concept of differentiation in \(C(\mathbb{R}^+, V) \).

By \(C^k(\mathbb{R}^+, V) \) we denote the subspace of \(C(\mathbb{R}^+, V) \) consisting of all \(f \in C(\mathbb{R}^+, V) \) for which there exist a \(V \)-valued polynomial \(q \) of degree \(\leq k - 1 \)

\[q(t) = x_0 + tx_1 + \cdots + t^{k-1}x_{k-1} \]

with \(x_0, \ldots, x_{k-1} \in V \), and a \(g \in C(\mathbb{R}^+, V) \) such that

\[f = q + J^k g. \]

If \(f \) can be represented this way, then this representation is unique. Indeed,
\[q + J^k g = 0 \]

implies that for all \(t \in \mathbb{R}^+ \) and \(\mathcal{L} \in V^* \)
\[
\mathcal{L}(q(t)) + \mathcal{L}(J^k g(t)) = 0.
\]

With the integral representation of the second term in mind, we see that \(k \) times differentiation yields \(\mathcal{L}(g(t)) = 0, \ t \in \mathbb{R}^+, \mathcal{L} \in V^* \). So \(g = 0 \) and therewith \(q = 0 \).

Definition 2.1. For \(\varphi \in C(\mathbb{R}^+, C) \) and \(x \in V \) by \(\varphi \otimes x \) we mean the function in \(C(\mathbb{R}^+, V) \) defined by \((\varphi \otimes x)(t) = \varphi(t)x \).

Definition 2.2. The differentiation operator \(\mathcal{D} \) in \(C(\mathbb{R}^+, V) \) with domain \(\text{dom}(\mathcal{D}) = C^1(\mathbb{R}^+, V) \) is defined by
\[
\mathcal{D}f = g : \Leftrightarrow f = \psi_0 \otimes f(0) + Jg.
\]

Here \(\psi_0(t) = 1, \ t \in \mathbb{R}^+ \).

Inductively \(\mathcal{D}^k \) is defined by
\[
\text{dom}(\mathcal{D}^k) = \{ f \in \text{dom}(\mathcal{D}^{k-1}) | \mathcal{D}^{k-1}f \in \text{dom}(\mathcal{D}) \}
\]
with
\[
\mathcal{D}^k f = \mathcal{D}(\mathcal{D}^{k-1} f).
\]

From the definition of \(\mathcal{D} \) and \(J \) we see that \(J \) maps \(C(\mathbb{R}, V) \) into \(\text{dom}(\mathcal{D}) \) with \(\mathcal{D}J = I \) (the identity). Applying this and elementary calculus it follows inductively that for all \(k \in \mathbb{N} \)
\[
\text{dom}(\mathcal{D}^k) = C^k(\mathbb{R}^+, V)
\]
and
\[
\mathcal{D}^k f = g : \Leftrightarrow f = \sum_{j=0}^{k-1} \psi_j \otimes (\mathcal{D}^j f)(0) + J^k g
\]
where \(\psi_j(t) = \frac{t^j}{j!} \) (cf. Riemann remainder formula).

On each of the spaces \(C^k(\mathbb{R}^+, V) \) we impose the locally convex topology brought about by the seminorms
\[
s_{\nu,K}^k(f) = \sum_{j=0}^{k} s_{\nu,K}(\mathcal{D}^j f).
\]

Thus for \(0 \leq \ell \leq k \), the operator \(\mathcal{D}^\ell \) from \(C^k(\mathbb{R}^+, V) \) into \(C^{k-\ell}(\mathbb{R}^+, V) \) is continuous. Also, \(J^\ell \) from \(C^k(\mathbb{R}^+, V) \) into \(C^{k+\ell}(\mathbb{R}^+, V) \) is continuous.

The definition of \(\mathcal{D} \) and \(J(\lambda) \) and the observation that \(\mathcal{D} - \lambda I = \mathcal{E}_- \mathcal{D} \mathcal{E}_\lambda \) yield the following algebraic relations
\[(\mathcal{D} - \lambda)^{\ell} J(\lambda)^{k} = \begin{cases} J(\lambda)^{k-\ell} & \text{for } k \geq \ell \\ (\mathcal{D} - \lambda)^{\ell-k} & \text{for } \ell > k \end{cases} \]

Now almost by definition of \(\mathcal{D}^{k}\), for all \(f \in C^{k}(\mathbb{R}^{+}, V)\)

\[J^{k} \mathcal{D}^{k} f = f - \sum_{j=0}^{k-1} \psi_{j} \otimes (\mathcal{D}^{j} f)(0)\]

and so for all \(\lambda \in \mathcal{C}\)

\[J(\lambda)^{k} (\mathcal{D} - \lambda)^{k} f = \mathcal{E}_{-\lambda} J^{k} \mathcal{D}^{k} \mathcal{E}_{\lambda} f = f - \sum_{j=0}^{k-1} \psi_{j,\lambda} \otimes ((\mathcal{D} - \lambda)^{j} f)(0)\]

where \(\psi_{j,\lambda}\) denotes the Bohl function

\[\psi_{j,\lambda} = \frac{t^{j}}{j!} e^{\lambda t} .\]

From this we see that for each \(m \in \mathbb{N}\), \(\lambda \in \mathcal{C}\) and \(f \in C^{m}(\mathbb{R}^{+}, V)\),

\[(\mathcal{D} - \lambda)^{m} f = 0 \iff f \in \text{span}\{\psi_{j,\lambda} \otimes x \mid x \in V, j = 0, \ldots, m-1\} .\]

We shall extend this result replacing \((\mathcal{D} - \lambda)^{m}\) by \(p(\mathcal{D})\) for any polynomial \(p\).

So let \(p : \mathbb{R} \rightarrow \mathcal{C}\) be a polynomial with zeroes \(\lambda_{j}, j = 1, \ldots, r\) and respective multiplicities \(m_{j}\).

Define the polynomial \(p_{kJ}\) by

\[p_{kJ}(t) = \frac{p(t)}{(t - \lambda_{j})^{k}} , t \in \mathbb{R}, k = 1, \ldots, m_{j}, j = 1, \ldots, r .\]

Then there are \(a_{kJ} \in \mathcal{C}\) such that

\[\forall t \in \mathbb{R} : \sum_{j=1}^{r} \sum_{k=1}^{m_{j}} a_{kJ} p_{kJ}(t) = 1 .\]

Define \(K\) on \(C(\mathbb{R}^{+}, V)\) by

\[K = \sum_{j=1}^{r} \sum_{k=1}^{m_{j}} a_{kJ} J(\lambda_{j})^{k} .\]

Then \(K\) maps \(C^{d}(\mathbb{R}^{+}, V)\) into \(C^{d}(\mathbb{R}^{+}, V)\) with \(d\) the degree of \(p\), and for \(f \in C^{d}(\mathbb{R}^{+}, V)\)

\[p(\mathcal{D}) K f = \sum_{j=1}^{r} \sum_{k=1}^{m_{j}} a_{kJ} p_{kJ}(\mathcal{D}) f = f .\]
Next we compute $Kp(D)$. First observe that for $f \in C^d(\mathbb{R}, V)$,

$$J(\lambda_j^k p(D)f) = J(\lambda_j^k[(D - \lambda_j)^k p_{kj}(D)f] = p_{kj}(D)f - \sum_{i=0}^{k-1} \psi_i, \lambda_j \otimes (p_{k-i,j}(D)f)(0)$$

and so

$$Kp(D)f = f - \sum_{j=1}^{r} \sum_{k=1}^{m_j} a_{kj} \sum_{i=0}^{k-1} \psi_i, \lambda_j \otimes (p_{k-i,j}(D)f)(0) = f - \sum_{j=1}^{r} \sum_{i=0}^{m_j-1} \psi_i, \lambda_j \otimes (r_{ij}(D)f)(0)$$

where r_{ij} is the polynomial of degree $\leq d - 1$,

$$r_{ij} = \sum_{k=1}^{m_j-i} a_{k+i,j}p_{kj} .$$

Since $p(D)f = 0$ if and only if $Kp(D)f = 0$, we come to the following conclusion.

Theorem 2.3. Let p be a polynomial with degree d, say. Then

$$\ker(p(D)) := \{ f \in C^d(\mathbb{R}^+, V) | p(D)f = 0 \} = \text{span}\{ \psi_i, \lambda_j \otimes x | x \in V, i = 0, ..., m_j - 1, j = 1, ..., r \}$$

where $\lambda_1, ..., \lambda_r$ are the zeros of p with multiplicities m_j.

We intend to prove that for each polynomial the differential operator $p(D)$ with domain $C^d(\mathbb{R}^+, V)$, $d = \text{degree}(p)$, is closed as a linear mapping in $C(\mathbb{R}^+, V)$. The closedness of $p(D)$ is used to prove closedness of $p(\delta_\tau)$ for any infinitesimal generator δ_τ of a locally equicontinuous semigroup $(\pi_t)_{t \geq 0}$ Therefore the following auxiliary result, which implies that $\ker(p(D))$ is closed.

Lemma 2.4. Let $\varphi_1, ..., \varphi_n \in C(\mathbb{R}^+, C)$. Then the subspace M,

$$M = \text{span}\{ \varphi_j \otimes x | x \in V, j = 1, ..., n \}$$

is closed in $C(\mathbb{R}^+, V)$.

Proof. Without loss of generality assume that $\{ \varphi_1, ..., \varphi_n \}$ is independent in $C(\mathbb{R}^+, C)$.

Claim. There exist $t_1, ..., t_n \in \mathbb{R}^+$ such that the matrix $(\varphi_j(t_i))_{i,j=1}^{n}$ is invertible.

Proof. For $n = 1$ the claim is obviously true. Now suppose the claim is valid for $n = m - 1$, and let $\{ \varphi_1, ..., \varphi_m \}$ be independent in $C(\mathbb{R}^+, C)$. Then there are $t_1, ..., t_{m-1} \in \mathbb{R}^+$ such that the matrix $(\varphi_j(t_i))_{i,j=1}^{m-1}$ is invertible. If there were no $t_m \in \mathbb{R}^+$ such that the matrix $(\varphi_j(t_i))_{i,j=1}^{m}$ is invertible, then for all $t \in \mathbb{R}^+$
\[\varphi_j(t) = \sum_{i=1}^{m-1} \beta_i(t)\varphi_j(t_i), \quad j = 1, \ldots, m. \]

Hence

\[\text{span}\{\varphi_j \mid j = 1, \ldots, m-1\} = \text{span}\{\beta_j \mid j = 1, \ldots, m-1\} \]

and

\[\varphi_m = \sum_{i=0}^{m-1} \varphi_j(t_i)\beta_i, \]

a contradiction. \[\square\]

Now define the continuous linear mappings \(\Lambda_i, i = 1, \ldots, n, \) from \(C(\mathbb{R}^+, V) \) into \(V \) by

\[\Lambda_i f = \sum_{j=1}^{n} a_{ij} f(t_j) \]

where \((a_{ij})\) denotes the inverse matrix of \((\varphi_j(t_i))_{i,j=1}^{n}. \) Let \((f_\alpha)\) be a net in \(M \) convergent to some \(f \in C(\mathbb{R}^+, V). \) Then

\[f_\alpha = \sum_{i=1}^{n} \varphi_i \otimes \Lambda_i f_\alpha \]

and \(\lim_{\alpha} \Lambda_i f_\alpha = \Lambda_i f. \) Consequently

\[f = \lim_{\alpha} \sum_{i=1}^{n} \varphi_i \otimes \Lambda_i f_\alpha = \sum_{i=1}^{n} \varphi_i \otimes \Lambda_i f \in M. \]

\[\square\]

We come to one of the main results of this paper.

Theorem 2.5. Let \(p : C \to C \) be a polynomial. Then \(p(D) \) with domain \(C^d(\mathbb{R}^+, V), \) \(d = \text{degree}(p), \) is a closed linear mapping in \(C(\mathbb{R}^+, V), \) i.e. the graph of \(p(D) \) is closed in the product vector space \(C(\mathbb{R}^+, V) \times C(\mathbb{R}^+, V), \) with respect to the product topology.

Proof. We may assume that \(p \) is monic, \(p(t) = \prod_{j=1}^{r}(t - \lambda_j)^{m_j}. \) So for \(f \in C^d(\mathbb{R}^+, V), \)

\[p(D)f = \prod_{j=1}^{r}(D - \lambda_j)^{m_j}f. \]

Define
\[\mathcal{R} = \prod_{j=1}^{r} J(\lambda_j)^{m_j} \]

The \(\mathcal{R} \) maps \(C(\mathbb{R}^+, V) \) into \(C(\mathbb{R}^+, V) \) continuously with for all \(f \in C(\mathbb{R}^+, V) \), \(\mathcal{R}f \in C^d(\mathbb{R}^+, V) \) and \(p(D) \mathcal{R}f = f \).

Let \((f_\alpha) \) be a net in \(C^d(\mathbb{R}^+, V) \) for which there are \(f \) and \(g \) in \(C(\mathbb{R}^+, V) \) such that

\[f_\alpha \rightarrow f \text{ and } p(D)f_\alpha \rightarrow g \text{ in } C(\mathbb{R}^+, V). \]

Then \(f_\alpha - \mathcal{R}p(D)f_\alpha \in \ker(p(D)) \) and so, since \(\ker(p(D)) \) is closed by Lemma 2.4, \(f - \mathcal{R}g \in \ker(p(D)) \). It follows that

\[f = (f - \mathcal{R}g) + \mathcal{R}g \in \ker(p(D)) + C^d(\mathbb{R}^+, V) = C^d(\mathbb{R}^+, V) \]

and

\[p(D)f = p(D)(f - \mathcal{R}g) + p(D)\mathcal{R}g = g. \]

\[\square \]

Corollary 2.6. For each \(k \in \mathbb{N} \) the linear operator \(D^k \) with domain \(C^k(\mathbb{R}^+, V) \) is closed in \(C(\mathbb{R}^+, V) \).

Corollary 2.7. The locally convex topology of \(C^k(\mathbb{R}^+, V) \) brought about by the seminorms \(s_{\nu,K}^k \),

\[s_{\nu,K}^k(f) = \sum_{j=0}^{k} s_{\nu,K}(D^j f) \]

equals the locally convex topology of \(C^k(\mathbb{R}^+, V) \) brought about by the seminorms \(\tilde{s}_{\nu,K}^k \)

\[\tilde{s}_{\nu,K}^k(f) = s_{\nu,K}(f) + s_{\nu,K}(D^k f) \]

Moreover, \(C^k(\mathbb{R}^+, V) \) is sequentially complete with this topology.

Proof. Clearly, \(\tilde{s}_{\nu,K}^k(f) \leq s_{\nu,K}^k(f) \). Let \((f_\alpha) \) be a net in \(C^k(\mathbb{R}^+, V) \) such that \(f_\alpha \rightarrow f \) and \(D^k f_\alpha \rightarrow D^k f \) in \(C(\mathbb{R}^+, V) \). Then \(f_\alpha - J^kD^k f_\alpha \rightarrow f - J^kD^k f \) and

\[f_\alpha - J^kD^k f_\alpha = \sum_{j=0}^{k-1} \psi_j \otimes (D^j f_\alpha)(0). \]

It follows from Lemma 2.4 that

\[(D^j f_\alpha)(0) \rightarrow (D^j f)(0) \]
and so

\((D^\ell(f_\alpha - J^kD^k f_\alpha))\)

is a convergent net in \(C(\mathbb{R}^+, V)\) for \(\ell = 0, \ldots, k - 1\). Since

\[D^\ell f_\alpha = D^\ell (f_\alpha - J^kD^k f_\alpha) + J^{k-\ell}D^k f_\alpha , \]

the net \((D^\ell f_\alpha)\) is convergent in \(C(\mathbb{R}; V)\) with limit \(D^\ell f\). Let \((f_j)\) be a sequence in \(C^k(\mathbb{R}^+, V)\) such that both \((f_j)\) and \((D^k f_j)\) are Cauchy sequences in \(C(\mathbb{R}^+, V)\). Then there are \(f\) and \(g\) in \(C(\mathbb{R}^+, V)\) such that

\[f_j \rightarrow f \quad \text{and} \quad D^k f_j \rightarrow g \quad \text{in} \quad C(\mathbb{R}^+, V) . \]

Since \(D^k\) is closed we get \(f \in C^k(\mathbb{R}^+, V)\) with \(D^k f = g\). \(\square\)

3 The translation semigroup, convolution

There is a third natural action to be defined on \(C(\mathbb{R}^+, V)\), namely translation. For \(t \geq 0\) we define \(\sigma_t\) on \(C(\mathbb{R}^+, V)\) by

\[(\sigma_t f)(s) = f(t + s) , \quad s \geq 0 .\]

Then \(\sigma_t\) is continuous on \(C(\mathbb{R}^+, V)\) for each \(t \geq 0\) with

\[\sigma_t \sigma_s = \sigma_{t+s} , \quad \sigma_0 = I . \]

So \((\sigma_t)_{t \geq 0}\) is a one-parameter semigroup. Further, for \(t_0 \in \mathbb{R}^+\), \(\nu \in \mathcal{D}\), \(K \subset \mathbb{R}^+\) compact and for \(f \in C(\mathbb{R}^+, V)\)

\[\lim_{t \rightarrow t_0} s_\nu K(\sigma_t f - \sigma_{t_0} f) = \lim_{t \rightarrow t_0} \max_{s \in K} s_\nu (f(s + t) - f(s + t_0)) = 0 . \]

due to the uniform continuity of \(f\) on compacta in \(\mathbb{R}^+\). Hence \((\sigma_t)_{t \geq 0}\) is a strongly continuous semigroup on \(C(\mathbb{R}^+, V)\).

Theorem 3.1. The differentiation operator \(\mathcal{D}\) with domain \(C^1(\mathbb{R}^+, V)\) is the infinitesimal generator of the semigroup \((\sigma_t)_{t \geq 0}\).

Proof. Let \(\delta_\sigma\) denote the infinitesimal generator of \((\sigma_t)_{t \geq 0}\).

- Let \(f \in C^1(\mathbb{R}^+, V)\) with \(\mathcal{D} f = g\). Then

\[f(s) = f(0) + \int_0^s g(\tau) d\tau . \]
and for \(t > 0 \) and \(s \geq 0 \)

\[
\frac{(\sigma_t f)(s) - f(s)}{t} - g(s) = \frac{1}{t} \int_s^{s+t} (g(\tau) - g(s))d\tau .
\]

So for \(\nu \in \mathcal{D} \),

\[
s_\nu \left(\frac{(\sigma_t f)(s) - f(s)}{t} - g(s) \right) \leq \max_{\tau \in [s,s+t]} s_\nu (g(\tau) - g(s))
\]

and for \(K \subset \mathbb{R}^+ \) compact

\[
s_{\nu,K} \left(\frac{\sigma_t f - f}{t} - g \right) \leq \max_{s \in K} \max_{\tau \in [s,s+t]} s_\nu (g(\tau) - g(s)) .
\]

Since \(g \) is uniformly continuous on \(K = [0,t] \) we see that

\[
\lim_{t \to 0} s_{\nu,K} \left(\frac{\sigma_t f - f}{t} - g \right) = 0 .
\]

Therefore \(f \in \text{dom}(\delta_\sigma) \) with \(\delta_\sigma f = g = Df \).

Let \(f \in \text{dom}(\delta_\sigma) \) with \(\delta_\sigma f = g \), i.e.

\[
g = \lim_{t \to 0} \frac{\sigma_t f - f}{t} \quad \text{in } C(\mathbb{R}^+, V) .
\]

Now for all \(s \in \mathbb{R}^+ \)

\[
f(s) = \lim_{t \to 0} \frac{1}{t} \int_s^{s+t} f(\tau)d\tau
\]

in \(V \) and so

\[
f(s) - f(0) = \lim_{t \to 0} \frac{1}{t} \left[\int_s^{s+t} f(\tau)d\tau - \int_0^t f(\tau)d\tau \right]
\]

\[
= \lim_{t \to 0} \frac{1}{t} \int_0^s (\sigma_t f - f)(\tau)d\tau = \int_0^s g(\tau)d\tau .
\]

We see that \(f \in C^1(\mathbb{R}^+, V) \) with \(Df = g \).

For all \(f \in C(\mathbb{R}^+, V) \) the function \(t \mapsto \sigma_t f \) belongs to \(C(\mathbb{R}^+, C(\mathbb{R}^+, V)) \), whence we have its Riemann–Stieltjes integral for each \(\mu \in \text{bv}_c(\mathbb{R}) \), and define

\[
(3.2) \quad \sigma[\mu] f := \int_{\mathbb{R}^+} \sigma_t f \, d\mu(\tau) .
\]
So \(\sigma[\mu] \) is linear operator from \(C({\mathbb R}^+, V) \) into \(C({\mathbb R}^+, V) \). Since

\[
s_{\nu,K}(\sigma[\mu]f) \leq \text{var}(\mu)s_{\nu,K}(f)
\]

where \(\tilde{K} = K + [0, T] \) with \(T \) so large that \(\mu(t) = \mu(T) \) for \(t > T \), the operator \(\sigma[\mu] \) is continuous.

By definition \(\mu \mapsto \sigma[\mu] \) is a linear map. Further, it can be checked that

\[
\sigma[\mu_1]\sigma[\mu_2] = \sigma[\mu_1 * \mu_2]
\]

with

\[
(\mu_1 * \mu_2)(s) = \int_0^s \mu_1(s - \sigma)d\mu_2(\sigma).
\]

Define \(H_t \in \text{bv}_c({\mathbb R}^+) \), \(t \geq 0 \), by

\[
H_t(s) = \begin{cases}
0 & 0 \leq s \leq t \\
1 & s > t.
\end{cases}
\]

Then \(\sigma[H_t] = \sigma_t \).

Lemma 3.3. The linear span, \(\text{span}\{\sigma_t \ | \ t \in {\mathbb R}^+\} \), is strongly sequentially dense in \(\{\sigma[\mu] \mid \mu \in \text{bv}_c({\mathbb R}^+)\} \), i.e. for each \(\mu \in \text{bv}_c({\mathbb R}^+) \) there exists a sequence \((\mu_k)_{k \in {\mathbb N}} \) in \(\text{span}\{H_t \ | \ t \in {\mathbb R}^+\} \) such that for all \(f \in C({\mathbb R}^+, V) \)

\[
\lim_{k \to \infty} \sigma[\mu_k]f = \sigma[\mu]f.
\]

Proof. Let \(\mu \in \text{bv}_c({\mathbb R}^+) \) and \(T > 0 \) such that \(\mu(t) = \mu(T), \ t > T \). Define

\[
t_{ki} = \frac{i}{2^k} T, \quad i = 0, 1, ..., 2^k, \ k \in {\mathbb N},
\]

and

\[
\mu_k = \sum_{i=1}^{2^k} (\mu(t_{ki}) - \mu(t_{ki-1}))H_{t_{ki} - t_{ki-1}}.
\]

Then

\[
(\sigma[\mu] - \sigma[\mu_k])f(t) = \sum_{i=1}^{2^k} \int_{t_{ki-1}}^{t_{ki}} (f(t + \tau) - f(t + t_{ki-1})d\mu(\tau).
\]

So for \(\nu \in {\mathcal D} \) and \(K \subset {\mathbb R} \) compact
\[s_{v,K}(\sigma[\mu]f - \sigma[\mu_k]f) \leq \max_{i \in \{1, \ldots, 2^n\}} \max_{t_i \in K} \max_{r \in [t_{i-1}, t_i]} s_v(f(t + \tau) - f(t + t_{i-1})) \]

The right hand side tends to zero as \(k \to \infty \), because \(f \) is uniformly continuous on compacta in \(\mathbb{R}^+ \).

We write \(\text{bv}_c^\infty(\mathbb{R}^+) \) instead of \(\text{bv}_c(\mathbb{R}^+) \cap C^\infty(\mathbb{R}) \). For \(\mu \in \text{bv}_c^\infty(\mathbb{R}^+) \), its derivatives \(\mu^{(k)} \) are \(C^\infty \)-functions on \(\mathbb{R}^+ \) with compact support, and \(\mu^{(k)}(0) = 0 \). So for \(f \in C(\mathbb{R}^+, V) \)

\[
(\sigma[\mu]f)(t) = \int_{\mathbb{R}^+} \mu'(\tau)f(t + \tau)d\tau = \int_{\mathbb{R}} \mu'(\tau - t)f(\tau)d\tau .
\]

We see that \(\sigma[\mu]f \in \bigcap_{k \in \mathbb{N}} C^k(\mathbb{R}^+, V) =: C^\infty(\mathbb{R}^+, V) \) with

\[
D^k\sigma[\mu]f = (-1)^k\sigma[\mu^{(k)}]f .
\]

A sequence \((\mu_n)_{n \in \mathbb{N}} \) in \(\text{bv}_c^\infty(\mathbb{R}^+) \) is said to be an approximative identity whenever for all \(f \in C(\mathbb{R}^+, V) \)

\[
\sigma[\mu_n]f \to f \text{ as } n \to \infty .
\]

Let \(\varphi \) be a \(C^\infty \)-function on \(\mathbb{R} \), \(\varphi(t) \geq 0 \), with compact support contained in \(\mathbb{R}^+ \) and \(\int_{\mathbb{R}^+} \varphi(\tau)d\tau = 1 \). Define

\[
(3.4) \quad \mu_n(t) = n \int_0^t \varphi(n\tau)d\tau , \quad t \geq 0 , \quad n \in \mathbb{N} .
\]

Then \(\mu_n \in \text{bv}_c^\infty(\mathbb{R}^+) \) and for \(t \geq 0 \)

\[
(\sigma[\mu_n]f - f)(t) = \int_{\mathbb{R}^+} [n\varphi(n\tau)f(t + \tau) - \varphi(\tau)f(t)]d\tau = \int_{\mathbb{R}^+} \varphi(\tau)(f(t + \tau/n) - f(t))d\tau .
\]

So we find

\[
s_{v,K}(\sigma[\mu_n]f - f) \leq \max_{a \in [0,\infty]} s_{v,K}(\sigma_a f - f)
\]

and the right-hand side tends to zero. From this we see the existence in \(\text{bv}_c^\infty(\mathbb{R}) \) of an approximative identity. And it follows that \(C^\infty(\mathbb{R}^+, V) \) is sequentially dense in \(C(\mathbb{R}, V) \). In fact there is the more general result.

Lemma 3.5. Let \(M \) be a closed subspace of \(C(\mathbb{R}^+, V) \) with \(\sigma_t(M) \subseteq M \) for all \(t \in \mathbb{R}^+ \). Then \(M \cap C^\infty(\mathbb{R}^+, V) \) is sequentially dense in \(M \).

Proof. For all \(\mu \in \text{span}\{H_t \mid t \in \mathbb{R}^+\} \), \(\sigma[\mu](M) \subseteq M \) and so by Lemma 3.3 and the fact that \(M \) is closed for all \(\mu \in \text{bv}_c(\mathbb{R}^+) \), \(\sigma[\mu](M) \subseteq M \). Now let \((\mu_n) \) be an approximate identity in \(\text{bv}_c^\infty(\mathbb{R}^+) \). Then for \(f \in M, \sigma[\mu_n]f \in M \cap C^\infty(\mathbb{R}^+, V) \), and \(\sigma[\mu_n]f \to f \). \(\square \)
4 One parameter c_0-semigroups, the flow operator

Let $(\pi_t)_{t \geq 0}$ be a one-parameter semigroup of continuous linear mappings on V; so for all $t_1 \geq 0$ and $t_2 \geq 0$

$$\pi_{t_1} \pi_{t_2} = \pi_{t_1 + t_2}, \quad \pi_0 = I.$$

To each $x \in V$ we associate its flow $\mathcal{F}_x x : \mathbb{R}^+ \rightarrow V$ by defining $(\mathcal{F}_x x)(t) = \pi_t x, \ t \geq 0$.

The semigroup $(\pi_t)_{t \geq 0}$ is said to be strongly continuous at $t = 0$, or a c_0-semigroup, if for all $x \in V$

$$\lim_{t \to 0} \pi_t x = x.$$

Since for each $t \geq 0$ the operator π_t is continuous on V it follows that the flow $\mathcal{F}_x x$ is a right continuous function from \mathbb{R}^+ into V. We want to have continuity of $\mathcal{F}_x x$ for each $x \in V$, so that \mathcal{F}_x is a linear operator from V into $C(\mathbb{R}^+, V)$. Therefore the following definition.

Definition 4.1. A one-parameter semigroup $(\pi_t)_{t \geq 0}$ is said to be locally equicontinuous if for all $K \subset \mathbb{R}^+$ compact the collection

$$\{\pi_t \mid t \in K\}$$

is equicontinuous, i.e.

$$\forall \nu \in \mathcal{D} \exists \rho \in \mathcal{D} \exists C > 0 \forall t \in K \forall x \in V : s_{\nu}(\pi_t x) \leq C s_{\rho}(x).$$

Lemma 4.2. Let $(\pi_t)_{t \geq 0}$ be a locally equicontinuous c_0-semigroup. Then $\mathcal{F}_x x \in C(\mathbb{R}^+, V)$ for all $x \in V$ and $\mathcal{F}_x : V \rightarrow C(\mathbb{R}^+, V)$ is continuous.

Proof. Let $t_0 > 0$. Then $\mathcal{F}_x x$ is right continuous at $t = t_0$. Now for $0 \leq t < t_0$ and $\nu \in \mathcal{ID}$

$$s_{\nu}(\pi_t x - \pi_{t_0} x) = s_{\nu}(\pi_t (x - \pi_{t_0 - t} x)).$$

Take $K_0 = [0, t_0]$. Then there is $\bar{\nu} \in \mathcal{ID}$ and $C > 0$ such that

$$s_{\nu}(\pi_t x - \pi_{t_0} x) \leq C s_{\bar{\nu}}(x - \pi_{t_0 - t} x).$$

We see that $\mathcal{F}_x x$ is left continuous at $t = t_0$.

Reformulation in terms of \mathcal{F}_x of the local equicontinuity property of $(\pi_t)_{t \geq 0}$ yields

$$\forall \nu \in \mathcal{D} \forall K \subset \mathbb{R}^+, \text{compact} \exists C > 0 \exists \bar{\nu} \in \mathcal{D} \forall x \in V s_{\bar{\nu}, K}(\mathcal{F}_x x) \leq C s_{\rho}(x)$$
expressing the continuity of F_x.

We approach this aspect of a c_0-semigroup from a different angle. Therefore we recall the following theorem, cf. [Tre], p. 347, Theorem 33.1, for barreled locally convex spaces.

Let E be a barreled locally convex space and F a locally convex space. Then a subset H of continuous linear operators from E into F is equicontinuous if and only if H is bounded for the topology of pointwise (= strong) convergence.

Now suppose $(\pi_t)_{t \geq 0}$ is a c_0-semigroup on V such that $F_x x \in C(\mathbb{R}^+, V)$ for all $x \in V$, and suppose that V is barreled. Let $K \subset \mathbb{R}^+$ be compact. Then for all $\nu \in D$ and $x \in V$

$$\sup_{t \in K} s_{\nu}(\pi_t x) < \infty$$

because $t \mapsto s_{\nu}(\pi_t x)$ is continuous on \mathbb{R}^+. So the set $\{\pi_t \mid t \in K\}$ is bounded for the topology of pointwise convergence, whence equicontinuous. Thus we derived

Theorem 4.3. (cf. [Komj. proposition 1.1]). Suppose that V is barreled. Let $(\pi_t)_{t \geq 0}$ be a semigroup on V such that for each $x \in V$ its flow $F_x x \in C(\mathbb{R}^+, V)$. Then F_x is continuous from V into $C(\mathbb{R}^+, V)$ or equivalently $(\pi_t)_{t \geq 0}$ is a locally equicontinuous semigroup.

In the remaining part of this paper we consider a fixed c_0-semigroup $(\pi_t)_{t \geq 0}$ such that F_x is a continuous linear operator from V into $C(\mathbb{R}^+, V)$.

Definition 4.4. By Δ_0 the continuous linear mapping from $C(\mathbb{R}^+, V)$ into V is denoted that satisfies $\Delta_0 f = f(0)$. So $\Delta_0 F_x$ is the identity on V.

Definition 4.5. For each $\mu \in bvc(\mathbb{R}^+)$ the linear operator $\pi[\mu]$ on V is defined by

$$\pi[\mu] = \Delta_0 \sigma[\mu] F_x .$$

It follows from this definition that for all $\mu \in bvc(\mathbb{R}^+)$, $x \in V$

$$\pi[\mu] x = \int_{\mathbb{R}^+} (\sigma_+ F_x x)(0) d\mu(\tau) = \int_{\mathbb{R}^+} \pi_+ x d\mu(\tau) .$$

The reader can check that $\pi_t \pi[\mu] = \pi[\mu] \pi_t$ and so

$$\pi[\mu_1] \pi[\mu_2] = \Delta_0 \sigma[\mu_1] F_x \pi[\mu_2] = \Delta_0 \sigma[\mu_1] \sigma[\mu_2] F_x = \pi[\mu_1 \ast \mu_2] .$$

We observe further that for all $t \in \mathbb{R}^+$, $\pi[H_t] = \pi_t$.

In section 3 we presented some results for the convolution operators $\sigma[\mu]$ on $C(\mathbb{R}^+, V)$. They have the following consequences for the operator $\pi[\mu]$ on V.

Lemma 4.6. The linear span of the set \(\{ \pi_t \mid t \in \mathbb{R}^+ \} \) is strongly sequentially dense in \(\{ \pi[\mu] \mid \mu \in \text{bv}_c(\mathbb{R}^+) \} \).

Proof. Let \(\mu \in \text{bv}_c(\mathbb{R}^+) \). According to Lemma 3 there is a sequence \((\mu_k) \) in \(\text{span}\{ H_t \mid t \geq 0 \} \) such that \(\sigma[\mu_k]f \to \sigma[\mu]f \) as \(k \to \infty \) for all \(f \in C(\mathbb{R}^+, V) \). Then for all \(x \in V \)

\[
\pi[\mu_k]x = \Delta_0 \sigma[\mu_k]F_x x \to \Delta_0 \sigma[\mu]F_x x = \pi[\mu]x \,.
\]

\(\Box \)

Lemma 4.7. Let \((\mu_n) \) be an approximate identity in \(\text{bv}_c^\infty(\mathbb{R}^+) \). Then for all \(x \in V \),

\[\pi[\mu_n]x \to x. \]

5 One parameter \(c_0 \)-semigroups, the infinitesimal generator

We recall our assumption that \((\pi_t)_{t \geq 0} \) is a locally equicontinuous \(c_0 \)-semigroup on \(V \).

By \(\text{dom}(\delta_\pi) \) the subspace of \(V \) is denoted consisting of all \(x \in V \) for which the limit

\[\delta_\pi x := \lim_{t \to 0} \frac{1}{t}(\pi_tx - x) \]

exists in \(V \). The linear operator \(\delta_\pi : \text{dom}(\delta_\pi) \to V \), thus defined is called the infinitesimal generator of the semigroup \((\pi_t)_{t \geq 0} \). Inductively, \(\text{dom}(\delta_\pi^k) \) is defined,

\[\text{dom}(\delta_\pi^k) = \{ x \in \text{dom}(\delta_\pi^{k-1}) \mid \delta_\pi^{k-1}x \in \text{dom}(\delta_\pi) \} \]

and

\[\delta_\pi^k x = \delta_\pi(\delta_\pi^{k-1} x). \]

Besides,

\[\text{dom}^\infty(\delta_\pi) := \bigcap_{k=1}^\infty \text{dom}(\delta_\pi^k). \]

Lemma 5.1. Let \(k \in \mathbb{N} \) and \(x \in V \). Then \(x \in \text{dom}(\delta_\pi^k) \) if and only if \(F_\pi x \in C^k(\mathbb{R}^+, V) \) (= \(\text{dom}(D^k) \)). If so, then \(F_\pi D_\pi^k = D^k F_\pi \).

Proof. Having proved the assertion for \(k = 1 \), the case \(k > 1 \) can be dealt with using a straightforward induction argument.

Now suppose \(F_\pi x \in C^1(\mathbb{R}^+, V) \). Then by Theorem 3.1

\[\lim_{t \to 0} \frac{1}{t}(\sigma_t F_\pi x - F_\pi x) = D F_\pi x \]
and consequently

\[\lim_{t \to 0} \frac{1}{t} (\Delta_0 \sigma_t F_x z - \Delta_0 F_x z) = \Delta_0 D F_x z . \]

So \(z \in \text{dom}(\delta_\sigma) \) and \(\delta_\sigma z = \Delta_0 D F_x z \). Suppose \(x \in \text{dom}(\delta_\sigma) \). Then the continuity of \(F_x \) yields

\[\lim_{t \to 0} \frac{1}{t} (\sigma_t F_x z - F_x z) = F_x \delta_\sigma z . \]

So \(F_x z \in \text{dom}(D) = C^1(\mathbb{R}^+, V) \) by Theorem 3.1 with \(D F_x z = F_x \delta_\sigma z \).

Corollary 5.2. Let \(x \in V \). Then \(x \in \text{dom}^\infty(\delta_\sigma) \) if and only if \(F_x x \in C^\infty(\mathbb{R}^+, V) \).

Lemma 5.3. \(\text{dom}^\infty(\delta_\sigma) \) is dense in \(V \).

Proof. Take an approximate identity \((J_n)_n\) in \(bV \in \text{dom}^\infty(\mathbb{R}^+) \). Then for all \(x \in V \) for all \(n \in \mathbb{N} \)

\[\sigma[J_n] F_x x \in C^\infty(\mathbb{R}^+, V) \]

and so \(\pi[J_n] x \in \text{dom}^\infty(\delta_\sigma) \). Now observe that \(\pi[J_n] x \to x \) as \(n \to \infty \).

In literature one can find results concerning the closedness of \(\delta^k \) as a linear operator in \(V \) only for Banach spaces \(V \). The proofs are based on certain fractional norm inequalities. The result we present now, seems new even for Banach spaces; certainly its proof is surprisingly simple after the preparations of Sections 1-3.

Theorem 5.4. Let \(p \) be a polynomial, \(p(z) = a_0 + a_1 z + \ldots + a_d z^d, a_d \neq 0 \). Then the linear operator \(p(\delta_\sigma) \),

\[p(\delta_\sigma) = a_0 I + a_1 \delta_\sigma + \ldots + a_d \delta_\sigma^d \]

with domain \(\text{dom}(\delta^d_\sigma) \) is closed as a densely defined linear operator in \(V \).

Proof. By definition \(x \in \text{dom}(\delta^d_\sigma) \) implies that \(x \in \text{dom}(\delta^k_\sigma) \) for all \(k = 1, \ldots, d \), and so \(p(\delta_\sigma) \) is well-defined.

Let \((x_\alpha)_\alpha \in I\) be a net in \(\text{dom}(\delta^d_\sigma) \) for which there are \(x, y \in V \) such that

\[x_\alpha \to x \text{ and } p(\delta_\sigma) x_\alpha \to y \text{ in } V . \]

Then continuity of \(F_x \) ensures that

\[F_x x_\alpha \to F_x x \text{ and } F_x p(\delta_\sigma) x_\alpha \to F_x y \text{ in } C(\mathbb{R}^+, V) . \]

Since \(p(D) \) with domain \(C^d(\mathbb{R}^+, V) \) is closed and since \(F_x p(\delta_\sigma) x_\alpha = p(D) F_x x_\alpha \), we obtain \(F_x x \in C^d(\mathbb{R}^+, V) \) and \(p(D) F_x x = F_x y \). Consequently, \(x \in \text{dom}(\delta^d_\sigma) \) by Lemma 5.1 and \(y = \Delta_0 p(D) F_x x = p(\delta_\sigma) x \).

Theorem 5.5. For each \(k \in \mathbb{N} \) the operator \(\delta^k_\sigma \) is closed. The vector space \(\text{dom}(\delta^k_\sigma) \) endowed with the graph topology, i.e. the locally convex topology brought about by the seminorms
\[\delta_t^k(x) = s_\nu(x) + s_\nu(\delta_t^k x) \]

is sequentially complete. Also, as a consequence, \(\text{dom}^\infty(\delta_x) = \bigcap_{k \in \mathbb{N}} \text{dom}(\delta_t^k) \) with the intersection topology is sequentially complete. Both \(\text{dom}(\delta_t^k) \) and \(\text{dom}^\infty(\delta_x) \) are invariant under the action of the semigroup \((\pi_t)_{t \geq 0}\) with

\[\delta_t^k \pi_t x = \pi_t \delta_t^k x, \quad x \in \text{dom}(\delta_t^k). \]

The operator \(F_* \) maps \(\text{dom}(\delta_t^k) \) into \(C^k(\mathbb{R}^+, V) \) continuously.

Proof. That \(\delta_t^k \) is closed follows from Theorem 5.4. Besides for all \(x \in \text{dom}(\delta_t^k) \), \(\pi_t \delta_t^k x = \Delta_0 \sigma_t D^k F_* x = \Delta_0 D^k \sigma_t F_* x = \delta_t^k \pi_t x \). Remains to check that \(\text{dom}(\delta_t^k) \) is sequentially complete. So let \((x_j)\) be a Cauchy sequence in \(\text{dom}(\delta_t^k) \). Then \((x_j)\) and \((\delta_t^k x_j)\) are Cauchy sequences in \(V \). So there are \(x \) and \(y \) in \(V \) such that \(x_j \to x \) and \(\delta_t^k x_j \to y \) as \(j \to \infty \). We conclude that \(x \in \text{dom}(\delta_t^k) \) with \(\delta_t^k x = y \). \(\Box \)

6 One-parameter semigroups, invariance

Definition 6.1. A subspace \(M \) of \(V \) is said to be \((\pi_t)\)-invariant if for all \(t \geq 0 \), \(\pi_t(M) \subseteq M \).

Lemma 6.2. Let \(M \) be a closed \((\pi_t)\)-invariant subspace of \(V \). Then \(\pi[\mu](M) \subseteq M \) for all \(\mu \in \text{bv}_c(\mathbb{R}^+) \).

Proof. For all \(\mu \in \text{span}\{H_t \mid t \geq 0\} \) we have \(\pi[\mu](M) \subseteq M \). So the assertion follows from Lemma 4.6 and the closedness of \(M \). \(\Box \)

Lemma 6.3. Let \(M \) be a closed \((\pi_t)\)-invariant subspace of \(V \). Then \(M \cap \text{dom}^\infty(\delta_x) \) is dense in \(M \).

Proof. Let \((\mu_n)\) in \(\text{bv}_c(\mathbb{R}^+) \) be an approximate identity. Then for each \(x \in M \), \(\pi[\mu_n]x \in M \cap \text{dom}^\infty(\delta_x) \) and \(\pi[\mu_n]x \to x \) as \(n \to \infty \). \(\Box \)

As we saw in the previous section, \(\pi_t(\text{dom}^\infty(\delta_x)) \subseteq \text{dom}^\infty(\delta_x) \) with \(\pi_t \delta_t^k x = \delta_t^k \pi_t x \) for all \(x \in \text{dom}^\infty(\delta_x) \) and \(t \geq 0 \). Let \(\tilde{\pi}_t \) denote the restriction of \(\pi_t \) to \(\text{dom}^\infty(\delta_x) \). Then \((\tilde{\pi}_t)_{t \geq 0} \) is a locally equicontinuous \(C_0 \)-semigroup on the sequentially complete locally convex space \(\text{dom}^\infty(\delta_x) \) with, of course, \(\delta_x = \delta_x|_{\text{dom}^\infty(\delta_x)} \). Also the corresponding flow operator \(F_* \) from \(\text{dom}^\infty(\delta_x) \) into \(C(\mathbb{R}^+, \text{dom}^\infty(\delta_x)) \) is the restriction of \(F_* \) to \(\text{dom}^\infty(\delta_x) \). It follows that for all \(\mu \in \text{bv}_c(\mathbb{R}^+) \)

\[\tilde{\pi}[\mu] = \Delta_0 \sigma[\mu] F_* = \pi[\mu]|_{\text{dom}^\infty(\delta_x)}. \]

If \(M_0 \) is a closed subspace of \(\text{dom}^\infty(\delta_x) \) with \(\tilde{\pi}_t(M_0) \subseteq M_0 \) for all \(t \geq 0 \), then by Lemma 6.2

\[\pi[\mu](M_0) = \tilde{\pi}[\mu](M_0) \subseteq M_0. \]
We arrive at the following extension of Lemma 6.3.

Theorem 6.4. Let M_0 be a closed subspace of the locally convex space $\text{dom}^\infty(\delta_\pi)$ satisfying $\pi_t(M_0) \subseteq M_0$ for all $t \geq 0$. Let M denote the closure of M_0 in V. Then $M_0 = M \cap \text{dom}^\infty(\delta_\pi)$.

Proof. We observe that M is (π_t)-invariant and that $M_0 \subseteq M \cap \text{dom}^\infty(\delta_\pi)$. Let $x \in M \cap \text{dom}^\infty(\delta_\pi)$. Then there is a net (x_α) in M_0 with $x_\alpha \to x$ in V. For each $\mu \in \text{bv}_c^\infty(\mathbb{R}^+)$, $(\pi[\mu]x_\alpha)$ converges to $\pi[\mu]x$ in $\text{dom}^\infty(\delta_\pi)$, because $\delta_\pi^k \pi[\mu] = (-1)^k \pi[\mu^{(k)}]$. Further $\pi[\mu]x_\alpha = \pi[\mu]x_\alpha \in M_0$ for all $\alpha \in I$, so that $\pi[\mu]x \in M_0$. Letting (μ_n) be an approximate identity in $\text{bv}_c^\infty(\mathbb{R}^+)$ we have $\pi[\mu_n]x \to x$ in $\text{dom}^\infty(\delta_\pi)$ so that $x \in M_0$. \hfill \Box

Corollary 6.5. Let $M_0 \subseteq \text{dom}^\infty(\delta_\pi)$ be (π_t)-invariant with closure M in V. Then $M \cap \text{dom}^\infty(\delta_\pi)$ is the closure of M_0 in $\text{dom}^\infty(\delta_\pi)$.

Next we present some results on closed operators in V which commute with each π_t, $t \geq 0$.

Definition 6.6. A linear operator K in V with domain $\text{dom}(K)$ is said to be (π_t)-invariant if $\pi_t(\text{dom}(K)) \subseteq \text{dom}(K)$ and $K \pi_t x = \pi_t K x$ for all $x \in \text{dom}(K)$ and $t \geq 0$.

On the vector space $V \oplus V$ consisting of all pairs $[x; y]$ with $x \in V$ and $y \in V$ we impose the direct sum topology brought about by the seminorms

$$s_{\nu}[x; y] = s_{\nu}(x) + s_{\nu}(y).$$

Then $V \oplus V$ is sequentially complete. Also we introduce the one parameter semigroup $(\pi_t + \pi_t)_{t \geq 0}$ on $V \oplus V$,

$$\pi_t + \pi_t [x; y] = [\pi_t x; \pi_t y].$$

It can be checked readily that $(\pi_t + \pi_t)_{t \geq 0}$ is a locally equicontinuous c_0- semigroup on $V \oplus V$ with infinitesimal generator $\delta_{\pi \oplus \pi}$ satisfying

$$\text{dom}(\delta_{\pi \oplus \pi}) = \text{dom}(\delta_\pi^k) \oplus \text{dom}(\delta_\pi^k)$$

$$\delta_{\pi \oplus \pi}^k [x; y] = [\delta_\pi^k x; \delta_\pi^k y].$$

Similarly,

$$(\pi + \pi)[\mu][x; y] = [\pi[\mu]x; \pi[\mu]y].$$

Now the above definition expresses that a linear operator K in V is (π_t)-invariant if and only if its graph,

$$\text{graph}(K) = \{[x; K x] \mid x \in \text{dom}(K)\}$$

21
is \((\pi_t \oplus \pi_t)\)-invariant.
This observation leads us to the following theorem.

Theorem 6.7. Let \(\mathcal{K}\) be a closed \((\pi_t)\)-invariant linear operator in \(V\).

i) For all \(\mu \in \text{bv}_c(\mathbb{R}^+)\) and \(x \in \text{dom}(\mathcal{K})\)

\[
\pi[\mu]x \in \text{dom}(\mathcal{K}) \quad \text{and} \quad \mathcal{K}\pi[\mu]x = \pi[\mu]\mathcal{K}x .
\]

Assume \(\text{dom}^\infty(\delta_\ast) \subset \text{dom}(\mathcal{K})\).

ii) \(\mathcal{K}(\text{dom}^\infty(\delta_\ast)) \subset \text{dom}^\infty(\delta_\ast)\) and \(\mathcal{K}|_{\text{dom}^\infty(\delta_\ast)}\) is closed as a linear operator from \(\text{dom}^\infty(\delta_\ast)\) into \(\text{dom}^\infty(\delta_\ast)\).

iii) \(\text{graph}(\mathcal{K})\) is the closure in \(V \oplus V\) of

\[
\text{graph}(\mathcal{K}|_{\text{dom}^\infty(\delta_\ast)}) = \{[x; \mathcal{K}x] \mid x \in \text{dom}^\infty(\delta_\ast)\} .
\]

Proof.

i) As observed \(\text{graph}(\mathcal{K})\) is a closed \((\pi_t \oplus \pi_t)\)-invariant subspace of \(V \oplus V\). So the result follows from Lemma 6.2.

ii) Let \((\mu_n)\) be an approximate identity in \(\text{bv}_c^\infty(\mathbb{R}^+)\). Let \(x \in \text{dom}^\infty(\delta_\ast)\) and \(k \in \mathbb{N}\). Then we have

\[
\delta_\ast^k\pi[\mu_n]Kx = (-1)^k\mathcal{K}\pi(\mu_n)[k]x = \mathcal{K}\pi(\mu_n)[k]\delta_\ast^kx = \pi[\mu_n]\mathcal{K}\delta_\ast^kx .
\]

Since \(\delta_\ast^k\) is closed we obtain \(Kx \in \text{dom}(\delta_\ast^k)\) and \(\delta_\ast^kKx = K\delta_\ast^kx\). Since \(k \in \mathbb{N}\) was arbitrary, \(Kx \in \text{dom}^\infty(\delta_\ast)\). Further \(\mathcal{K}|_{\text{dom}^\infty(\delta_\ast)}\) is closed because

\[
\text{graph}(\mathcal{K}|_{\text{dom}^\infty(\delta_\ast)}) = \text{graph}(\mathcal{K}) \cap \text{dom}^\infty(\delta_\ast \oplus \delta_\ast) .
\]

iii) This assertion is a consequence of Lemma 6.3. \(\square\)

7 One-parameter c₀-groups, in summary

In this section we describe some aspects of \(c_0\)-groups \((\gamma_t)_{t \in \mathbb{R}}\) on sequentially complete locally convex topological vector spaces \(V\). The collection \(\{\gamma_t \mid t \in \mathbb{R}\}\) consists of continuous linear operators from \(V\) into \(V\) satisfying

\[
\gamma_{t_1 + t_2} = \gamma_{t_1} \gamma_{t_2} , \quad \gamma_0 = I \quad \text{and} \quad \lim_{t \to 0} \gamma_t x = x, \quad \text{for} \ t_1, t_2 \in \mathbb{R} \quad \text{and} \ x \in V .
\]

The corresponding flow operator \(\mathcal{F}_\gamma\) on \(V\) defined by
\((F_t x)(t) = \gamma_t x, \quad t \in \mathbb{R}\)

maps \(V\) into \(C(\mathbb{R}, V)\), the space of continuous functions from \(\mathbb{R}\) into \(V\). We endow \(C(\mathbb{R}, V)\) with the compact-open topology brought about by the seminorms

\[s_{\nu,K}(f) = \max_{t \in K} s_{\nu}(f(t)) \]

where \(\nu \in ID, K \subset \mathbb{R}\) compact and \(\{s_{\nu} | \nu \in ID\}\) is the collection seminorms describing the topology of \(V\). The space \(C(\mathbb{R}, V)\) is sequentially complete. Introducing the translations \((\sigma_t)_{t \in \mathbb{R}}\) on \(C(\mathbb{R}, V)\) by

\[(\sigma_t f)(s) = f(s + t), \quad s \in \mathbb{R}, f \in C(\mathbb{R}, V) \]

we have the intertwining relation

\[F_t \gamma_t = \sigma_t F_\gamma, \quad t \in \mathbb{R}. \]

Instead of \(bv_c(\mathbb{R}^+)\), introduced in connection with semigroups, we deal now with \(bv_c(\mathbb{R})\), the space of all left continuous functions \(\mu\) on \(\mathbb{R}\) of bounded variation for which there exists \(T > 0\) such that

\[\mu(t) = 0 \text{ for } t \leq -T \]

and

\[\mu(t) = \mu(T) \text{ for } t \geq T. \]

Each \(\mu \in bv_c(\mathbb{R})\) yields an integration operator \(I_\mu\) from \(C(\mathbb{R}, V)\) into \(V\),

\[I_\mu f = \int \limits_{\mathbb{R}} f(\tau) d\mu(\tau) \]

where the integral is of Riemann–Stieltjes type. Thus we can introduce the convolution operators

\[\sigma[\mu] f = \int \limits_{\mathbb{R}} \sigma_\tau f d\mu(\tau). \]

The vector space \(bv_c(\mathbb{R})\) is a convolution ring with identity and without zero divisors, with convolution defined by

\[(\mu_1 * \mu_2)(t) = \int \limits_{\mathbb{R}} \mu_1(t - \tau) d\mu_2(\tau). \]

In this section we present results only. Proofs are completely similar to the proof of the corresponding results for the translation semigroup on \(C(\mathbb{R}^+, V)\). In this respect we also refer to [Eij].

23
• The one-parameter group \((\sigma_t)_{t \in \mathbb{R}}\) is a \(c_0\)-group on \(C(\mathbb{R}, V)\).

• For \(f \in C(\mathbb{R}, V)\) introduce \(Jf\) by

\[
(Jf)(t) = \int_0^t f(\tau) d\tau, \quad t \in \mathbb{R}.
\]

Then \(J\) on \(C(\mathbb{R}, V)\) is continuous and injective. By \(C^k(\mathbb{R}, V)\) the subspace of \(C(\mathbb{R}, V)\) is denoted consisting of all \(f\) for which there are a \(V\)-valued polynomial \(p\) of degree \(k\) and \(g \in C(\mathbb{R}, V)\) such that

\[
f = p + J^k g.
\]

This \(g\) is called the \(k\)-th derivative of \(f\) and so denoted by \(D^k f\). The differentiation operator \(D\) is thus well defined and equals the infinitesimal generator of the group \((\sigma_t)_{t \in \mathbb{R}}\).

- For each complex polynomial \(p\), the operator \(p(D)\) with natural domain \(C^d(\mathbb{R}, V)\), where \(d = \text{degree}(p)\), is closed as a linear operator in \(C(\mathbb{R}, V)\).

- Let \(\mu \in bV_c(\mathbb{R}) := bV_c(\mathbb{R}) \cap C^\infty(\mathbb{R})\). Then \(\mu' \in C_c^\infty(\mathbb{R})\) and \(\sigma[\mu]\) maps \(C(\mathbb{R}, V)\) into \(C^\infty(\mathbb{R}, V)\). Using an approximate identity it follows that \(C^\infty(\mathbb{R}, V)\) is dense in \(C(\mathbb{R}, V)\).

- The linear span of the set \(\{\sigma_t \mid t \in \mathbb{R}\}\) is strongly dense in \(\{\sigma[\mu] \mid \mu \in bV_c(\mathbb{R})\}\).

Of course, the results on one-parameter \(c_0\)-semigroups have their analogues for one-parameter groups. The proofs of the now mentioned results have the same style of argumentation as the proofs given in Section 4, 5 and 6. See also [Eij].

Let \((\gamma_t)_{t \in \mathbb{R}}\) be a one parameter \(c_0\)-group of continuous linear mappings on \(V\) with corresponding flow operator \(F_\gamma\) from \(V\) into \(C(\mathbb{R}, V)\).

- If \(V\) is barreled, then \((\gamma_t)_{t \in \mathbb{R}}\) is locally equicontinuous, or, equivalently, then \(F_\gamma\) is continuous. (Cf. Theorem 4.3.)

Assume in the rest of the statements that \(F_\gamma\) is continuous.

- Define the operator \(\delta_\gamma\) in \(V\) to be the infinitesimal generator of \((\gamma_t)_{t \in \mathbb{R}}\).

\[
x \in \text{dom}(\delta_\gamma) : \Leftrightarrow \delta_\gamma x := \lim_{t \to 0} \frac{\gamma_t x - x}{t}
\]

exists.

- Then \(x \in \text{dom}(\delta^k_\gamma)\) if and only if \(F_\gamma x \in C^k(\mathbb{R}, V)\), \(k \in \mathbb{N}\). Let \(\text{dom}^\infty(\delta_\gamma) = \bigcap_{k \in \mathbb{N}} \text{dom}(\delta^k_\gamma)\). Then \(\text{dom}^\infty(\delta_\gamma)\) is dense in \(V\).

- For each \(\mu \in bV_c(\mathbb{R})\) the operator \(\gamma[\mu]\)
\[\gamma[\mu]x = \int_{\mathbb{R}} \gamma_\tau x \, d\mu(\tau) \]

is well-defined and continuous on \(V \). The linear span of the set \(\{ \gamma_t \mid t \in \mathbb{R} \} \) is dense in \(\{ \gamma[\mu] \mid \mu \in \text{bv}_c(\mathbb{R}) \} \). Let \((\mu_n) \) be an approximate identity. Then \(\gamma[\mu_n] \to I \) strongly on \(V \).

- Let \(M \) be a closed subspace of \(V \) with \(\gamma_t(M) = M \) for all \(t \in \mathbb{R} \). Then \(\gamma[\mu](M) \subseteq M \) and \(M \cap \text{dom}^\infty(\delta_\gamma) \) is dense in \(M \). Let \(M_0 \) be a closed subspace of \(\text{dom}^\infty(\delta_\gamma) \) (with respect to its natural topology) and let \(M \) denote the closure of \(M_0 \) in \(V \). Then \(M_0 = M \cap \text{dom}^\infty(\delta_\gamma) \).

- Let \(K \) be a closed \((\gamma_t)\)-invariant operator in \(V \) with domain \(\text{dom}(K) \). Then for all \(\mu \in \text{bv}_c(\mathbb{R}) \) and \(x \in \text{dom}(K) \),

\[\gamma[\mu]x \in \text{dom}(K) \text{ and } K\gamma[\mu]x = \gamma[\mu]Kx . \]

If \(\text{dom}^\infty(\delta_\gamma) \subseteq \text{dom}(K) \), then \(K(\text{dom}^\infty(\delta_\gamma)) \subseteq \text{dom}^\infty(\delta_\gamma) \) and

\[\text{graph}(K) = \{ (x;Kx) \mid x \in \text{dom}^\infty(\delta_\gamma) \} . \]

References

