Statecharting Petri nets

Citation for published version (APA):

Document status and date:
Published: 01/01/2005

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 11. Sep. 2020
Statecharting Petri Nets

Rik Eshuis*

Abstract
A polynomial algorithm that translates a Petri net into an equivalent (bisimilar) statechart is presented. The translation preserves the structure of the Petri net. Key property of the algorithm is that it is structural and does not use any Petri net analysis technique. The algorithm is formally proven correct. Though not every statechart equivalent to a net is constructible by the algorithm, the set of constructible statecharts is fairly large.

1 Introduction
Petri nets and statecharts are two popular visual formalisms for modelling systems that exhibit concurrency. Petri nets were introduced in 1962 by C.A. Petri [24]. Since the 1980’s Petri nets found their way in practical applications like manufacturing, workflow modelling and performance analysis [28]. Statecharts were introduced in 1987 by D. Harel [9], for use in the structured analysis method Statemate [15]. Soon after their appearance, statecharts were adopted in several object-oriented methods, including OMT [29], ROOM [32], and their successor Unified Modeling Language [34, 35]. Thus, both Petri nets and statecharts have found widespread use in both academia and industry.

Both formalisms are supported by various tools, like CPN tools [26] and GreatSPN [2] for Petri nets, and Statemate [12, 15] and Stateflow [20] for statecharts. UML [35] tools are a special case, since they support not only statecharts but also activity diagrams, a Petri-net like notation. Tools supporting Petri nets are strongly focused on analysis of both functional and stochastic properties, while tools supporting statecharts are usually more focused on the software design process, for example offering the facility to generate code from a statechart.

Given this wide tool support, it is interesting to have well-defined translations between Petri nets and statecharts. Such translations could facilitate the exchange of models in different notations between tools, thus allowing designers to use the best of both worlds. Ideally, such translations are correct and structure preserving. A translation is correct if the original and translated model are equivalent. Correctness guarantees that operations done with a tool on a particular model are meaningful, even if the original model was expressed in another formalism. Preservation of structure ensures that the syntax of the original and translated model are alike, making it easier for designers to understand the translated model.

*Address: Eindhoven University of Technology, Department of Technology Management, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, h.eshuis@tm.tue.nl.
The goal of this paper is to define a translation from Petri nets to statecharts, and vice versa, that is both correct and structure preserving. Before giving any details on these two translations, it is useful to discuss the similarities and differences between statecharts and Petri nets. Both formalisms are generalisations of finite state machines. Finite state machines model sequential processes as states connected by transitions. Mathematically, finite state machines are represented as directed graphs, consisting of nodes (representing states) and directed edges (representing transitions). The global state of such a machine at a certain point in time is always one single state, i.e., only one node of the graph is active at a time.

Both Petri nets and statecharts generalise finite state machines by using transitions that can enter and leave multiple states. Sources and targets of such transitions are concurrent: a transition can only be taken if all its sources are active in parallel, and if a transition is taken, all its targets become active in parallel. Mathematically, a transition is represented as a hyperedge. Consequently, the underlying mathematical model is a hypergraph rather than a graph. The global state of a Petri net or statechart is distributed and typically consists of multiple states, i.e., multiple nodes of the hypergraph can be simultaneously active. Even though Petri nets and statecharts share these concepts, the terminology is somewhat different (see Table 1; for definitions see Section 3). To clearly distinguish between the two formalisms, for statecharts we use the terms ‘node’ and ‘hyperedge’ rather than the more common ‘state’ and ‘transition’.

Though both Petri nets and statecharts are based on hypergraphs, statecharts have as additional feature an AND/OR hierarchy on nodes to explicitly model concurrency. This hierarchy is visualised by node containment, where nodes that contain other nodes are called composite. There are two kinds of composite nodes: AND and OR, each imposing its own constraint on the global state of the statechart. An AND node denotes concurrency: If an AND node is active, all its immediate subnodes must be active as well. An OR node denotes exclusiveness: If an OR node is active, one of its immediate subnodes must be active as well. (So OR is actually XOR.)

The constraints imposed by the statechart hierarchy imply that leaf nodes of the hierarchy, BASIC nodes, are not active more than once in the same global state. This seems to suggest that statecharts correspond to safe Petri nets. However, equivalently they can be represented as hypergraphs.

Table 1: Relating Petri net and statechart terminology

<table>
<thead>
<tr>
<th>Concept</th>
<th>Petri net</th>
<th>Statechart</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>place</td>
<td>node (state)</td>
</tr>
<tr>
<td>Transition</td>
<td>transition</td>
<td>hyperedge (full compound transition)</td>
</tr>
<tr>
<td>Active State</td>
<td>place containing a token</td>
<td>active node (active state)</td>
</tr>
<tr>
<td>Global State</td>
<td>marking</td>
<td>configuration</td>
</tr>
</tbody>
</table>

1 Usually Petri nets are represented as bipartite graphs. However, equivalently they can be represented as hypergraphs [23].

2 Even though there do exist extensions of Petri nets with hierarchy, the execution semantics of such hierarchical Petri nets does not depend on the hierarchy. That is, a hierarchical Petri net can always be transformed into an equivalent non-hierarchical Petri net by substituting for each parent node its decomposition. Such a syntactic elimination of hierarchy is not possible in statecharts, essentially because in statecharts concurrency can only be expressed in a hierarchical way using AND nodes.
nets (nets in which in each marking every place has at most one token; see Section 3). However, there is no known structure-preserving translation from safe Petri nets to statecharts. The difficulty in defining such a translation lies in constructing an appropriate AND/OR hierarchy. On the other hand, to translate a statechart into a Petri net, simply dropping composite nodes from the statechart seems to suffice.

In this paper, we present a structure-preserving algorithm that translates a Petri net into an equivalent (bisimilar) statechart. The algorithm is structure-preserving in the sense that it maps each place to a BASIC node and each transition to a hyperedge. Thus, loosely speaking, the algorithm imposes an AND/OR hierarchy of nodes on the Petri net structure. If the algorithm cannot find an equivalent statechart, it fails. The algorithm has been implemented in a software tool, which is available for public download at http://is.tm.tue.nl/staff/heshuis/pn2sc.

Key property of the algorithm is that it is structural and does not use any Petri net analysis techniques, like place invariants or reachability graphs. This leads to the surprising result that the algorithm is polynomial in the size of the net, even though the algorithm involves the construction of an additional structure on top of a Petri net.

The correctness of the algorithm is formally proven. However, it is not complete: it fails for some nets that do have a statechart equivalent. But statecharts which it fails to construct are not likely to be drawn by statechart designers, as we argue in Section 4.2 (p. 31), so this non-completeness does not appear to be a severe limitation in practice.

For the reverse direction, we give a characterisation of the statecharts that can be mapped by a structure-preserving translation into an equivalent Petri net. This shows that not every statechart can be translated into an equivalent Petri net, so omitting composite nodes from a statechart does not always yield an equivalent net.

We focus on unweighted, low level Petri nets and statecharts without any transition labels. For statecharts, weighted transitions are not very useful, as each node is active at most once. Defining translations that take into account data, by considering for example coloured Petri nets [17] and statecharts with local variables and guard and action labels, we defer to future work. Moreover, we do not consider statecharts with event labels. In previous work, we already studied to what respect event triggering can be supported in Petri nets [7, 6, 4].

Since we consider structure-preserving translations, we do not use the statechart in-predicate as guard condition on hyperedges. Given a node \(x \), predicate \(in(x) \) is true if and only if the system is currently in \(x \). With the in-predicate as guard condition, a hyperedge can test a node for (in)activeness without leaving it. In Petri nets, this can be modelled using read and inhibitor arcs.

Related work. There is but little work on the topic of translating Petri nets to statecharts. In fact, the only published work with considerable amount of details appears to be Schnabel et al. [31] (in German). They outline an interactive method to translate a safe Petri net into a statechart. The method uses place invariants. Roughly speaking, each invariant maps to a parallel node of a statechart. Like this work, their aim is to translate every place into one BASIC node. However, since a place can occur in several place invariants, in most cases
a place translates into several BASIC nodes. Schnabel et al. outline some ways to prevent such duplications, but sometimes duplications cannot be avoided. In contrast, our algorithm is not interactive and always translates a place into a single BASIC node.

However, since the translation of Schnabel et al. is not structure preserving, it sometimes succeeds where our translation fails. Their translation uses guard conditions, in particular the in-predicate, and local variables in combination with action expressions, to simulate cross-synchronisations between parallel statechart nodes. For example, their method could translate the net in Figure 6, for which no structure-preserving equivalent statechart exists, into the statechart shown in Figure 8 (Section 2 explains these examples in detail). As stated above, in this paper we are interested in structure-preserving translations only, hence we do not consider guard conditions and action expression on statechart hyperedges.

Considering the reverse direction, translations from statecharts to Petri nets appear quite frequently in the literature (e.g. [16, 21, 31, 30, 33]). In these approaches, statecharts are considered as having an informal semantics that is formalised by the mapping to Petri nets. However, this ignores that statecharts have their own semantics. Thus, in these approaches no formal proof is given that the translation is actually correct. In Section 3 we define a translation that is proven correct if the statechart satisfies certain conditions. Thus, not every statechart can be mapped in to an equivalent Petri net.

Kishinevsky et al. [19] define a Petri net variant that incorporates some statechart features. The variant, called place chart net, uses hierarchy on places and preemptive transitions: a transition does not only empty its input places but also all descendant places of the input places. However, the authors do not relate place chart nets to standard Petri nets.

Finally, Drusinsky and Harel [3] show that a class of concurrency models that includes both statecharts and Petri nets is more succinct than finite state machines. However, they do not explicitly make a distinction between statecharts and Petri nets, i.e., they fall in the same class.

Structure of this paper. Section 2 introduces some motivating examples of Petri nets and statecharts that do or do not have equivalent behaviour. This sets the stage for the translation in Section 4. Section 3 recalls definitions of Petri nets and statecharts. We formally prove when a statechart has an equivalent Petri net. The definition of statecharts is nonstandard, since we do not consider default nodes. Section 4 presents the transformation algorithm from Petri nets into statecharts. Section 5 winds up with conclusions and further work.

2 Motivating the translation

Some motivating examples of Petri nets that can or cannot be translated into equivalent (bisimilar) statecharts are presented. The translations impose AND/OR hierarchies on the net structures. (Formal definitions can be found in the next section.) In Section 4 these examples are used to motivate the algorithm. The equivalent statecharts shown here are also returned by the algorithm in Section 4, but the inequivalent ones are not, since the algorithm fails if it cannot find a structure-preserving, equivalent statechart for the input Petri net. In
The intuitive relation between a Petri net and a statechart is that every Petri net with balanced forks and joins corresponds to a statechart. A fork is a transition with more than one output place and a join is a transition with more than one input place. A net has balanced forks and joins if and only if the paths leaving a fork are eventually merged by entering a subsequent join. Every fork-join pair directly corresponds to an AND node. For example, the balanced net in Figure 1 has two fork-join pairs: \{t1, t4\} and \{t2, t3\}. Consequently, the equivalent statechart in Figure 1 has two AND nodes. This balancing constraint has been adopted in UML 1.x activity diagrams [34] (a notation with a Petri net-like syntax whose semantics is defined in terms of UML statecharts) in order to ensure that each activity diagram can be mapped into a statechart.

However, even Petri nets with unbalanced forks and joins may have structure-preserving, equivalent statecharts. For example, the join in the Petri net in Figure 2 corresponds to two forks, rather than one. Thus, the net is not balanced. Still, an equivalent statechart exists, also shown in Figure 2. As another example, in the net in Figure 3 the join t2 only partially matches the fork t1. But also for this net, an equivalent statechart exists, as shown in Figure 3.

Nevertheless, there are also unbalanced Petri nets that have no structure-preserving equivalent statechart. For example, the net shown in Figure 4 is unbounded; places p2 and p4 can contain an unbounded number of tokens. An equivalent statechart does not exist, because of transition t2. A somewhat similar statechart is shown in the same figure. However, in the statechart, if t2 is taken, node A and all its descendants are left, including nodes p2 and p4. Thus, the statechart is not unbounded.

Unsafe nets also have no structure-preserving statechart equivalent. For example, the net in Figure 5 is unsafe. Place p10 is unsafe, because t3 and t4 can both be taken. Although the statechart in Figure 5 appears to be equivalent, it does not have the same behaviour as the net. In the statechart, if t3 fire, the examples, statechart nodes and edges are labelled with the names of the corresponding Petri net constructs.
Figure 2: Petri net with unbalanced forks and joins and equivalent statechart

Figure 3: Another Petri net with unbalanced forks and joins and equivalent statechart
Figure 4: Unbounded Petri net and non-equivalent statechart

Figure 5: Unsafe Petri net and inequivalent statechart
the source of t_3, node p_8, as well as AND node A is left. According to the statechart semantics, therefore all descendants of A are left as well, including the source of t_4, node p_9. So in the statechart, taking t_3 disables t_4, and vice versa. Therefore, the statechart cannot be unsafe.

As we pointed out in the introduction, a Petri net has to be safe to be translatable into a structure-preserving, equivalent statechart, since according the statechart semantics nodes cannot be active more than once at the same time. However, not every safe Petri net can be translated into a statechart. For instance, Figure 6 shows a Petri net in which two parallel branches have a cross-synchronisation between them. The cross-synchronisation prevents that an equivalent statechart exists.

The behaviour of a seemingly similar statechart, shown in Figure 7, is quite complex. Hyperedge h_1 connects parallel nodes. If h_1 is taken, state A and all its descendants are left, including nodes O_1, n_1, n_2 and n_3. (In fact, the statechart is not valid, since it is not specified which node of O_2 has to be entered.) Clearly, a statechart with a hyperedge connecting parallel nodes cannot have a Petri net equivalent.

The Petri net in Figure 6 also illustrates the implications of only considering structure-preserving translations. If we allowed a non-structure-preserving translation, there would exist a statechart equivalent, for example the one listed in Figure 8. However, in that statechart hyperedge t_4 does not have node p_5 as source, but tests whether p_5 is active using the in-predicate.

Another example to illustrate these implications is shown in Figure 9. The net on the left does not have a direct statechart equivalent, due to the cross-synchronisation between the two parallel branches. The net on the right does
Figure 8: Statechart with in-predicate corresponding to the net in Figure 6

Figure 9: Two equivalent Petri nets. The one on the right has a structure-preserving, equivalent statechart, but the one on the left has not have a statechart equivalent, namely a simple sequential statechart. However, the net on the left is equivalent to the net on the right (i.e. their transition systems are bisimilar).

3 Preliminaries

We recall some definitions of transition systems, Petri nets and statecharts. Readers familiar with Petri nets and statecharts can skip this section. However, note that the statechart definition differs slightly from the traditional one; details can be found below. Formal definitions of Petri nets can be found in standard text books like Reisig [27] or overview papers like Murata [22]. For statecharts, formal definitions can be found, among others, in papers by Harel et al. [14] and Pnueli and Shalev [25].

3.1 Transition systems

The execution semantics of both Petri nets and statecharts map into transition systems. A transition system is a pair \((S, \rightarrow, s_i)\) where

- \(S\) is a set of states,
- \(\rightarrow \subseteq S \times S\) the transition relation, and
- \(s_i \in S\) is the initial state.
We write \(x \xrightarrow{} y \) whenever \((x, y) \in \rightarrow\).

To compare different transition systems, we use the notion of a bisimulation [8]. Let \((S_1, \to_1, s_{i_1})\) and \((S_2, \to_2, s_{i_2})\) be two transition systems. A bisimulation is a relation \(\bar{R} \subseteq S_1 \times S_2 \) such that

(i) if \(s_1 \bar{R} s_2 \) and \(s_1 \to_1 s_1' \) then \(\exists s_2' \in S_2 \) such that \(s_2 \to_2 s_2' \) and \(s_1' \bar{R} s_2' \),

(ii) if \(s_1 \bar{R} s_2 \) and \(s_2 \to_2 s_2' \) then \(\exists s_1' \in S_1 \) such that \(s_1 \to_1 s_1' \) and \(s_1' \bar{R} s_2' \).

Two transition systems \((S_1, \to_1, s_{i_1})\) and \((S_2, \to_2, s_{i_2})\) are bisimilar if and only if their initial states \(s_{i_1} \) and \(s_{i_2} \) are related by a bisimulation relation.

3.2 Petri nets

Syntax.

A Petri net (place/transition net) is a tuple \((P, T, F, p_i)\) where

- \(P \) is a set of places,
- \(T \) is a set of transitions, \(P \cap T \neq \emptyset \),
- \(F \subseteq (P \times T) \cup (T \times P) \) is a finite set of arcs, the flow relation,
- \(p_i \in P \) is the initial place.

We do not consider weights on the arcs, since statecharts do not have such a feature. Normally, Petri nets do not have one specific initial place. However, our definition is not very restrictive: for each Petri net having a set \(S \) of initial places, an artificial initial place \(p_i \) can be created with an additional transition leaving \(p_i \) and filling the original initial places in \(S \).

Given a transition \(t \), \(\bullet t = \{ p \in P \mid (p, t) \in F \} \) is the set of input places of \(t \), whereas \(\circ t = \{ p \in P \mid (t, p) \in F \} \) is the set of output places of \(t \). We require that both \(\bullet t \) and \(t \circ \) be nonempty. Furthermore, we require the net be connected: for any two nodes \(n, n' \in P \cup T \), there should be a path \(n_0 = n, n_1, \ldots, n_m = n' \) such that for every \(0 \leq i < m \), either \((n_i, n_{i+1}) \in F \) or \((n_{i+1}, n_i) \in F \).

Petri nets are visualised as bipartite graphs, in which circles represent places, bars represent transitions, and arrows represent the flow relation.

Semantics.

The global state of a Petri net, called the *marking*, is a function \(M : P \to \mathbb{N} \) that assigns to each place the number of times it is active. Each single activation of a place is visualised by a black dot in the place, called a *token* in Petri net terminology. In each net shown in this paper, the initial marking \([p_i]\) is depicted, in which each initial place \(p_i \) contains a single token and every other place has no token.

From a marking \(M \) another marking \(M' \) can be reached by firing transitions. A transition \(t \) can fire in a marking \(M \) if and only if \(M \) enables \(t \). Marking \(M \) enables transition \(t \) if and only if all of \(t \)'s input places are active: for all \(p \in \bullet t : M(p) \geq 1 \). If \(t \) fires in \(M \), marking \(M' \) is reached, written \(M \xrightarrow{t} M' \), where for every \(p \in P \):

\[
M'(p) = \begin{cases}
M(p) - 1 & \text{if } p \in \bullet t \\
M(p) + 1 & \text{if } p \in t \circ t \\
M(p) & \text{otherwise.}
\end{cases}
\]
A marking M' is reachable from M if and only if there is a sequence of transitions $t_1, t_2, ..., t_n$ such that $M_1 \xrightarrow{t_1} M_2 \xrightarrow{t_2} M_3 ... M_n \xrightarrow{t_n} M_{n+1}$ where $M_1 = M$ and $M_{n+1} = M'$. A marking M is reachable if and only if it is reachable from $[p_i]$.

This execution semantics maps a Petri net (P, T, F) into a transition system (S, \rightarrow, s_i) in which the states are markings, the transitions represent firing of some Petri net transitions, and the initial state is the initial marking:

$$S \overset{df}{=} \{ M : P \rightarrow N \}$$
$$\rightarrow \overset{df}{=} \bigcup_{t \in T} t$$
$$s_i \overset{df}{=} [p_i].$$

This transition system is usually called reachability graph in Petri net terminology.

The bound of a place p is the maximum number of tokens assigned to p by a reachable marking. A Petri net is **safe** if and only if every place has bound of 1, i.e., no reachable marking M puts more than one token in some place. A Petri net is **unbounded** if and only if there is a place p that has no bound, i.e., for every bound $k > 0$, there is reachable marking M such that $M(p) > k$.

3.3 Statecharts

The formal definition of the statechart syntax and semantics, presented below, differs slightly from the original definition [14, 25]. In particular, we do not consider default nodes. For each OR node o, the default of o is a child node that is entered if some hyperedge enters o but none of its descendants. Default nodes ensure that taking a hyperedge always results in a valid global next state. We omit them since they do not have any counterpart in Petri nets. Moreover, default nodes can always be eliminated from a statechart by applying some simple preprocessing, as Harel and Naamad indicate [13]. This elimination results in a statechart consisting of hyperedges, called full compound transitions in [13], whose targets are BASIC nodes. Since we omit default nodes, we have to put extra constraints on hyperedges to ensure that when they are taken, a valid global state is reached. These constraints are informally also described in [13].

Syntax. A statechart is a tuple $(N, H, source, target, children, type, n_i)$ where

- N is a set of nodes,
- H is a set of hyperedges, $N \cap H \neq \emptyset$,
- $source : H \rightarrow N$ is a function defining the set of input nodes for each hyperedge,
- $target : H \rightarrow N$ is a function defining the set of output nodes for each hyperedge,
- $children : N \rightarrow P N$ is a function that defines for each node its immediate subnodes. If a node has children, we call it composite.
- **type**: $N \rightarrow \{\text{BASIC, AND, OR}\}$ is the function defining the type for each node. Each noncomposite node is BASIC. Each composite node is either AND or OR. If an AND node is active, all its children are active as well. If an OR node is active, one of its children is active. (So OR is actually a XOR.)

- $n_i \in N$ is the initial node.

Note the similarity with the definition of Petri nets. Nodes resemble places, hyperedges resemble transitions, and functions source and target resemble the flow relation.

The children relation must induce a hierarchy on nodes. To define this formally, we need some auxiliary definitions. Denote by children^* the reflexive-transitive closure of children:

$$\text{children}^*(n) = \bigcup_{i \geq 0} \text{children}_i(n)$$

where

$$\text{children}^0(n) = \{n\}$$

$$\text{children}^{i+1}(n) = \bigcup_{n' \in \text{children}(n)} \text{children}^i(n')$$

If $n' \in \text{children}^*(n)$, we say that n is ancestor of n' and n' is descendant of n. Two nodes n, n' are ancestrally related if either n is an ancestor of n' or n' an ancestor of n.

The next three constraints ensure that the children relation arranges nodes in a hierarchy [36]:

- There is one single node root $\in N$ that does not have any parents:

 $$\exists_1 n \in N : n = \text{root} \text{ and for all } n' \in N : n \notin \text{children}(n').$$

- Node root is ancestor of every node in the statechart, including itself:

 $$N = \text{children}^*(\text{root}).$$

- Every node, except root, has one parent:

 $$\text{for all } n \in N, n \neq \text{root} \text{ implies } \exists_1 n' \in N : n \in \text{children}(n').$$

We write parent(n) to denote the node n' that has n as child. So $n' = \text{parent}(n)$ iff $n \in \text{children}(n')$.

For technical reasons, we require that node root has type OR. Finally, the initial node n_i must be a child of root.

Statecharts are visually represented as hierarchical hypergraphs [10]. Figure 10 shows an example statechart, as well as the node hierarchy depicted by the statechart. Rounded rectangles represent nodes. Children of a node are contained in it. The children of an AND node are separated by a dotted line. In the example, AND node n_9 has two OR children: n_7 and n_8. And OR node n_7 has children n_2 and n_3. Bars represent hyperedges with multiple sources and/or targets (using a UML-like notation). Sources and targets of such hyperedges are represented by their incoming and outgoing arrows. In the example, the source of h_1 is n_1 and its targets are n_2 and n_4. The arrow leaving the black dot points at the initial node. The root node is never shown in a statechart diagram.
Figure 10: Example statechart and its node hierarchy

Semantics. Not every set of nodes is a valid state of a statechart. Every valid state, called a configuration, must satisfy several constraints, defined below.

First, we introduce some auxiliary definitions. The lowest common ancestor of a set \(X \subseteq N \) of nodes, written \(\text{lca}(X) \), is the most nested node \(n \in N \) that is an ancestor of every node in \(X \):

\[
X \subseteq \text{children}^*(n) \\
\text{for all } n' \in N : X \subseteq \text{children}^*(n') \Rightarrow n \in \text{children}^*(n')
\]

For example, in Figure 10, \(\text{lca}\{n2, n3\} \) is OR node \(n7 \), whereas the \(\text{lca}\{n4, n3\} \) is AND node \(n9 \).

Given a set \(X \) of nodes, \(\text{lca}^+ (X) \) is the most nested OR node that is ancestor of every node in \(X \). So only if \(\text{type}(\text{lca}(X)) \neq \text{AND} \), then \(\text{lca}^+ (X) = \text{lca}(X) \). For example, \(\text{lca}^+ (\{n4, n3\}) = \text{root} \), since \(\text{root} \) is the OR parent of AND node \(n9 \).

Two nodes \(n, n' \in N \) are orthogonal if and only if they are not ancestrally related and their \(\text{lca} \) is an AND node. In the example, nodes \(n2 \) and \(n4 \) are orthogonal, but nodes \(n2 \) and \(n7 \) are not (since \(n2 \) is child of \(n7 \)) and neither are \(n2 \) and \(n3 \) (since their lowest common ancestor is an OR node).

A set \(X \) of nodes is consistent if and only if for every pair \(x, y \in X \), either \(x \) and \(y \) are ancestrally related or \(x \) and \(y \) are orthogonal. Thus, set \(\{n2, n7\} \) is consistent.

A *configuration* is a maximal, consistent set of nodes. That is, adding a node to a configuration would make it inconsistent. In the example, set \(\{n1, \text{root}\} \) is a configuration, as is \(\{n2, n4, n7, n8, n9, \text{root}\} \). Configurations are the valid global states of the statechart.

A configuration \(C \) satisfies the following properties, for every \(x \in C \):

- \(\text{type}(x) = \text{OR} \Rightarrow |\text{children}(x) \cap C| = 1 \)
- \(\text{type}(x) = \text{AND} \Rightarrow \text{children}(x) \subset C \)
- \(x \neq \text{root} \Rightarrow \text{parent}(x) \in C \).

A hyperedge \(h \) is *enabled* in configuration \(C \) if all its sources are active: \(\text{source}(h) \subseteq C \). When a hyperedge is enabled, it can be taken.

To define the effects of taking a hyperedge, we need some additional definitions. The scope of a hyperedge \(h \) is the most nested OR node containing the
sources and targets of h:

$$\text{scope}(h) \overset{\text{df}}{=} \text{lea}^+(\text{source}(h) \cup \text{target}(h)).$$

Upon taking h, all descendants of $\text{scope}(h)$ will be left. The new configuration entered by taking h consists of $\text{target}(h)$, their ancestors, and nodes in the current configuration C that are ancestors of $\text{scope}(h)$. More precisely, upon taking h, the configuration C changes into C', written $C \xrightarrow{h} C'$, where

$$C' = \text{decomp}((C \setminus \text{children}^*(\text{scope}(h))) \cup \text{target}(h))$$

where given a set S, the default completion $\text{decomp}(S)$ is the smallest set D such that

- $S \subseteq D$
- if $s \in D$ and $s \neq \text{root}$ then $\text{parent}(s) \in D$.

However, because we do not consider default nodes, a complication that arises is that the new configuration may be incompletely specified. For example, if in Figure 10 the configuration is $\{\text{root, } n1\}$ and $h5$ is taken, then node $n1$ is left and node $n5$ and all its ancestors are entered, so the next configuration would be $\{\text{root, } n5, n8, n9\}$. However, that configuration is invalid, since $n9$ is in the new configuration, but its child $n7$ is not. As another example, if in the statechart in Figure 7 hyperedge $t1$ is taken, then $O2$ is left but not entered, so here also an incomplete configuration results.

To avoid such incomplete configurations, we put two additional constraints on statecharts, not present in the original definition. If statecharts satisfy these two constraints, then after taking an enabled hyperedge with a consistent set of target nodes, a valid next configuration is reached. First, we require that each hyperedge h is basic, i.e. its sources and targets are basic nodes:

$$\text{basic}(h) \overset{\text{df}}{=} (\text{source}(h) \cup \text{target}(h)) \subseteq \text{BASIC}$$

where

$$\text{BASIC} \overset{\text{df}}{=} \{ n \in N \mid \text{type}(n) = \text{BASIC} \}.$$

Otherwise, if a hyperedge would enter an OR node but none of its children, an incomplete configuration would result.

Second, we require that hyperedges are target complete, i.e. they should not enter some AND node only partially. For example, in the statechart in Figure 10, hyperedge $h5$ only partially enters AND node $n9$: no descendant of $n7$ is entered. A hyperedge h is target complete if and only if for each AND node a that it enters, i.e. $\text{target}(h) \cap \text{children}^*(a) \neq \emptyset$, it also enters every child of a:

$$\text{target}_\text{complete}(h) \overset{\text{df}}{=} \forall n \in \text{children}^*(\text{scope}(h)) :$$

$$\text{type}(n) = \text{AND} \land \text{children}^*(n) \cap \text{target}(h) \neq \emptyset \Rightarrow$$

$$\forall n' \in \text{children}(n) : \text{children}^*(n') \cap \text{target}(h) \neq \emptyset.$$
none of its children, in the default completion the default node of a would be included. And for every hyperedge \(h \) that partially enters some AND node \(a \), the default nodes of the OR children not entered by \(h \) would be added to the partial configuration (cf. \([14, 25]\)).

In addition, we formulate a constraint specifying that a hyperedge \(h \) should leave an AND node either completely or not at all. Though the execution semantics of statecharts enforces AND nodes not be left completely (since all nodes below \(\text{scope}(h) \) are left), we show in the sequel that statecharts satisfying this constraint are bisimilar to Petri nets. A hyperedge \(h \in H \) is source complete if and only if for each AND node \(a \) that it leaves, it leaves each of \(a \)'s children as well.

\[
\text{source}_\text{complete}(h) \iff \forall n \in \text{children}^\ast(\text{scope}(h)):\n\begin{align*}
type(n) &= \text{AND} \land \text{children}^\ast(n) \cap \text{source}(h) \neq \emptyset \\
&\land \forall n' \in \text{children}(n): \text{children}^\ast(n') \cap \text{source}(h) \neq \emptyset.
\end{align*}
\]

In the statechart of Figure 10, hyperedge \(h_6 \) is not source complete.

If a hyperedge is both source and target complete, we call it complete. If a complete hyperedge is taken in configuration \(C \), the BASIC nodes left in \(C \) are the sources of \(h \), and the BASIC nodes entered are the targets of \(h \). Below, we prove this formally (Lemma 3.1 and 3.2). In Figure 10, hyperedges \(h_1 \), \(h_2 \), and \(h_4 \) are complete. Note that \(h_3 \) is neither source complete nor target complete.

In addition, each hyperedge \(h \in H \) should be consistent, i.e., it should enter and leave a consistent set of nodes. A hyperedge with an inconsistent source can never become enabled. And taking a hyperedge with an inconsistent target would result in an invalid configuration. All hyperedges of the statechart in Figure 10 are consistent.

\[
\text{consistent}(h) \iff \text{consistent}(\text{source}(h)) \land \text{consistent}(\text{target}(h)).
\]

A statechart \(SC \) is wellformed iff every hyperedge \(h \in H(SC) \) is basic, consistent, and complete. The example statechart in Figure 10 is not wellformed.

\[
\text{wellformed}(SC) \iff \forall h \in H : \text{basic}(h) \land \text{consistent}(h) \land \text{complete}(h).
\]

In Section 3.4, we show that wellformed statecharts are equivalent to Petri nets. The execution semantics maps a statechart into a transition system \((S, \rightarrow, s_i)\) where

\[
\begin{align*}
S &\triangleq \{ C \subseteq N \mid C \text{ is a valid configuration} \} \\
\rightarrow &\triangleq \bigcup_{h \in H} h \\
s_i &\triangleq \{ n_i, \text{root} \}.
\end{align*}
\]

For wellformed statecharts, the following lemmas can be easily proven.

Lemma 3.1 Given a basic hyperedge \(h \) that is source complete and consistent. If \(C \xrightarrow{h} C' \), then \((C \cap \text{children}^\ast(\text{scope}(h))) \cap \text{BASIC} = \text{source}(h) \).
Proof. \subseteq direction: Take a node $n \in (C \cap \text{children}^*(\text{scope}(h))) \cap \text{BASIC}$. By definition of C, n is orthogonal to all other BASIC nodes in C. Moreover, n is a descendant of $\text{scope}(h)$. By definition of source completeness, then $n \in \text{source}(h)$.

\supseteq direction: By definition of $\text{scope}(h)$, $x \in \text{source}(h)$ implies $x \in \text{children}^*(\text{scope}(h))$. \hfill \Box

Lemma 3.2 Given a basic hyperedge h that is target complete and consistent. If $C \xrightarrow{h} C'$, then $\text{decomp}((C \setminus \text{children}^*(\text{scope}(h))) \cup \text{target}(h)) \cap \text{BASIC} = \text{target}(h) \cup ((C \setminus \text{children}^*(\text{scope}(h))) \cap \text{BASIC})$.

Proof. By similar reasoning as in the proof of Lemma 3.1. \hfill \Box

Wellformed statecharts have the property that sources and targets of hyperedges specify the next configuration completely: no additional nodes need to be added or removed. This property is default in Petri nets: a change in marking only depends on the transition taken. Thus, wellformed statecharts and Petri net correspond closely to each other. Each wellformed statechart can be translated into an equivalent Petri net by simply removing all composite nodes from it; we prove this in the next subsection. In the next section, we show how some Petri nets can be translated into an equivalent, structure-preserving, wellformed statechart.

3.4 From statecharts to Petri nets

Deriving a Petri net from a statechart structure as specified in the previous paragraph is straightforward: simply drop the composite nodes from the statechart. The function \text{SCtoPN} defines this formally:

\[
\text{SCtoPN}((N, H, \text{source}, \text{target}, \text{children}, \text{type}, n_i)) = (P, T, F, p_i)
\]

where

\[
P \overset{\text{df}}{=} \{ p_n \mid n \in N \land \text{type}(n) = \text{BASIC} \}
\]

\[
T \overset{\text{df}}{=} \{ t_h \mid h \in H \}
\]

\[
F \overset{\text{df}}{=} \{ (x_n, y_h) \in P \times T \mid n \in \text{source}(h) \}
\]

\[
\cup \{ (y_h, x_n) \in T \times P \mid n \in \text{target}(h) \}
\]

\[
p_i \overset{\text{df}}{=} p_{n_i}.
\]

The correctness of this function is shown by defining a bisimulation on the transition systems induced by the statechart and Petri net. However, the bisimulation only exists if the statechart is wellformed. In general, illformed statecharts like the one in Figure 10 do not have a bisimilar statechart. In exceptional cases, illformed statecharts can also have a bisimilar Petri net (if every hyperedge that is not source or target complete never can become enabled).

Theorem 3.1 (correctness) Given a wellformed statechart $SC = (N, H$, source, target, children, type, $n_i)$. The Petri net $\text{SCtoPN}(SC)$ bisimulates the original statechart.
Proof. We define a relation R that relates markings and configurations. Next, we show that R is a bisimulation.

Given a configuration C and a marking M, define R by

$$C \ R \ M \iff \forall n \in \text{Nodes} : \text{type}(n) = \text{BASIC} \land n \in C \iff M(p_n) = 1$$

Given an enabled hyperedge h in C. Denote by C' the configuration reached by taking h. Denote by M' the marking reached by taking t_h. Then

$$n \in C' \land \text{type}(n) = \text{BASIC}$$

\iff [lemma 3.2]

$$n \in \text{target}(h) \lor ((n \in C \land n \notin \text{children}^*(\text{scope}(h))) \land \text{type}(n) = \text{BASIC})$$

\iff [lemma 3.1, lemma 3.2, def. scope]

$$(n \in \text{target}(h) \land (n \in C \lor n \notin C))$$

\lor

$$(n \in C \land n \notin \text{source}(h) \lor \text{target}(h)) \land \text{type}(n) = \text{BASIC})$$

\iff [lemma 3.1, def. h]

$$(n \in \text{target}(h) \land ((n \in C \land n \notin \text{source}(h)) \lor (n \notin C \land n \notin \text{source}(h))))$$

\lor

$$(n \in C \land n \notin \text{source}(h) \lor \text{target}(h)) \land \text{type}(n) = \text{BASIC})$$

\iff [logic]

$$(n \in \text{source}(h) \land \text{target}(h) \land n \in C)$$

\lor

$$(n \in \text{target}(h) \land n \notin C)$$

\lor

$$(n \in C \land n \notin \text{source}(h) \lor \text{target}(h)) \land \text{type}(n) = \text{BASIC})$$

\iff [definition t_h, R]

$$(p_n \in \bullet t_h \land t_h \bullet \land M(p_n) = 1)$$

\lor

$$(p_n \in t_h \bullet \land t_h \land M(p_n) = 0)$$

\lor

$$(M(p_n) = 1 \land p_n \notin \bullet t_h \cup t_h \bullet)$$

\iff [def. \rightarrow, M is safe]

$$M'(p_n) = 1.$$

\Box

In the next section, we focus on the reverse direction.
4 Translating Petri nets to statecharts

Motivated by the example translations in Section 2, we present a structural algorithm that translates a Petri net into an equivalent, structure-preserving statechart, by mapping each place to a BASIC node, each transition to a hyperedge and imposing an AND/OR hierarchy of nodes on the BASIC nodes. If the algorithm does not find an equivalent statechart, it fails. The algorithm is formally proven correct, but we show it is not complete. That is, every statechart constructed by the algorithm is a valid statechart whose behaviour is equivalent to the original Petri net, but the algorithm fails on some Petri nets that do have a statechart equivalent. However, as we argue, statecharts not constructible by the algorithm are not likely to be drawn in practice.

4.1 Algorithm

Before the algorithm is presented, some of its features are listed, motivated by the example translations provided in Section 2. Key feature of the algorithm is that composite nodes are modelled as well-founded sets, whose elements are the children of the composite nodes. Atoms of the compound sets are the BASIC nodes, which correspond to Petri net places.

Second, since the algorithm is structure preserving, places map to BASIC nodes and transitions to hyperedges. Sources of a hyperedge h corresponding to transition t are the BASIC nodes corresponding to the places in the preset of t. Similarly, targets from h are the BASIC nodes corresponding to places in the postset of t.

The algorithm initially creates a BASIC node for each place and a hyperedge for each transition.

Third, each AND node in the statechart corresponds to a non-singleton preset or postset of some transition in the Petri net. For example, in Figure 3, AND nodes correspond to sets $\{p_2, p_3, p_4\}$ and $\{p_5, p_6\}$. For ease of reference, in all nets shown in this paper, each transition has either a singleton preset or singleton postset or both (but this is not a restriction the algorithm imposes). For such nets, instead of referring to preset and postsets, we can refer to the corresponding (fork and join) transitions. Thus, for the example net in Figure 3, we can also say that AND nodes correspond to transitions t_1 and t_2. OR nodes are created for each place and each AND node.

Fourth, we need only consider statecharts in which for each hyperedge h, the least common OR ancestor ls of its sources equals the least common OR ancestor lt of its targets. From the definition of scope, it follows that then this node ls (lt) equals the scope of h. If a statechart does not satisfy this property, either (i) the ls is an ancestor of lt or vice versa, or (ii) both ls and lt are descendants of $\text{scope}(h)$. Case (i) occurs when OR nodes are nested in each other, which is not needed for our purposes. Case (ii) occurs if the statechart is not wellformed; see for example Figure 6. However, we are only interested in

18
wellformed statecharts, since such statecharts are bisimilar to Petri nets having an isomorphic structure, according to Theorem 3.1.

√ The algorithm ensures that the set of sources and set of targets of each hyperedge share the same least common OR ancestor.

Fifth, the correspondence between non-singleton sets and AND nodes is not one to one. Sometimes an AND state corresponds to multiple of such presets or postsets. For example, in Figure 1 transitions \(t_1 \) and \(t_4 \) share the same AND node, as well as \(t_2 \) and \(t_3 \). Thus, some of the initially created AND nodes are superfluous.

Moreover, from the previous item it follows that some of the initially created OR nodes are superfluous too. For example, in the statechart in Figure 2, nodes \(p_2 \) and \(p_3 \) share the same OR parent, because of the simple edge connecting them. But initially, two OR nodes are created for these two nodes. Thus one of these OR nodes is superfluous.

√ The algorithm ensures that initially created composite nodes that turn out to be superfluous are removed.

Sixth, some of the AND nodes initially created by the algorithm need to be nested inside each other. For example, in both Figure 1 and Figure 3, the AND node created for \(t_1 \) contains the AND node created for \(t_2 \).

√ The algorithm nests AND nodes inside each other.

Nesting an AND node inside another AND node can make another AND node superfluous. For example, in Figure 2, the AND node \(a \) initially created for \(t_1 \) has three OR children. But the algorithm also creates AND nodes for \(t_2 \) and \(t_3 \), and nesting these makes \(a \) superfluous.

Seventh, not every Petri net has a structure-preserving statechart equivalent (for example the nets in Figures 5 and 4). So sometimes the translation algorithm cannot give a result.

√ The algorithm fails if it cannot find an equivalent, structure-preserving statechart.

Eighth, Theorem 3.1 suggests that a statechart needs to be wellformed in order to be bisimilar to the original Petri net. To see this, suppose the algorithm returns a statechart \(SC(PN) \) for a given net \(PN \). Then by removing the statechart hierarchy, a Petri net \(PN' \) isomorphic to \(PN \) can be obtained. Theorem 3.1 shows that if \(SC(PN) \) is wellformed, it is bisimilar to \(PN' \). Otherwise, for some hyperedge \(h \) taken in some configuration \(C \), BASIC nodes in \(C \) are left that are not sources of \(h \).

√ The algorithm returns a wellformed statechart.

The algorithm is defined in Figure 11. It has all these eight features: if it does not fail, it translates a Petri net into a wellformed statechart, with nested AND nodes, that is bisimilar to the original Petri net. The algorithm consists of five phases, listed in Table 2.

We now discuss these phases in more detail, also defining and motivating some auxiliary operations used in the algorithm.
procedure PetriNetToStatechart((P, T, F, p))

BASICNodes := { np | p ∈ P }

H := { hi | t ∈ T }

for hi ∈ H do
 source(hi) := { np | p ∈ • t }
 target(hi) := { np | p ∈ • t }
end for

ANDNodes := { set(X) || X | | X > 1 ∧ ∃ h ∈ H : source(h) = X ∨ target(h) = X } ∪ BASICNodes ∪ ANDNodes

ORNodes := {{ x } | x ∈ BASICNodes ∪ ANDNodes }

Nodes := BASICNodes ∪ ANDNodes ∪ ORNodes

for h ∈ H do
 s_lea+ := pick(find_lea+(source(h)))
 t_lea+ := pick(find_lea+(target(h)))
 if (contains(s_lea+, t_lea+) ∨ contains(t_lea+, s_lea+)) then
 cycle in children relation, so fail
 else
 replace(Nodes, s_lea+, s_lea+ ∪ t_lea+)
 replace(Nodes, t_lea+, s_lea+ ∪ t_lea+)
 end if
end for

tovisit := { n ∈ Nodes | isAND(n) }

while tovisit ≠ ∅ do
 X := a lower bound of tovisit
 AND := AND_cover(X, tovisit)
 uncovered := { x ∈ X | ¬ contains(x, AND) }
 if (uncovered ≠ ∅ ∨ |AND| > 1) then
 OR := { Y ∈ Nodes | ∃ A ∈ AND : A ∈ Y }
 if contains(X, OR) then
 cycle in children relation, so fail
 end if
 X′ := OR ∪ uncovered
 else
 X′ := pick(AND)
 end if
 if X′ ∈ Nodes then
 replace(Nodes, parent(X), parent(X) ∪ parent(X′))
 replace(Nodes, parent(X′), parent(X) ∪ parent(X′))
 end if
 else
 replace(Nodes, X, X′)
 end if
 tovisit := tovisit \ { X }
end while

if some OR node has two parents, fail
if some hyperedge has inconsistent sources or targets, fail
create children and type relation
return (Nodes, H, source, target, children, type, np)

end procedure

Figure 11: Algorithm that translates a Petri net into a statechart
Initialisation. The BASIC nodes and hyperedges of the statechart are initialised by mapping each place into a BASIC node and each transition into a hyperedge (lines 2 and 3). The sources (targets) of each hyperedge are the basic nodes corresponding to the places in the preset (postset) of the corresponding transitions (for loop starting at line 4).

Composite nodes are modelled as compound sets. A compound set is a set of which the elements are either other sets, i.e., other composite nodes, or atoms, i.e., basic nodes. The membership relation models the children relation, that is, if \(x \in y \) then node \(x \) is a child of node \(y \). We require that all sets are well-founded, i.e., we do not allow a hyperset \([1]\) which contains itself.

Next, the composite nodes are initialised. For each non-singleton set \(X \) that is the source or target set of some hyperedge \(h \), an AND node \(a \) is created, whose children are the OR parents of the BASIC nodes in \(X \), i.e., if \(x \in X \), then \(\{x\} \) is child of \(A \). (l. 8). To define \(a \), we use auxiliary function \(\text{set} \), which maps a set \(X \) into a set of singletons, one for each element \(x \in X \):

\[
\text{set}(X) \overset{df}{=} \{ \{x\} | x \in X \}.
\]

Finally, for each node \(n \) that is BASIC or AND, an OR \(\{n\} \) is created (l. 9).

To illustrate these lines, Figure 12 shows the structure of set \(\text{Nodes} \) for the example net in Figure 2 after the initialisation phase has finished (immediately before line 11). The structure is visualised as a graph [1]: nodes represent compound sets or atoms, and a directed edge from \(m \) to \(n \) means that \(n \) is member of \(m \).

![Figure 12: Structure of set Nodes for the net in Figure 2 immediately after the initialisation phase has finished](image-url)
Merging OR nodes. In the previous phase, for each hyperedge \(h \) having a set \(S \) of sources and a set \(T \) of targets two unique OR nodes \(x_S \) and \(x_T \) have been created (l. 9), whose descendants comprise \(S \) and \(T \) respectively. In this phase, these two OR nodes \(x_S \) and \(x_T \) are merged, that is, both \(x_S \) and \(x_T \) are replaced by a single OR node \(x_h \) whose children are the children of both \(x_S \) and \(x_T \).

We discuss this part line by line. Given a hyperedge \(h \), line 12 retrieves the unique most nested OR node containing all sources of \(h \), i.e., the least common OR ancestor of set \(\text{source}(h) \). Similarly, line 13 retrieves the unique most nested OR node containing all targets of \(h \), i.e., the \(\text{lca}^+ \) of set \(\text{target}(h) \).

In these lines, two auxiliary functions are used, \(\text{pick} \) and \(\text{find}_\text{lca}^+ \). Function \(\text{pick} \) expects a singleton and returns the element contained in the singleton: \(\text{pick}(\{x\}) \equiv x \). The function is not defined for non-singletons. We will show below in Lemma 4.2 \(\text{pick} \) only gets a singleton argument, i.e., that \(\text{find}_\text{lca}^+ \) returns singletons.

Given a set \(X \) of BASIC nodes (source set or target set of some hyperedge), function \(\text{find}_\text{lca}^+(X) \) gives the set of OR parents for those nodes that are the least common ancestor (lca) of \(X \):

\[
\text{find}_\text{lca}^+(X) \equiv \{ n \in \text{Nodes} \mid \exists n' \in \text{Nodes} : \text{is}_\text{lca}(n', X) \land n' \in n \}.
\]

Before we define \(\text{is}_\text{lca}(n, X) \), observe that initially for \(X \) a unique AND or BASIC node \(n \) has been created that is the lca of \(X \). If set \(X \) is a singleton, \(n \) is BASIC: \(n = \text{pick}(X) \); otherwise, \(n \) is AND: \(n = \text{set}(X) \). However, the definition \(\text{is}_\text{lca}(n, X) \) needs to take into account that if \(n \) is an AND node, the OR children of \(n \) might have gained additional members. For example, for the net in Figure 2, the initially created AND node \(\{\{p5\}, \{p6\}\} \) might have become \(\{\{p5\}, \{p3, p6\}\} \), namely if the transition connecting \(p3 \) and \(p6 \) has been processed.

Thus, \(\text{is}_\text{lca} \) is formally defined as:

\[
\text{is}_\text{lca}(n, X) \overset{df}{=} \begin{cases} X \subseteq \bigcup_{n' \in n} n' & \text{if } |X| > 1 \\ \text{pick}(X) = n & \text{otherwise} \end{cases}
\]

After the OR nodes \(s\text{\textunderscore}\text{lca}^+ \) and \(t\text{\textunderscore}\text{lca}^+ \) have been retrieved, they are merged. For merging, we make use of the fact that a composite node \(n \) is a set, the elements of which are children of \(n \). So the new OR node can be created by simply taking the union of \(s\text{\textunderscore}\text{lca}^+ \) and \(t\text{\textunderscore}\text{lca}^+ \). Next, each occurrence of \(s\text{\textunderscore}\text{lca}^+ \) and \(t\text{\textunderscore}\text{lca}^+ \) has to be replaced by the new OR node (l. 17-18).

However, merging is not allowed if \(s\text{\textunderscore}\text{lca}^+ \) is a descendant of \(t\text{\textunderscore}\text{lca}^+ \) or vice versa (l. 14). Then merging would cause a cycle in the children relation; and the merged set \(x_h \) would not be wellfounded. The procedure therefore fails in that case (l. 15). For example, suppose the algorithm is applied to the net in Figure 4, processing first \(t3 \), then \(t1 \), and finally \(t2 \). The node structure immediately before \(t2 \) is processed is shown in Figure 13, while the structure that would result if the \(s\text{\textunderscore}\text{lca}^+ \) and \(t\text{\textunderscore}\text{lca}^+ \) of \(t2 \) would be merged is shown in Figure 14.

To define the merging procedure, we use two auxiliary operations on wellfounded sets, \(\text{contains} \) and \(\text{replace} \). Given a wellfounded set \(S \), function \(\text{contains}(x, S) \) is true if element \(x \) appears in \(S \). If some element \(s \in S \) is a set, \(\text{contains} \) is recursively applied to every element in \(s \). For example, \(\text{contains}({1}, {1, {1, 2}}) \)}
Figure 13: Structure of Nodes for the net in Figure 4 after the for loop started at line 11 has processed t₃ and t₁, but not yet t₂.

Figure 14: Structure of Nodes for the net in Figure 4 while processing t₂ as h in the for loop started at line 11. Nodes s_lca⁺ and t_lca⁺ and their incoming arrows are crossed. The black dot denotes the new, merged OR node. Dotted lines indicate the membership relation if the merged OR node would replace the two existing s_lca⁺ and t_lca⁺.

contains(\{1\}, \{\{1\}\}) is true.

contains(x, \emptyset) = false
contains(x, y) = false if y is not a set
contains(x, \{y\} \cup S) = \{true, if x = y contains(x, y) \lor contains(x, S), otherwise\}

Given a wellfounded set S and two elements x and y, function replace(x, y, S) replaces each appearance of x in S by y. Function replace is recursive: if an element s ∈ S is a set, then replace is also applied to every element of s. For exam-
Figure 15 shows the structure of set Nodes for the example net in Figure 2 after OR nodes have been merged.

Nesting AND nodes. After the previous phases, some AND node a can be a subset of another AND node b, i.e., every OR child of a is also an OR child of b. For example, for the net in Figure 2, after merging OR nodes, the AND node A_2 created for t_2 is a subset of the AND node A_1 created for t_1, since both share OR nodes $\{p_2,p_5\}$ and $\{p_3,p_6\}$ (see Figure 15). In that case, the common OR children of a and b have two AND parents, which violates the statechart hierarchy constraints.

In this phase, an AND node a which is subset of another AND node b is nested inside b; this way a statechart hierarchy is obtained. For example, AND
Figure 16: Petri net for which the AND nodes created for \(t_2 \) and \(t_3 \) can be nested in the AND nodes created for \(t_1 \) and \(t_4 \), respectively.

Node A2 in Figure 15 is nested inside A1. Nesting is done by replacing \(b \) by an AND node \(b' \) that contains the OR parent node of \(a \) plus all (OR) children of \(b \) that are not contained in \(a \). The general case is a bit more complex, since several AND nodes might be nested inside the same AND node. For example, in Figure 16 both the AND nodes created for \(t_2 \) and \(t_4 \) can be nested inside the AND nodes for \(t_1 \) and \(t_4 \). Nesting fails if the new node structure would contain a cycle. Note that nesting does not guarantee a valid statechart hierarchy; for example, applying the algorithm to the net in Figure 6, after the nesting phase OR node \{p5\} still has two AND parents.

We discuss this part line by line. First, AND nodes are collected in set `tovisit` (l. 21). Next, the actual nesting is done by processing AND nodes in `tovisit` one by one in the while loop started at l. 22. During processing, each AND node \(X \) is replaced by another AND node \(X' \). Node \(X' \) is equivalent to \(X \), i.e., it has the same BASIC descendants as \(X \), but \(X' \) is constructed using already processed AND nodes, which can be nested inside \(X' \). To ensure a proper nesting, it is required that lower bound AND nodes are processed before other AND nodes (l. 23). An AND node \(a \) is defined to be a lower bound of `tovisit` if and only if there is no unprocessed AND node \(a' \) which is contained by \(a \) and moreover there is no unprocessed AND node \(b \) that is a subset of \(a \):

\[
\text{a is a lower bound of } \text{tovisit} \iff \nexists a' \in \text{tovisit} : \text{contains}(a', a) \land \nexists b \in \text{tovisit} : b \subset a.
\]

The lower bound AND node is put in variable \(X \) (l. 23).

For the construction of \(X' \), already processed AND nodes are used that cover \(X \), i.e. whose BASIC descendants are also BASIC descendants of \(X \) (l. 24). These nodes are nested inside \(X' \). Using function `AND_cover` the processed AND nodes that cover \(X \) are collected in set `AND`. To ensure a proper nesting, every AND node \(a \) must be maximal, i.e., there is no other processed AND node \(a' \in \text{AND} \) such that \(a' \) contains \(a \) or \(a \subset a' \). This leads to the following formal definitions for function `AND_cover`:

\[
\text{AND_cover}(X, \text{tovisit}) := \text{maximal} \{ A \in \text{Nodes} \setminus \text{tovisit} | \text{isAND_cover}(A, X) \}
\]
A1 does (see Figure 19). Then immediately after line 24, and not change the structure of Figure 18, but the subsequent processing of node is executed. Suppose node A2 is processed before A1. Processing node A2 becomes X1. Then, X

\[
\{\{\} \cup \text{flatten}(S), \text{ if } x \text{ is not a set}
\]

\[
\text{flatten}(\{x\} \cup S) = \left\{ \begin{array}{ll}
\{\{\} \cup \text{flatten}(S), & \text{if } x \text{ is not a set} \\
\text{flatten}(x) \cup \text{flatten}(S), & \text{otherwise}
\end{array} \right.
\]

Note that function flatten is applied recursively to all elements of in its argument. For example, flatten(\{1, \{2, \{3\}\}\}) gives \{1, 2, 3\}.

To illustrate AND_cover, suppose the nodes in Figure 15 are processed. Then \(\text{AND} \text{cover}(A1, \{A1, A3\}) = \{A2\}\). However, \(\text{AND} \text{cover}(A1, \{A1\}) = \{A2\}\). In the latter case, A3 is not an AND cover of A1, since A3 has \(p8\) as BASIC descendant, which is not a BASIC descendant of A1.

Next (l. 25), set uncovered is computed, which contains the OR children of X that do not have any ancestors in set AND. These OR children are used in the construction of X’, to ensure that X’ covers X completely, i.e., that X and X’ have the same BASIC descendants.

Then (l. 26), if either some nodes in X are not covered (so uncovered \(\neq \emptyset\)) or more than one AND node covers X (so \(|\text{AND}| > 1\)), then a new node X’ is constructed. Otherwise (l. 32), there is only one AND node covering X completely (if uncovered = \(\emptyset\), then \(|\text{AND}| = 1\) by definition of uncovered), and X’ is simply pick(AND) (l. 33).

If X’ is to be constructed (l. 27-31) then the following steps have to be taken. First, the OR parents of the AND nodes in AND are retrieved and put in set OR (l. 27). Nodes in OR will become OR children of the new node X’. However, if a node n \(\in\) OR already contains X, replacing X by X’ would cause n to be both ancestor and descendant of X’, causing a cycle in the node structure.

To illustrate this, consider the net in Figure 17. Figure 18 shows the structure of set Nodes immediately after the OR nodes have been merged. There are two AND nodes, A1=\{\{p2\}, \{p3\}, \{p4\}\}, and A2=\{\{p2\}, \{p3\}\}. These two AND nodes are contained in OR node X1=\{\{p1\}, A1, A2\}. Note that there is no other OR node containing A1 or A2. Next, the while loop started at line 22 is executed. Suppose node A2 is processed before A1. Processing node A2 does not change the structure of Figure 18, but the subsequent processing of node A1 does (see Figure 19). Then immediately after line 24, AND = \{A2\}. So OR becomes X1. Then, X’ ought to become \{X1, \{p4\}\} (visualised as the black dot in Figure 19). However, replacing A1 by X’ would cause a cycle, as indicated in Figure 19.

Next (l. 31), AND node X’ is constructed, the children of which are the OR nodes in OR together with the OR nodes in uncovered. Note that if uncovered = X, then X’ = X.

After line 34, a new node X’ has been constructed, and X can be replaced by X’ (l. 39). The only complication arises if X’ is an already existing node, so X’ \(\in\) Nodes. Then X’ has already an OR parent oX’. So, replacing X by X’ implies that X’ gets two parents (the parent of X and oX’). To avoid this, before replacing X by X’, the OR parent oX’ needs to be merged with the OR parent of X. For example, if AND node A1 in Figure 15 is processed, while nodes A2 and A3 have already been processed, then X’ = A3 (even though A3 \(\notin\) AND, as explained above when defining AND_cover). Then, A1 can only
Figure 17: Petri net for which the procedure fails at line 29

\[X_1 = \{ \{p2\}, \{p3\}, \{p4\} \}, \{\{p2\}, \{p3\}\} \} \]

Figure 18: Structure of Nodes for the net in Figure 17 immediately before line 21

\[X_1 = \{ \{p2\}, \{p3\}, \{p4\} \}, \{\{p2\}, \{p3\}\} \} \]

Figure 19: Structure of Nodes for the net in Figure 17 while processing A2 as X in the iteration started at line 22. The blackdot denotes \(X' \). Dotted lines indicate the membership relation if \(X' \) would replace A2.
be replaced by \(A_3 \) if their OR parents have been merged, which ensures that nodes \(p_1 \) and \(p_{10} \) share the same OR parent after replacement of \(A_1 \).

Checking the statechart. Even though the constructed statechart structure has no cycles in its node hierarchy, still it can be illegal. Therefore, some checks are done next.

The first check tests for absence of multiple parents for the same node (l. 42). For some nets, e.g. in Figure 6, after the while loop started at line 22 has ended, still some AND nodes may share some OR children with other AND nodes. In that case the algorithm fails at line 42.

It is easy to check that if AND nodes cannot be nested, the subset relation on AND nodes does not induce a tree, that is, some OR node is child of two different AND nodes. However, there is a statechart variant that allows such overlapping nodes [11]. In that statechart variant, for the net in Figure 6 a bisimilar statechart does exist; see [5].

The second check tests whether hyperedges have consistent sources and targets (l. 43). For example, for the net of Figure 5 the algorithm will construct a node structure in which the OR parent of \(p_4 \) is ancestor of the OR parents of \(p_2 \) and \(p_3 \) because of \(t_3 \) and \(t_4 \). Thus, nodes \(p_2, p_3, \) and \(p_4 \) are inconsistent. Hence, hyperedge \(t_1 \) is inconsistent.

Creating the children relation. After the previous phase, if the algorithm did not fail, a valid statechart structure has been constructed. In the final phase, the \textit{type} and \textit{children} relations have to be derived from the structure of the nodes. Figure 20 gives the code for deriving the \textit{type} and \textit{children} relation.

The children of a node are the elements it has in its set. Thus, \(x \in \text{children}(y) \) if and only if \(x \in y \).

For deriving the \textit{type} relation, observe that BASIC nodes are atoms, whereas composite nodes are sets. Next, OR nodes only contain AND and BASIC nodes whereas AND nodes only contain OR nodes. This implies that the nesting depth of elements in an OR node differs from that in an AND node. More precisely, it is easy to check (for example using Figure 12) that OR nodes have an uneven depth whereas AND nodes have an even depth.

```
for \( n \in \text{Nodes} \) do 
    if \( \text{isBASIC}(n) \) then 
        \( \text{type}(n) := \text{BASIC} \)
        \( \text{children}(n) := \emptyset \)
    else if \( \text{isAND}(n) \) then 
        \( \text{type}(n) := \text{AND} \)
        \( \text{children}(n) := \{ x \mid x \in n \} \)
    else if \( \text{isOR}(n) \) then 
        \( \text{type}(n) := \text{OR} \)
        \( \text{children}(n) := \{ x \mid x \in n \} \)
    end if 
end if 
```

Figure 20: Code for deriving the \textit{type} and \textit{children} relations
The predicates used in Figure 20 are defined as follows:

\[\text{isBASIC}(x) \iff x \text{ is an atom}\]

\[\text{isAND}(x) \iff x \text{ is a set and } \text{depth}(n) \text{ is even}\]

\[\text{isOR}(x) \iff x \text{ is a set and } \text{depth}(n) \text{ is uneven}\]

Function \(\text{depth}\) returns the maximum depth of a set:

\[
\text{depth}(\emptyset) = 0 \\
\text{depth}(\{ x \} \cup S) = \max(1, \text{depth}(S)), \text{ if } x \text{ is an atom} \\
\text{depth}(\{ x \} \cup S) = \max(1 + \text{depth}(x), \text{depth}(S)), \text{ if } x \text{ is a set.}
\]

For example, \(\text{depth}(\{1, \{2, \{3\}\}, 4\}) = 4\).

4.2 Correctness

Before proving the correctness of the algorithm, we show the correctness of some of the assumptions made in the algorithm.

Lemma 4.1 Given a non OR node \(n\), so \(n \in \text{BASICNodes} \cup \text{ANDNodes}\). Initially (l. 9), \(n\) has only one parent. At the end of each iteration of the for loop started at line 11, \(n\) still has only one parent.

Proof. By induction on the depth of nodes. The base case follows immediately from the definition in line 9. For the induction case, say in some iteration of the for loop started at line 11 two OR nodes \(x\) and \(y\) are merged. Take an arbitrary node \(n\) that is member of \(x\) or \(y\). By the induction hypothesis, \(n\) has only one parent, so if \(n\) is in \(x\), it cannot be in \(y\) and vice versa. So \(x\) and \(y\) are disjoint: \(x \cap y \neq \emptyset\). Next, \(x\) and \(y\) are merged by replacing each occurrence of \(x\) or \(y\) by \(x \cup y\). After merging, \(n\) still has only parent, namely \(x \cup y\). (So \(n\) might gain additional brothers.)

Lemma 4.2 At lines 12 and 13, function \(\text{find_lca}^+\) yields a singleton.

Proof. We only show the proof for line 12; the proof for line 13 goes by similar reasoning. Function \(\text{find_lca}^+\) returns all OR nodes that subsume the unique OR node constructed for \(\text{source}(h)\) at line 9. By Lemma 4.1, only one such OR node exists.

The next lemma motivates why hyperedges in the for loop of line 11 can be processed in arbitrary order.

Lemma 4.3 Let \(h_1, h_2\) and \(h_3\) be three hyperedges. Then \(h_1, h_2\) and \(h_3\) can be processed in arbitrary order in the for loop started at line 11: the outcome (a merged OR node or failure is the same).

Proof. Follows immediately from the associativity of \((lines 12 and 13).

The following lemma shows that the for loop started at line 11 preserves the subset relation between AND nodes. This motivates why OR nodes are merged before AND nodes are nested (so why the while loop started at line 22 follows the for loop started at line 11 and not the other way around).
Lemma 4.4 Let \(a, a'\) be two AND nodes. If \(a \subseteq a'\) at the beginning of an iteration of the for loop started at line 11, then after the iteration \(a \subseteq a'\).

Proof. By construction, \(a\) and \(a'\) only have OR members. If some OR node \(x \in a\) is merged with another OR node \(y\), then at lines 17 and 18 a global replacement of \(x\) and \(y\) by \(x \cup y\) is done. So after the iteration, \(x \cup y \in a\) and \(x \cup y \in a'\). \(\Box\)

For the following lemma, we first introduce some terminology. Two hyperedges \(h_1\) and \(h_2\) overlap if the source or target set of one is a subset of the source or target set of the other:

\[
\text{overlap}(h_1, h_2) \iff \exists S_1, S_2 \subseteq N : \\
(S_1 = \text{source}(h_1) \lor S_1 = \text{target}(h_1)) \\
\land (S_2 = \text{source}(h_2) \lor S_2 = \text{target}(h_2)) \\
\land (S_1 \subseteq S_2 \lor S_2 \subseteq S_1)
\]

We now show that if the algorithm terminates successfully by returning a statechart, that the sources and targets of overlapping hyperedges share the same single root node.

Lemma 4.5 Given a connected Petri net \((P, T, F, p_i)\) on which the algorithm terminates successfully. Let \(h_1\) and \(h_2\) be two overlapping hyperedges in the statechart returned at line 45. Let \(n_1\) be a node in source(\(h_1\)) \(\cup\) target(\(h_1\)) and \(n_2\) a node in source(\(h_2\)) \(\cup\) target(\(h_2\)).

Then \(n_1\) and \(n_2\) share the same root \(r\), i.e., \(r\) has no parent and \({n, n'} \subseteq \text{children}^*(r)\).

Proof. For the definition of overlap, we have either (i) \(S_1 \subseteq S_2\) or (ii) \(S_2 \subseteq S_1\).

For case (i) we argue as follows (case (ii) is by similar reasoning):

- If \(S_1 = S_2\) then for both sets the same AND node \(a\) is created at line 9.
- If \(S_1 \subset S_2\), then \(S_2\) cannot be a singleton, so \(S_2\) is covered by some AND node \(a\).
 - If \(S_1\) is a singleton \({s}\), then \(s\) has a unique OR parent \(o\) (Lemma 4.1). Node \(o\) is a child of \(a\) (l. 8).
 - If \(S_1\) is not a singleton, then \(S_1\) is also covered by some AND node \(a'\) that is nested in \(a\) (in the while loop that begins at line 22).

In both subcases, AND node \(a\) has a unique OR parent \(o\) (by Lemma 4.1) whose descendants include \(n_1\) and \(n_2\). From Lemma 4.1 and the fact that the algorithm did not fail at line 42, it follows that each descendant of \(o\) has one parent. Thus, the root of \(o\) is the unique root of \(n_1\) and \(n_2\). \(\Box\)

Next, we generalise the previous lemma by showing that in case of successful termination, any pair of nodes in the returned statechart share the same single root.
Lemma 4.6 Given a connected Petri net \((P, T, F, p_i)\) on which the algorithm terminates successfully. Let \(n, n'\) be two BASIC nodes in the statechart returned at line 45. Then \(n\) and \(n'\) share the same root \(r\), i.e., \(r\) has no parent and \(\{n, n'\} \subseteq \text{children}^*(r)\).

Proof. First, we observe that each node has only one root (using Lemma 4.1 and line 42). Since the input Petri net \((P, T, F, p_i)\) is connected, BASIC nodes \(n\) and \(n'\) are connected by a path \(h_1, h_2, \ldots, h_k\) of hyperedges, where for every \(h_i, h_{i+1}, 1 \leq i \leq k\), \(\text{overlap}(h_i, h_{i+1})\), since otherwise the algorithm would fail at line 42. Consider an arbitrary pair of hyperedges \(h_i, h_{i+1}\) on this path, where \(1 \leq i < k\). By Lemma 4.5, any pair of nodes \(n_i \in \text{source}(h_i) \cup \text{target}(h_i)\) and \(n_{i+1} \in \text{source}(h_{i+1}) \cup \text{target}(h_{i+1})\) share the same, single root. The result that \(n\) and \(n'\) share the same root then follows directly.

\[\Box\]

Theorem 4.1 (validity) Given a connected Petri net \((P, T, F, p_i)\). If the algorithm terminates successfully (so line 45 is reached), a valid statechart is returned.

Proof. Simple checking of statechart definition. For the \textit{children} relation, we have to show that:

1. each node has at most one parent,
2. there is a single root, i.e., there is exactly one node that has no parent,
3. the root node is ancestor of all other nodes.

Point 1 follows from Lemma 4.1 and the fact that algorithm did not fail at line 42. Points 2 and 3 follow from Lemma 4.6.

\[\Box\]

Lemma 4.7 The statechart returned at line 45 is wellformed.

Proof. Simple checking of the definition of wellformedness. Consistency follows from line 43. Completeness follows from the construction of AND nodes (l. 8) and the merging of OR nodes.

\[\Box\]

Next, we show the correctness of the translation.

Theorem 4.2 (correctness) Given a connected Petri net \(PN\) such that the algorithm returns a statechart \(SC(\text{PN})\). Then \(SC(\text{PN})\) bisimulates \(PN\).

Proof. Observe that by Lemma 4.7 \(SC(\text{PN})\) is wellformed. Next, from lines 2–7, it follows that \(\text{PNToSC}(SC(\text{PN}))\) is a Petri net isomorphic to \(PN\). Since isomorphism implies bisimulation [8], the result then follows immediately from Theorem 3.1.

\[\Box\]

The algorithm is not complete: it can fail even though there does exist a bisimilar wellformed statechart. For example, the algorithm fails on the net in Figure 21, because two AND nodes are created with overlapping OR nodes that cannot be nested according to the algorithm. Of course, an equivalent statechart can be constructed by simply merging the OR nodes introduced for
p1 and p2. The algorithm can be refined and made complete, by (arbitrary) merging OR nodes in case of a failure. But the complexity will then be worse (below we estimate the complexity).

However, the non-completeness of the algorithm does not appear to be a real limitation in practice. Statecharts which the algorithm fails to construct have some OR child o with unconnected children, i.e., there is some pair of children that are connected by an undirected sequence of hyperedges whose scope is o. For example, the equivalent statechart for the net in Figure 21 has an OR node o in which children n_{p_1} and n_{p_2} are not related by any hyperedge whose scope is o. It is easy to check that the algorithm only returns statecharts in which every OR node has connected children. (For such statecharts, the algorithm is complete.)

However, such statecharts are not very obvious to define, though they are definitely not excluded by the statechart syntax. Children of an OR node that are unconnected are unrelated. From a modelling point of view, it therefore does not seem to make sense to group those unrelated children under one OR node, which would suggest that they are related. Examining example statecharts from the literature, we indeed did not encounter any statechart in which an OR node had unconnected children. So the fact that the algorithm is non-complete does not seem a very severe limitation in practice.

Complexity. The worst-case space complexity of the algorithm is $O(|T|)$. In the worst case, there are $|P|$ BASIC nodes, at most $2 \cdot |T|$ AND nodes, and at most $|P| + 2 \cdot |T|$ OR nodes. Since we only consider connected Petri nets, there are no isolated places. Thus, the number of places $|P|$ is bounded by the number of transitions. Consequently, the number of nodes is linear in the number of transitions $|T|$.

The worst-case time complexity of the algorithm in Figure 11 is $O(|T|^2)$, because of the while loop started at line 22 and finding a lower bound AND node in this loop (l. 23). In the worst case, there are at most $2 \cdot |T|$ AND nodes. Thus, the while loop started at line 22 is done at most $2 \cdot |T|$ times. Next, finding a lowerbound AND node is polynomial in the number of nodes, which is bounded by $|T|$. Thus, the worst-case time complexity of the algorithm is $O(|T|^2)$.
4.3 Relation with Petri nets

As we pointed out in Section 2, if a Petri net is unsafe or unbounded, there is no equivalent statechart. We now show how the algorithm fails for such nets.

Lemma 4.8 If the Petri net is unbounded, then there is a potential cycle, i.e., the algorithm fails at line 15 or 29.

Proof. (Sketch) If the net is unbounded, then there is a reachable marking M and a sequence of transitions $\sigma = t_1, t_2, \ldots, t_n$ such that $M \xrightarrow{t_1} M_1 \xrightarrow{t_2} \ldots \xrightarrow{t_n} M'$, such that $M \neq M'$ and for every $p \in P$, $M(p) \leq M'(p)$ [18]. Sequence σ is called a token generator. In M' some place p contains more tokens than in M: $M(p) < M'(p)$. Some transition t in the sequence must have filled p. Denote by P_o the maximal set of output places of t, $P_o \subseteq t\bullet$, such that for every $p_o \in P_p$, $M(p_o) = M'(p_o)$.

Since σ is cyclic, after processing all hyperedges corresponding to transitions in σ minus t, the nodes created for the input places of t and the places in P_o all share the same root OR node o (*). Next, processing h_t will cause a cycle in the child relation, since for the output places of t an AND node a has been created, one child of which will be o (possibly after nesting). But by (*), o is also the source lca^+ of the nodes created for the input place of t. Merging the target lca^+ with the source lca^+ will cause o to be parent of a in addition to child. Hence a cycle in the child relation results.

The reverse implication does not hold. Figure 22 shows a Petri net that is a slight variation on the unbounded net of Figure 4. Though the net in Figure 22 is safe, the algorithm will fail because it finds a cycle in the OR nodes. This example illustrates an important property of the algorithm: presets and postsets of transitions are treated in exactly the same way. Hence, the algorithm treats the net in Figure 22 exactly the same as the net in Figure 4, even though transition t_2 has its pre and postset swapped.

If the Petri net is unsafe but bounded, and the algorithm does not fail at lines 15 and 29, then it fails at lines 42 or 43. For the unsafe net in Figure 23, the algorithm fails at line 42 because the OR node containing the node created for p_5, has two AND parents. Figure 5 shows an unsafe Petri net for which the algorithm fails at line 43, because the algorithm will create an OR node which has

Figure 22: Safe Petri net for which no structure-preserving equivalent statechart exists
as children, among others, BASIC node p_4 and AND node $\{\{p_2,p_5\},\{p_3,p_6\}\}$.

Clearly, the hyperedge created for t_1 then has an inconsistent target, since neither p_2 and p_4 nor p_3 and p_4 are orthogonal.

Elsewhere [5] we have compared the class of nets that can be translated into a structure-preserving, equivalent statechart with existing classes of nets and statecharts.

5 Conclusion

An algorithm has been presented that maps a Petri net to a statechart. The translation is structure preserving: places map to BASIC nodes and transitions to hyperedges. Loosely speaking, the algorithm tries to impose an AND/OR hierarchy of nodes on a Petri net structure. The algorithm is polynomial in the size of the Petri net, and thus also efficient for large Petri nets.

The algorithm has been proven correct. However, it is not complete. But the algorithm only fails to construct wellformed statecharts in which some children of some OR node are not connected by any undirected sequence of hyperedges. We have not found any example of such a statechart in the literature, though the standard definition definitely does not exclude it. Apparently, such a statechart is not obvious to draw. So the limitation of non-completeness does not seem very severe in practice.

There are several directions for further work. First, the algorithm can be extended to deal with non-structure-preserving translations as well, to allow for example the translation of the net in Figure 6 into the statechart of Figure 8. In particular, it is interesting to extend the algorithm with repair actions, that modify the Petri net in case of a failure. For example, the net in Figure 5 could be modified into an equivalent net on which the algorithm does not fail by duplicating place p_{10} and letting t_4 (or t_3) enter this duplicate place, rather than p_{10}. Next, data can be considered by looking at coloured Petri nets and statecharts with local variables and guard and action labels on the hyperedges.

On the more applied side, the algorithm can be used as a foundation for implementing model transformations between Petri net-like models and statechart models. For example, UML activity diagrams [35] are a visual language whose syntax resembles Petri net syntax quite closely. The algorithm can be used to transform a UML activity diagram into a UML statechart.
References

