EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Algorithmic definition of lambda-typed lambda calculus

Citation for published version (APA):
Bruijn, de, N. G. (1993). Algorithmic definition of lambda-typed lambda calculus. In G. Huet, & G. D. Plotkin
(Eds.), Logical Environments (pp. 131-146). Cambridge University Press.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 20. Sep. 2021

https://research.tue.nl/en/publications/1cd1b1e4-9de8-4cae-83a5-06e8c9f0ac0c

Algorithmic definition of lambda-typed
lambda calculus

N. G. de Bruijn

Technological University Eindhoven, Department of Mathematics
and Computing Science, PO Box 513, 5600MB Eindhoven, The Netherlands

1 Introduction

1.1. The system AA. The typed lambda calculus AA was defined in an
earlier paper [2], also briefly discussed in [4], section 3. The present paper
will deal essentially with the same system. The new version has exactly the
same set of correct terms but allows a few more reductions. This has the
effect of narrowing the gap between the definition of correctness and efficient
correctness-checking algorithms.

It is not necessary to read [2] in order to understand the present paper. The
material will be presented here independently. We only refer to [2] (section
6) for the reason why AA is to be preferred over other systems as a basic
structure underlying Automath-like languages.

In the next sub-sections we use the notation explained in section 2.1 and
some further terminology explained later in this paper.

1.2. The essence of AA. The essential difference between AA and systems
like Nederpelt’s A (see [6]) lies in the matter of correctness of applicators. In
the usual systems the correctness of a term (¢,)¢, requires in the first place that
both t; and ¢, are correct. In AA the correctness of ¢; is not required. Whether
ty is accepted here, depends on what we have for t;. This dependence is
connected to the usage of applicator-abstractor pairs for the role of definitions
in a mathematical language (see [2], section 6.4).

Another feature of AA, connected to elimination of definitions in a mathe-
matical text, is the idea to split B-reduction into a number of local reductions
plus one final AT-removal: the removal of an applicator-abstractor pair in the
case that nothing refers to it any more. In a mathematical text the elimina-
tion of a definition at a certain place is a local affair too, since it does not
involve the elimination of the definition at all other places. And AT-removal
corresponds to discarding a definition that is nowhere used.

Nederpelt had also p-reduction in his system A. We shall not consider that
in this paper, although it would not be very hard to add it.

Finally AA is what we may call a pure lambda calculus in the sense that
both application and abstraction commute with typing (cf. [4], section 1).

131

132 Algorithmic definition of lambda-typed lambda calculus

1.3. Comparing the present paper to [2].

(i) The metalanguage in [2] discusses terms as trees, with references (arrows)
from end-points to T-nodes (nodes representing abstractors). The present
paper considers terms as strings of symbols, and the references are made in
the conventional way by means of named variables.

(ii) The present‘ system admits more reductions. The local reductions are
not, for AT-pairs only, but also for AT-couples. These reductions for couples
were introduced by Nederpelt (see [6], Ch.II, Definitions 6.5 and 6.7). The
couples were also mentioned in [2], section 4.3, but there they were not used
for reductions.

A few words about couples here. In an applicator-abstractor sequence like
(t1)[ts)a(t3)[taly the pair {t;)[ts)z can play its role in B-reduction. But in
(tl)(t3)[t4]y[t2]x the (t;) and [tz]s no Jonger form a pair but a couple. In our
present version of AA we will allow reduction with respect to such couples.

(ili) The definition of correctness in [2], section 5.3 somehow suffered from
the absence of couple reductions. In that definition one can sense an implicit
re-ordering of couples to pairs. That made the definition quite heavy. And the
step from the definition of correctness to the correctness-checking algorithm
(described in some detail in [4], section 3) is not entirely trivial. In the present
version these things are more direct, and the correctness definition is almost
the same as the checking algorithm. The only thing that we have to do when
turning the definition into an efficient algorithm is to cut out some obvious
duplication of work.

(iv) The scopes of the old and new versions are the same, in the sense that
the extra reductions by means of AT-couples do not lead to extra equivalences.
This is clear in the example mentioned under (ii). I both before and after
reduction with respect to the couple formed by (f1) and [ta]e in (t1){ts)[ta]yltal
we apply full B-reduction on (ts)[taly, We get terms that are related by f-
reduction on the pair {t1)[ta]s-

(v) A central role in the present paper is played by the idea of trimming
(section 3.6), which did not occur in [2]. If we consider a particular instance of
a variable in a term ¢, then trimming means taking away certain applicators
that can have no influence on that instance of that variable. The effect of
trimming is again a term. One might say that the trimmed term is the vari-
able preceded by its context (“context” being taken in the sense of what was
called “knowledge frame” already in [2]). Talking about such trimmed terms
“simplifies the discussion of properties of ¢ itself.

2 Notation

2.1. Applicators and abstractors. We deviate from standard lambda
calculus notation in the sense that we follow the Automath tradition of writing
applicators on the left instead of on the right. If f is a function and v a value

N. G. de Bruijn 133

of the argument, we write (v) f instead of the more usual f v or f(v). This way
of writing the argument in front is more than a matter of taste: it is absolutely
essential for the present paper.

The delimiters {) should not be confused with the < > we shall use for
syntactic categories in BNF grammar.

Abstractors (or typed lambdas) are usually denoted with a notation like
Az:4, denoting bquantiﬁcation over a variable of type A. In Automath it is
written as [z : A], but here we shall write [A],. As usual, the abstractors are
written in front of the terms they act on.

2.2. Variables. We shall be a bit informal about how variables are rep-
resented. Anyway we take the point of view that the names of variables are
inessential. One may use depth references (nowadays often called de Bruijn
indices) to indicate to which lambda any particular instant of a variable is
referring (see [1]), but one may also think of more direct ways. In [2] terms
were represented as trees, and a reference from an instance of a variable to its
lambda was an arrow from an end-point to-a lambda lower in the tree. We
shall not use that tree language in the present paper, however. Instead of it,
we just consider terms as strings of symbols, and we can say that references
are not made to a point in a tree but to a closing bracket] in a term. In order
to simplify our presentation we just fall back on the use of named variables,
not bothering about how variables are dealt with in implementations. There-
fore we provide each closing | with the name of a variable as a subscript. The
variables act as addresses of those brackets. So references to a variable z of
type ¢ will be made like this:

(2.2.1) o [tlo e

In the presentation of this paper we shall occasionally omit the subscripts of
the]’s.

2.3. Metavariables. We shall use w,v (sometimes with subscripts) as
metavariables for trains (see section 3.1), ¢ (sometimes with subscripts) for
terms, ¢ for terminals (variables or 7). And we use [as a metavariable repre-
senting either (or [.

3 Terms

3.1. Syntax. We have a set of variables and a basic symbol 7, different from
the variables. And we have four delimiters: (,), [,], where the last one has
to be seen as being subscripted by a variable, like],. With these delimiters,
variables and 7 we build terms; as auxiliary syntactic categories we handle
terminals, wagons and trains. A terminal is a variable or 7, a wagon is a term
surrounded by () or by []. In the first case the wagon is called an applicator,

134 Algorithmic definition of lambda-typed lambda calculus

in the second case an abstractor. A train is a (possibly empty) sequence of

wagons.
In Backus-Naur form (with the empty string being denoted by <empty>)

the syntax can be given by

<terminal> a= rlzlyl - ol -

<term> = <train><terminal>

<train> = <empty> | <wagon> <train>
<applicator> = (<term>)

<abstractor> = [<term>]

i

<wagon> <applicator> | <abstractor>

The following is an example of a term:
[[Tla[f]nf]p([f]a[ﬂe(5)(€)P)[[T]c[T]pf]q[[T]a[?]w[(sa)(a)p]e(w)(a)q}s[ﬂ«p[T]n[(n)(¢)P]e(9)(n)(¢)s-

3.2. Positioned subterms. We have to be careful about the word “sub-
term” since there are two different possible meanings. In order to stress the
difference, we shall denote these notions by “subterm” and “positioned sub-
term”, respectively. It is the same situation with the idea of a substring of a
string. We consider that first.

Let us consider words as strings of letters. The two-letter string “in” is a
substring of the string “invincible”. But there are two positioned substrings in
“nvincible” which show the string “in”, one consisting of the first and second
letter, the other one of the fourth and fifth (we do not count the first and fifth
as a substring). A positioned substring of a string of length L can be described
as a pair of integers p,q with 1 < p < ¢ < L. The content of that positioned
substring is the string we get from the string of length L by cancelling the first
p—1 as well as the last L — q letters. .

A term #; is called a subterm of a term t, if 11 is one of the terms used in
building up t, by means of the syntax of section 3.1.

A subterm t; of {; can occur more than once in the production of ;. Each
one of these occurrences gives rise to a positioned substring of ¢; of which
the content is equal to t2. Such a positioned substring can now be called a
positioned subterm of t1.

As an example we mention the term [7].{[7)u7sl{a)Blo((a)b}b which has two
different positioned subterms which both have the content (a)b.

3.3. Structure of trains. According to section 3.1 a train is a (possibly
empty) sequence of applicators and abstractors. In this subsection we are
interested only in the question: To which one of the two categories do entries
of the sequence belong. Let us replace each applicator by the letter A and
each abstractor by the letter T. Now the train is reduced to a word of A’s and
T’s, possibly empty. Such a word will be called an AT-word.

We introduce the notion coupled word by the following grammar:.

<coupled word>::= <empty> |A <coupled word> T|
<coupled word><coupled word>

N. G. de Bruijn 135

There is exactly one way to group the A’s and 77s in a coupled word into AT-
couples, such that in each couple the A comes before the T' and such that any
two couples have the property that one is entirely inside the other. Actually
we get the couples from the above grammar if we always couple the A and
T in A <coupled word> T'. The situation is well-known, of course, from the

couplingof parentheses in strings like ({()())(((00)))))-
In the following example the A’s and T7s are provided with subscripts in

order to let us indicate the couples:
Ay A ATy AsT e Tr Ag Ag Ao Ari Ty Avs Ty TusTieThrThs.
The couples are:
AsTy, AsTe, AeTy, AuTha, A1sTu, AwTis, AeTie, AsTiz, AiThs.

3.4. Canonical dissection of an AT-word.
Theorem. For every AT-word w there are non-negative integers p and q

such that
(34:1) w = CoTClTCZ nee TCp_lTCpACp+1ACp+2 s Acp+q_1Acp+q

where co, . .., cp4q are coupled words. (If p = 0, the part cgTc;Tcy - - - Tey_1Te,
has to be read as co, and if ¢ = 0, the part Ac,y1Acp4s - Acprg—1Acpy, has
to be read as the empty string.)

The numbers p and g and the coupled words cy, . . . , ¢p44 are uniquely deter-
mined.

Proof. By induction, starting from the case that w is the empty word. The
induction step is the addition of an A or T at the end.

This induction also provides an algorithm for obtaining (3.4.1).

The p T’s mentioned in (3.4.1) can be called bachelor T’s, and the g A’s
waiting A’s. During the execution of the algorithm the bachelor T’s stay bach-
elors, but some of the waiting A’s can sometimes be coupled to later 7”s on
the right.

In the following examples the dissection is made visible by underlining the
bachelor T’s and the waiting A’s:

wi=AATTTTAATTATTAAAT AT AATTTATAATAATTAA
we=AATTATAAATA

3.5. Canonical representation of a train. Since a train is an AT-
word where the A’s are replaced by applicators and the T7s by abstractors,
the canonical representation of a train follows at once from section 3.4. Ac-
cordingly, we shall use the terminology of couples, consisting of an applicator
and an abstractor; and we shall use the phrase AT-couple. Moreover we have
bachelor abstractors and waiting applicators.

136 Algorithmic definition of lambda-typed lambda calculus

From a train we make two new trains: the knowledge frame and the waiting
list. The knowledge frame of a train w is the train wy we get by omitting all
waiting applicators, and the waiting list of w is the train w; we get by removing
all wagons belonging to the knowledge frame, so that we only keep the waiting
applicators (in their original order). In all this, the word “wagon” refers to
wagons of the train w and not to those of trains that possibly lie inside wagons
of w.

An example is given by

w = [rhlr]s(u){o)][7],ulp{w)[7]o((«)p),
wy = [rlulr]s (V)[r]ruls(w)lre,
wy = (u){(u)p)-

Note that both the waiting list of a knowledge frame and the knowledge frame
of a waiting list are empty.

3.6. Trimming a term with respect to a positioned terminal. Con-
sider a term ¢ and one of its positioned terminals. We can truncate that term ¢
by omitting everything to the right of that positioned terminal. As an example
we may take the seventh 7 from the left in the term displayed in section 3.1.
The truncation is

[[7la[rly7lo([rls[)e (0} e)p) [[re [-

The underlined opening brackets are those which do not have a matching

closing bracket in the truncation.
Unless the positioned terminal is at the far end of the term, the truncation

will not be a term. It looks like this
(3.6.1) W Cwy Cws T C wyg

where twq, Ws, ..., Wn, are trains, ¢ is a terminal, and every [C is either | or (.
This representation (3.6.1) is unique.

For every w; (1 < : < m) we form the knowledge frame w;; and the waiting
list wy2 according to section 3.5.

We now define the trimmed term. It is the term obtained from the truncation
(3.6.1) by omitting the ’s and removing the waiting list from all w; withi <m
but not from the last one. So the trimmed term is

(3.6.2) W11Wai * ** Wrn—1,1Wm{G-

Note that the train wyjwy; - - Wyyo1,1W,, has Wiy -« - Wy as its knowledge

frame and wy,; as its waiting list.
Here is an example of a term ¢ with a positioned terminal underlined:

{(Drlerlalallels(m)lr]s(@)nlep)e.

N. G. de Bruijn 137

The truncation is (with unmatched opening delimiters underlined)

(PMIrlerlale) (ala(n) [[r]s{e)n,

and the trimmed term is

() [rlerlalely [rls{a)n.

3.7. Proper terms. Let t be a term. It has the form wq where w is a train
and ¢ a terminal. The train w is a string of wagons vy « - - vg. In the following
cases we say that ¢ is proper at the far end:

(i) if ¢ stands for 7;

(ii) if q is a variable, 4, say, and if ezactly one of vy,...,v; is an abstractor
ending in J,.

In the latter case we say that the terminal 8 refers to, or is bound by, that last
abstractor []5. (Note that this is to be considered as a positioned abstractor.)

Next we look at terminals which are not necessarily in the last position of a
term. If we have any positioned terminal in a term £, we can build the trimmed
term (3.6.2), and we can investigate whether that trimmed term is proper at
the far end. If that is the case for every terminal in ¢ we say that ¢ is proper.

There are no such things as free variables in a proper term: every positioned
variable is bound by a uniquely determined positioned abstractor. Note that
the positioned abstractors in the trimmed term are directly derived from posi-
tioned abstractors in ¢ itself: in passing from (3.6.1) to (3.6.2) we did not omit
any abstractors.

Rule (ii) allows many cases where abstractors in different positions have the
same subscript at their closing bracket. As an example we mention that rule
(1) is still obeyed if we rewrite the term presented in section 3.1 as

([relrlerlp(lrlslr]e (X)) [rlslrlerlal [rlslrlel{e)()plade) (B)alalrslrle (e} ()plo () (e} (8)s.

This does not alter the references from positioned variables to positioned ab-

stractors.

4 Reductions and equivalence

4.1, o-equivalence. Of course we want to consider names of variables to be
irrelevant. The names serve to provide references from positioned terminals to
closing brackets (}’s). If we replace the variables by dots, draw arrows from
those dots to the respective]’s, and then omit the subscripts of the |’s, we get
what we can call the arrow representation of the term. Two terms with the
same arrow representation are called o-equivalent.

Here is an example of three a-equivalent terms:

(lulled o, TlylTleelors [rlalluloplon

138 Algorithmic definition of lambda-typed lambda calculus

We take the point of view that the arrow representations are the essential
things and that the names of variables are not.

Accordingly, two terms with the same arrow representation can be consid-
ered as equal, or, in other words, a-equivalence is taken as equality. So in
particular, the term at the end of section 3.7 is the same as the one at the end
of section 3.1. '

Nevertheless we shall keep talking in terms of names of variables in this
paper, since it makes the discussion on the metalevel somewhat easier. In
implementations, however, other ways to describe the arrows may be more

efficient.

4.2, Local reduction. Local reduction is a refinement of what Nederpelt
called single-step $-reduction in [6], Ch. II, Definition 6.5.

Let t be a proper term, and ¢ one of its positioned terminals. If ¢ stands for
7 there will be no reduction with respect to that terminal. If ¢ is a variable, 4,
say, we consider the abstractor ending in] as mentioned in section 3.7. If this
abstractor is a bachelor (section 3.5) there is no question of local reduction.
But if it is not a bachelor, it is coupled to an applicator preceding it. Let
that applicator be (t). We now define the local reduction with respect to
our positioned terminal. It leads to the term t; that we get by replacing our
positioned terminal by ¢o, provided that we take precautions to avoid clash of
variables. It is certainly sufficient to replace all the internal variables of ¢ by
entirely new ones. (Internal variables of t, are variables inside t, that refer to
abstractors which are also inside to.)

Here is an example:

(4.2.1) [7]p{{to) (t)[ta] u[talo [ta]12) 017

The 8 indicates the positioned terminal we apply our reduction to. The ab-
stractor to which this 0 refers and the applicator coupled to it are also under-
lined. And tg,...,t, stand for terms. By local reduction (4.2.1) turns into

(4.2.2) [7]o[{to)(t1) [ta,ltslo([ta]125))7

The ¢ is obtained from ¢, by refreshing all internal variables. Note that 7
might have been an internal variable of #y, so without refreshing the variables
of 1o we might violate rule (ii) of section 3.7. The external variables in Zg should
not be refreshed. Note that possible p’s in to refer to the abstractor [7], in
front of (4.2.1) and that its copies in ¢§ have to refer to that same abstractor.

It is only our positioned terminal that is replaced by o, and not the possible”
further occurrences of that variable 6. That is why the reduction is called
local. And note that, in contrast to what we have with ordinary S-reduction, -
the couple consisting of the applicator (f,) and the abstractor ending in lo
are not necessarily adjacent. Moreover, that couple is not removed by the
reduction, not even if there had been only one reference to that Je- .

N. G. de Bruijn 139

It is easy to show that local reductions transform proper terms into proper
terms.

4.3. AT-removal. AT-removal is essentially the same thing as what Ne-
derpelt called single-step B-reduction in [6], Ch. II, Definition 6.7.

Let t be a proper term, and ¢, one of its subterms. We put ¢, = wq, where w
is a train and ¢ a terminal. The train w is a sequence of positioned wagons. Let
two of them be (¢,) and [t5],, and assume that they form a couple. And assume
that ¢, contains no references to this positioned abstractor {tas]s. Under these
circumstances AT-removal can be carried out. It Just consists of removing the
positioned applicator (t2) as well as the positioned abstractor fts]s.

As an example we take

b= [rhl(t){ts) tal.[tso(lte]sp)ul, 7.

In the subterm

to= (t)(ts)tal,ftslo([telsm)u
the underlined couple is a candidate for AT-removal unless the term ¢4 contains
any references to 6. If that is not the case, AT-removal transforms ¢ into

[7]o[(t)] ([telsne)]y .

It is trivial that AT-removals transform proper terms into proper terms.

4.4. p-Equivalence. As in [2], we shall use the word minireduction: a
minireduction is either a local reduction or an AT-removal.

If a term ¢, is obtained from the term t; by some minireduction, we write
iy >p 1s.

This >4 is a relation between proper terms. Its symmetric, reflexive, tran-
sitive closure is called §- equivalence, and denoted by =p. So two proper terms
are fB-equivalent if and only if they are the first and last element of a finite
chain of proper terms ¢, 1, .. -»tm such that for all ¢ with 0 < i < m at least
one of the relations #; >g tiy1, tip1 > ¢ holds.

The notation ¢, >p t2 for minireductions is the same as the usual one for
standard f-reduction. Nevertheless it is a convenient notation since the equiv-
alence generated by it is the usual B-equivalence (cf. section 1.3 (iv)).

5 Type and final type of a term

5.1. Type of a proper term. Let ¢ be a proper term (see section 3.7).
Representing it as a train w followed by a terminal g we have

t = wqg = v;---0q

where vy, ..., vy are wagons.

140 Algorithmic definition of lambda-typed lambda calculus

If ¢ is 7, we shall say that £ is a 7-term. Unless ¢ is a 7-term, we shall define
a new term to be called the type of .

Let now ¢ be the variable p. According to our assumption there is exactly
one index ¢ (with 1 <4 < k) such that

U = [tl]p
with some term ¢,. We now define the type of ¢, denoted typ(t), by
(5.1.1) typ(t) = v1---will,

where t] is obtained from #; by refreshing all internal variables (the reason for
this is the same as in (4.2.2)).
As an example we present

¢ = [r:llelezlulr]sw,
typ(t) = [rlllzlezlulr]e[lsy-

Note that in [z]y the z is internal and z external.

5.2. Degree and final type of a term. In a proper term ¢ we shall define
the degree of every positioned terminal. We inspect the terminals in t one by
one, running through ¢ from left to right. If a terminal is 7, it gets degree 1.
If it is a variable, z say, then it refers to some |, somewhere to the left of that
terminal z. That], is the closing bracket of an abstractor [wq],, where w is a
train and ¢ a terminal. The degree of ¢ was defined before, so we can define
the degree degree(z) of z by degree(z) = degree(q).

We also define the degree degree(t) for any proper term £: it is just degree(q),
where ¢ is the terminal on the far right (so t = wq, where wis a train).

The degree of a proper term equals 1 if and only if ¢ is a 7-term. It is easy
to show that for all other proper terms we have degree(t) = degree(typ(t))+1.
So in the sequence

t, typ(t), typ(typ(£));---
we sooner or later reach a 7-term, and then no further applications of typ are .
possible. This T-term will be called the final type of ¢, and will be denoted by
ftyp(t). So if d = degree(t) we have

ftyp(t) = typ?'(2),

where, of course, typ?(t) = typ(typ(?)), etc.
As an example we present a case with degree(t) = 4

t = [rL:l2)[(r)2lylsz,

typ(¢) [r]:[{=)[(7) 2]y)e(2)[{T) 2)us,

typ(typ(t) = [TLl(2)[(r)2lle(2)[(T)2hiT)2,
[7]:[{2)[(7))]s (2)]

ftyp(t) = [TLU=) () 2la{2) [(T)2lu(r)T

1

N. G. de Bruijn 141

5.3. The typing relation. If ¢; and ¢, are proper terms, and if ¢, is
B-equivalent to typ(t,) then this is expressed in the metalanguage by the no-
tation #; : ;.

5.4. Well-typedness of a train. Let w be a train and let its last wagon be
an abstiactor [t1],. Assume that it is not a bachelor, whence it forms a couple
with an applicator () which is a wagon of the train too. We shall formulate
a condition of well-typedness of that couple with respect to the train w.

Let w; be the knowledge frame of w. This w; is obtained by removing all
waiting applicators from w, so it still contains the couple. Let ws be the train
we get from w; by removing the couple.

We consider the following two terms ¢ and #. We obtain i1 by attaching
iy to wy, 50 4] = woty. And similarly #5 = wqt,. The well-typedness condition
for the couple can now be phrased by saying that 15 is not a 7-term and that

(5.4.1) typ(t3) =p 1.

Next we formulate the condition of well-typedness for the whole train. For
every wagon of the train which is a non-bachelor abstractor we form the trun-
cation obtained by omitting everything to the right of it. We take condition
(5.4.1), expressed for that abstractor (and the applicator with which it forms
a couple) with respect to that truncated train. If that condition holds for all
such wagons we say that the train is well-typed.

Note that this condition only refers to the wagons of the train itself and not
to wagons of trains inside those wagons.

As an example we take the train

w = [rlellall7]orln (m) ()2} €l (7 L) [[rTot]y 7.

Well-typedness of this w means that the following three conditions are simul-
taneously satisfied:

~—
——

(@Ehlrly) =5 [Tlel€lell7],m]a (=) €] o€,
typ ([7']5 L7 pT]n<I>[E]w([T]s')’)[[T]Gdy(E)”) =g [T]i[f]x
([Tlorh{2) €l ([7]en) 7)ol

6 Semi-correctness and correctness

6.1. Semi-correctness at the far end. Let ¢ be a proper term (see section
3.7). According to section 5.2 we can form the final type ftyp(t), which is a
T-term. It has the form ftyp(f) = wr where w is a train. This train has a
knowledge frame and a waiting list (section 3.5). We say that the term ¢ is
semi-correct at the far end if that waiting list is empty.

142 Algorithmic definition of lambda-typed lambda calculus

As an example we mention the term ¢ presented in section 5.2. Its final type
ftyp(t) has a nonempty waiting list, consisting of just one wagon (7). There-
fore ¢ is not semi-correct at the far end.

6.2. Semi-correctness. Let ¢ be a proper term (see section 3.7). We say
that ¢ is semi-correct if for every positioned terminal in ¢ the trimmed term
(see section 3.6) is semi-correct at the far end.

6.3. Correctness at the far end. Let ¢t be a proper term.” Just like in
section 6.1 we take the final type ftyp(¢) and write ftyp(t) = wr where w is a
train. We say that the term ¢ is correct at the far end if the waiting list of w
is empty and if moreover w is well-typed.

6.4. Correctness. Let t be proper term. We say that ¢ is correct if for
every positioned terminal in ¢ the trimmed term (see section 3.6) is correct at
the far end.

We leave it to the reader to check that the term presented at the end of
section 3.1 is correct.

7 Algorithm for checking correctness

7.1. Making a task list. Checking correctness of a term ¢ according to the
definition of section 6.4 is at once reduced to checking well-typedness of certain
trains, and this means that we have a number of tasks of the form (5.4.1). Each
one of those tasks concerns two terms of which S-equivalence has to be shown.
The tasks are independent in the sense that the complete list of tasks can be
prepared before we start to carry any of them out.

We can prepare that list by following the definition of section 6.4, investigat-
ing all positioned terminals one by one from left to right. That algorithm will
produce some duplication in the sense that we get a kind of repetition on the
list: some tasks are trivial extensions of tasks we had before. Such repetitions
are caused by the fact that we have to copy pieces of terms when evaluating
the final types of section 5.

The repetitions are of the following kind. The list already contained the
task wt; =p wiz, and later we get the task w*f; =g w*ts with the same ¢; and
ta, where the knowledge frame w* is an extension of the knowledge frame w.
It then follows that the truth of wt; =z wi, has the truth of w*t; =5 w*ty
as a trivial consequence. Therefore the latter task can be omitted from the
list. Every task on the list is connected with a particular couple formed by an
applicator and an abstractor (see section 5.4). That applicator ends with }. .
Let us replace it by)* directly after putting the corresponding task on the list.
So at that moment a particular positioned) in the original term ¢ (the term _

N. G. de Bruijn 143

we want to make the task list for) is replaced by)*. We keep that asterisk
wherever we are making copies. This has the effect that some later task will
be about some couple where the applicator ends in y*. It can be shown that
in those cases the task is a trivial consequence of the old one. So we need not
put it on the list.

This way we keep exactly one task corresponding to each } occurring in t.
But it should be mentioned that in the algorithm they do not necessarily turn
up in the same order as in the term t.

7.2. Carrying out the tasks. Building the task list is done practically
in linear time. It is almost proportional to the length of the term. This is
not entirely true, because of the fact that investigating the final types might
multiply the work by a factor equal to the degree, and in our definition of
AA we have not required the degrees to be bounded. But in applications to
Automath-like books the degrees are bounded (in Automath the degrees are
1, 2 or 3). Another reason why we cannot have pure linearity is that handling
very big terms will require longer addresses and longer knowledge frames.

But in practice all this trouble is small in comparison to what has to be done
in carrying out the tasks. That requires B-equivalences to be checked. The
amount of work it involves is hardly predictable in general. It can be almost
hopeless in cases where the terms are not f-equivalent. In such cases, the fact
that the question of fB-equivalence is decidable in AA (see section 8.5) is of
little practical use. On the other hand, the practical experience in verifying
extensive Automath books has been definitely encouraging. If mathematics is
written in such a way that human mathematicians can grasp it, the search for
establishing $-equivalence will never have to go very deep.

8 Remarks on language theory

8.1. General remark. For our AA we can get theoretical results in the style
of what was achieved for A (see [6] and [5]) and for Automath (see [5]). This is
no surprise, since the features of AA which are not in A are essentially features
of Automath.

We shall list a number of basic properties, without going into proofs. In some
of the proofs the algorithmic nature of our definition of AA will be profitable.

8.2. Church-Rosser theorem. Let us write #, >>p ty if there is a chain
to,..., 1 such that ¢; >5 ;1 for 0 < i < k (see section 4.4 for >4). This
includes the case k = 0, so we also write t >>g ¢.

We can now phrase the Church-Rosser theorem. If £ is a proper term, and
if both t >>5 t* and ¢ >>5 t**, then there is a term ¢*** such that both
1 >>5 4 and £ >>5 7,

It is easy to derive this from the standard Church-Rosser theorem. The
Church-Rosser property for full f-reduction with couples was proved by Ne-

144 Algorithmic definition of lambda-typed lambda calculus

derpelt in [6], Ch. II, Theorem 6.43 (note that in that theorem and in its
proof, the B should have been $; + fB2). From that result we get to the present
situation by remarking that any minireduction ¢ > ¢* uses a particular couple,
and that the full B-reduction with respect to that couple can be obtained by
successive application of all minireductions connected with that couple, start-

ing with that particular step t >p ¢*.

8.3. The Nederpelt norm. For every proper term ¢ we can define the
Nederpelt norm (see [6] or [2]), to be denoted by norm(t). That norm is what
we shall call a norm-shaped term: a term without variables and without (’s or
)’s. It just consists of 7’s, ['s and |’s (since there are no variables we can afford
to omit the subscripts of the]’s).

One may think of the Nederpelt norm as the result of a “catch as catch can”
process. We start with a term ¢, and wherever we see a positioned variable,
we may replace it by its type. And wherever there is a case for AT-removal,
we may do it. These operations are repeated in any order until finally all
terminals are 7 and no applicators are left.

But instead of building a definition on the basis of this intuitive idea, we
shall present an algorithmic definition of the Nederpelt norm.

In order to produce norm(t) we read ¢ from left to right. In most cases we
do not take any action at all. If we read a 7 or a [we do nothing. If we read
a (we read on and do nothing until we have read the matching }.

If we read a positioned variable, 8, say, we locate the]q it refers to, as well as
the [that matches it. From this opening bracket until that | we read a thing
like [t,]s where #; is a norm-shaped term (note that this lies to the left of our
positioned variable, whence it has been processed already). We now replace
our positioned variable by this ¢;. From there we read on. That is, we do not
read the ¢, we have just put there but we begin to read the part of the original
t after the positioned variable we just replaced by ¢;.

If we read a subscripted closing bracket,],, say, we locate the matching .
Between this [and the], we have a term of the form w7, where w is a train.
From this train we remove all waiting applicators and all couples, so that we
only keep the bachelor abstractors. The insides of the remaining bachelors
are norm-shaped, since they have been processed already. From the closing
brackets of these abstractors we now remove the subscripts (note that nothing
can refer to them any more).

After having read the whole term, there is nothing more to read, but we once
more take the same action in the case of a],. The result of our processing thus
far is of the form wr, so from w we skip all waiting applicators, all couples
and all subscripts of |’s.

As an example we show the result of this algorithm when applied to the

term of section 3.1: [[7][r]r]([r]7]lr]7][7](r][r]7-

N. G. de Bruijn 145

It is easy to see that we always have norm(typ(t)) = norm(?).

8.4. Norm-correctness. We get the definition of norm-correctness by
a modification of the one of correctness (section 6.4). We still require serni-
correctness, but condition (5.4.1) is weakened to

(8.4.1) norm(t;) = norm(#}).

Norm-correctness is easy to check, since the norms can be evaluated along with
the production of the task list. And (8.4.1) is just a matter of strict equality,
not of S-equivalence.

If ¢ is norm-correct, then typ(?) is norm-correct too, and norm(typ(t)) =
norm(t).

If ¢ is norm-correct and if t >4 #;, then #; is norm-correct too, and
norm(t;) = norm(%).

8.5. Strong normalization. In [6] Nederpelt showed the strong normal-
ization theorem for the system A: For every norm-correct term ¢ there exists
a positive number NV such that for all reduction chains

t=1 >pla>g - >g 1

we have k < N.

In [3] Nederpelt’s method was carried out for AA, with the same reductions
(local couple reductions and AT-removals) as in the present paper.

The strong normalization theorem and the Church-Rosser theorem together
imply that G-equivalence in AA is decidable. This is a theoretical result only,
since in [3] the bounds (in terms of the length of the given term) are of the
order of the diagonal of the Ackermann function.

8.6. Theorems on correct terms.

(i) If t is a correct term with degree(t) > 1, then typ(t) is correct too.

(ii) If is correct, degree(t) > 1, and ¢ >p 11, then typ(t) =4 typ(t;).

(iii) If ¢ is correct and ¢ >g t;, Lthen ¢, is correct too.

Proofs for (i) and (i) are simple. We can derive (iif) from the statement
that if £ is correct, degree(t) = j and ¢ >p t1, then ¢; is correct and ftyp(¢) =
ftyp(¢1). This can be proved by induction with respect to j. A crucial step in
the induction proof is as follows. Let

b= (P)Qls - (Ar) - (Ay) -2,

where (A;) -- - (A) is the waiting list for the final terminal 2. If it is given that
t is correct, we know that this waiting list satisfies the well-typedness condi-
tion with respect to the first k& bachelor abstractors in ftyp(Q). The question
is whether it satisfies the same condition with respect to ftyp(P). From the

146 Algorithmic definition of lambda-typed lambda calculus

correctness of £ we know that typ(P) =5 (). Since the degree of Q is less than
the one of z we already know that ftyp(P)) = ftyp(typ(P)) =g ftyp(Q). We
can now apply the fact that if two proper terms s; and s, are B-equivalent,
then their sequences of batchelor abstractors are the same up to B-equivalence:
if the j-th entries are [B;] and [C}] then B; = Cj. It follows that the waiting
list (Ay) - - - (Ap) satisfies the well-typedness condition with respect to ftyp(P).

Using (i), (iii) and the Church-Rosser thcorem, we derive that if both ¢,
and ?; are correct, with degree > 1, and if #; =g ¢,, then typ(t1) =5 typ(2).

Correctness implies norm-correctness, and that implies strong normaliza-
tion. So if both ¢; and t, are correct, it is decidable whether t; =5 t,. In
particular it is always decidable whether a given term is correct.

9 References

1. N.G. de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorem. Kon. Nederl. Akad. Wetensch. Proceedings Ser. A 75
(=Indagationes Math. 34) pp. 381~392 (1972).

2. N.G. de Bruijn. Generalizing Automath by means of a lambda-typed

lambda calculus. In: Mathematical Logic and Theoretical Computer Sci-
ence, Lecture Notes in Pure and Applied Mathematics, Vol. 106, (ed.
D. W. Kueker, E.G.K. Lopez-Escobar, C.H. Smith) pp. 71-92. Marcel
Dekker, New York 1987.

3. N.G. de Bruijn. Upper bounds for the length of normal forms and for

the length of reduction sequences in lambda-typed lambda calculus. Re-

port, Department of Mathematics and Computing Science, Eindhoven

University of Technology.

4. N.G. de Bruijn. A plea for weaker frameworks. In: Logical Frameworks |
(ed. G. Huet and G. Plotkin), pp. 40-67. Cambridge University Press,

Cambridge 1991.

5. D.T. van Daalen. The language theory of Automath. Ph.D. thesis,

Eindhoven University of Technology, 1980.

6. R.P. Nederpelt. Strong normalization in a typed lambda calculus with
lambda structured types. Ph.D. thesis, Eindhoven University of Tech-

nology, 1973.

