Electrochemical oscillators: an experimental study of the indium/thiocyanate oscillator

Citation for published version (APA):

DOI:
10.1016/0022-0728(91)85116-7

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Electrochemical oscillators: an experimental study of the indium/thiocyanate oscillator

M.T.M. Koper and J.H. Sluyters

Van 't Hoff Laboratory, University of Utrecht, Padualaan 8, 3584 CH Utrecht (Netherlands)

(Received 6 August 1990; in revised form 1 November 1990)

Abstract

The "classical" indium/thiocyanate oscillator is studied in some more detail at the HMDE. Several qualitative dependences are investigated. Multiperiodic "mixed-mode" oscillations and aperiodic oscillations are observed near the system's transition from steady state to oscillatory behaviour. These oscillations are very reminiscent of those observed in other (electro)chemical oscillators, and seem to indicate some kind of common mechanism.

INTRODUCTION

Among the known (temporal) oscillators in chemistry, the electrochemical ones go back farthest in time. As early as 1828 Fechner reported spontaneous current oscillations during the anodic polarization of iron in nitric acid [1]. Since then, numerous other examples of electrochemical oscillators have been investigated in the literature [1]. Most of these investigations were restricted to what may be called the "passive layer" or "corrosion oscillators" [2,3]. When interest is focused on the dynamic behaviour of (electrochemical) oscillators per se, it seems more obvious, however, to study first the simplest and best-defined systems available. Clearly, some "cathodic" oscillators, especially those pertaining to the potential-dependent catalysis or inhibition of a metal ion reduction at mercury [4–6], will most probably contain at least one variable less than the mentioned corrosion oscillators, because of the absence of a passive layer in such processes. In view of the fact that the mechanism of formation of such passive layers seems to be far from settled, cathodic oscillators might also be mathematically modelled more easily.

In this and in the subsequent paper [7] we will consider such cathodic oscillators, both experimentally and theoretically. The system whose dynamic behaviour we chose to investigate somewhat more in detail is the "In/SCN oscillator", involving potential-dependent catalysis by thiocyanate of the indium(III) reduction. This
system was first studied extensively by de Levie and co-workers [4,8,9], who also
discovered its ability to oscillate spontaneously without any "exotic" circuit ele-
ments in series with the electrochemical cell [10], clearly indicating the chemical
origin of the observed oscillations.

EXPERIMENTAL

The experimental set-up consisted of an electrochemical cell, composed of a
hanging mercury drop electrode (HMDE; EG&G Parc 303 Static Mercury Drop
Electrode, the cathode) and a large mercury pool electrode (the anode), in series
with an adjustable external resistance R_x. Potential control was performed by an
Ecochemie "Autolab" polarograph. All electrode potentials were referred to that of
the mercury pool, the solubility of mercury thiocyanate being sufficiently low. The
cell was thermostated at 25 °C.

All solutions were prepared from freshly distilled water, In(NO$_3$)$_3$·5 H$_2$O
(Merck), NaSCN (Merck, 98.5%) and HNO$_3$ (Baker, 65%). To all In$^{3+}$/SCN$^-$
solutions, a few drops of nitric acid were added to prevent the formation of indium
hydroxides.

Because of the altogether not too high reproducibility of the HMDE's drop size,
not much attention should be paid to the quantitative agreement of the various
experiments. Obviously, in all experiments in which one specific dependence was
under consideration, one and the same drop was used. This is not a problem since
we are interested only in qualitative features. In all experiments the drop size was
adjusted to "medium", conforming to a size of about 0.03 cm2.

RESULTS

The dependence of several qualitative features of the observed oscillations
(profile, amplitude, frequency, the occurrence of oscillations if at all) was studied as
a function of the potential V, the external resistance R_x, the concentration of the
electroactive component and the temperature. As the results will be discussed using
some concepts from stability and bifurcation theory, we have included a small
appendix dealing with the elementary nomenclature at the end of the second paper
[7].

Figure 1 shows some typical oscillation profiles that can be observed at the
HMDE. Figure 2 gives the V-R_x stability diagram of the In3/SCN oscillator, i.e. the
occurrence of either a stationary state or an oscillatory state under the various
adjustments of the potential V and the external resistance R_x. Figures 3, 4 and 5
show the dependence of the oscillation amplitude and frequency on the potential,
external resistance and temperature, respectively. Typical oscillation profiles for a
ten-fold higher concentration of In(III) are depicted in Fig. 6. For obvious reasons
the external resistance then has to be reduced by the same order of magnitude.
Especially interesting behaviour appears near the stability boundaries of Fig. 2. In
that region multiperiodic "mixed-mode" oscillations (combination of large and
Fig. 1. Some typical oscillation profiles observed at the HMDE for 1.2 mM In$^{3+}$ in 5 M NaSCN solution. (a) $V = -0.95$ V, $R_s = 35$ kΩ; (b) $V = -1.05$ V, $R_s = 50$ kΩ; (c) $V = -1.10$ V, $R_s = 60$ kΩ; (d) $V = -1.15$ V, $R_s = 90$ kΩ.

Fig. 2. $V - R_s$ stability diagram for the In/SCN oscillator.
Fig. 3. Dependence of the oscillation amplitude and frequency on the potential V. R_s adjusted to 40 kΩ (same system as in Fig. 1).

Fig. 4. Dependence of the oscillation amplitude and frequency on the external resistance R_s. V adjusted to -0.90 V (same system as in Fig. 1).
Fig. 5. Dependence of the oscillation amplitude and frequency on the temperature. $V = -1.05 \text{ V}$, $R_s = 60 \text{ k}\Omega$ (same system as in Fig. 1).

Fig. 6. Some typical oscillation profiles observed at the HMDE for 11 mM In$^{3+}$ in 5 M NaSCN solution. (a) $V = -0.90 \text{ V}$, $R_s = 3.5 \text{ k}\Omega$; (b) $V = -0.95 \text{ V}$, $R_s = 5 \text{ k}\Omega$; (c) $V = -1.00 \text{ V}$, $R_s = 9 \text{ k}\Omega$; (d) $V = -1.05 \text{ V}$, $R_s = 10 \text{ k}\Omega$.
small amplitude oscillations, Figs. 7a–7c) or even aperiodic oscillations can be observed (Fig. 7d). (These were not observed or not reported by de Levie in his previous study of the In/SCN oscillator [4].)

DISCUSSION

The qualitative properties of the In/SCN oscillator investigated above are intended to serve mainly as a comparison with those dependences predicted by a mathematical model [7]. However, some comments can be made in advance.

The observed bifurcation behaviour seems to correspond to either a supercritical Hopf bifurcation (Fig. 3) or a saddle-loop or SNIPER bifurcation, with a frequency going to zero (the experimental conditions were not really favourable enough to study the presence of a hysteresis region, which can distinguish between the two). A simple quantitative test for a supercritical Hopf bifurcation is the plot of Fig. 8. As the oscillation amplitude near a Hopf bifurcation should reach a root dependence on its distance to the bifurcation point asymptotically [11], such a plot is expected to have a theoretical slope of 0.5. The least-squares value for the slope of Fig. 8 is 0.497. As mentioned, at first sight the other bifurcations of Figs. 3 and 4 are identified as infinite period bifurcations. However, the observation of the mixed-mode oscillations of Fig. 7 indicates that more complex things can also happen.
These oscillations, together with the aperiodic (probably chaotic) state of Fig. 7d, are typical for a so-called homoclinic orbit associated with a saddle focus point. Such an orbit involves a steady-state point of the saddle-focus type, whose unstable spiralling trajectory is reinjected from a third dimension (after a large detour through phase space) exactly into the same steady-state point. Every such closed trajectory which has on it a steady-state point of the saddle type (i.e. the unstable trajectory leaving it is reinjected as a stable trajectory) is called homoclinic. Figure 7c shows such a nearly homoclinic oscillation (a real homoclinic oscillation is of infinite period, of course).

Homoclinic orbits of the saddle-focus type are well known as originators of mixed-mode oscillations and of so-called “Shil’nikov chaos” [12–14]. It is interesting to note that this kind of mixed-mode oscillation has been observed earlier both in homogeneous chemical oscillators (Belousov–Zhabotinskii reaction [15,16] and in a large number of heterogeneous electrochemical oscillators [14,17–20]. (We ourselves observed the same kind of mixed-mode oscillations at a HMDE in the Cu(II)/tribenzyllamine oscillator, which was studied earlier in ref. 5.) The fact that exactly the same kind of saddle-focus homoclinicity is discerned in so many electrochemical oscillators seems indicative of some kind of common or “universal” mechanism at their origin. Because all these systems are kinetically different, we surmise that mass transfer might be responsible for it.

Fig. 8. Logarithmic plot of the oscillation amplitude vs. the potential (with respect to the bifurcation potential), indicating Hopf bifurcation.
REFERENCES