Electrical characterization of superconducting single-photon detectors
Mattioli, F.; Leoni, R.; Gaggero, A.; Castellano, M.G.; Carelli, P.; Marsili, F.; Fiore, A.

Published in:
Journal of Applied Physics

DOI:
10.1063/1.2709527

Published: 01/01/2007

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Electrical characterization of superconducting single-photon detectors

F. Mattioli, a) R. Leoni, A. Gaggero, and M. G. Castellano
Istituto di Fotonica e Nanotecnologie, CNR, Via Cineto Romano 42, 00156 Roma, Italy
P. Carelli
Università dell’Aquila, Monteluco di Roio, 67040 L’Aquila, Italy
F. Marsili and A. Fiore
Ecole Polytechnique Fédérale de Lausanne, Institute of Photonics and Quantum Electronics, Station 3, CH-1015 Lausanne, Switzerland

(Received 1 March 2006; accepted 5 January 2007; published online 2 March 2007)

Superconducting meanders of NbN thin films have applications as single-photon detectors with high sensitivity in the infrared region. We report here a detailed analysis of the electrical characteristics of such meanders, by studying structures where each wire of the meander is separately contacted. The effect of heating on the superconducting-normal transition of adjacent stripes is evidenced. Moreover, the analysis of the switching current distribution of each wire highlights the high-critical current uniformity achieved by our meander process. © 2007 American Institute of Physics. [DOI: 10.1063/1.2709527]

I. INTRODUCTION

High counting-rate detectors capable of sensing single photons in the infrared region are needed for several applications in different fields; among them there are high-bandwidth interplanetary communications, test of high-speed semiconductor circuits, and quantum key distribution. Superconducting single photon detectors (SSPDs) are nanoscale photonic devices that can fulfill these requirements.

The sensing mechanism of the device, suitable for this purpose, is based on the combination of the superconducting properties and of the submicrometric width of a wire. The device is biased below, but very close, its critical current, where due to superconductivity the voltage across the device is zero. When a single photon is adsorbed in the wire, a normal “hot spot” is created. This normal region, of about 100 nm in this region the current becomes normal and a voltage pulse is generated. The SSPD reset mechanism is due to the low impedance of the electromagnetic environment. As the superconducting film is very thin (<10 nm), the normal part of the SSPD has a high resistance, about 400 Ω/sq. During the transition the device follows a properly designed load line and reaches a metastable region; the bias current is diverted from the active part of the device to the 50 Ω coaxial transmission line and the 50 Ω load, so that the power dissipated in the device is not enough to sustain a stable resistive region. The device is self reset to its superconducting state and is able to detect a new photon.

A meander geometry is used to enhance the filling factor of the detection area and hence the detection efficiency of the device. The ultrathin superconducting film is patterned in a meander shape with submicrometer wide strips. SSPD detectors can reach high-detection efficiency of about 30% at 1.3 μm and low dark count rate ≤ 1 count/s. Operating frequencies up to 2 GHz have been also demonstrated at 2.3 K. However, although the intrinsic detection mechanism is very fast allowing picosecond response, the kinetic inductance of a standard designed SSPD determines the fall time of the response voltage transient and leads to nanosecond dead time. For practical application, higher-detection efficiencies are needed, while the capability of resolving also the energy of the incoming photons can make these devices useful also for other applications different from those mentioned above.

The meander geometry presents several challenges. On one hand, as a consequence of this photodetection mechanism, the wires of the device need to be narrow (about 100 nm) and must have very uniform linewidth so that each part of the meander has the same critical current. A small constriction along the meander would have a lower critical current limiting the maximum bias current of the device: In such a condition only the region near the constriction (much smaller than the full meander) is correctly biased and is really sensitive to the incoming radiation. On the other hand, the closely-packed wires of the meander may interact, e.g., by exchanging heat. Thermal effects on the current-voltage characteristics of the meander have not been investigated previously.

In this article, we address some of these issues by investigating the current-voltage characteristics of specially designed structures. In particular, by comparing the current-voltage (I-V) curves of meanders with very different filling factors, we evidence the role of thermal coupling between adjacent stripes in closely packed meanders. Moreover, by fabricating meanders where each wire is separately con-
tacted, we measure the critical current distributions for the different wires and directly probe the linewidth homogeneity. These results provide physical insight into the working principle of meander-type SSPDs.

II. DEVICE FABRICATION

The material used for our SSPDs is an ultrathin film (thickness=10 nm) of NbN deposited by dc magnetron sputtering on top of a 10 × 10 mm² MgO (100) substrate heated up at 400 ℃. The sputtering process takes place in a gas mixture of Ar and N₂; the total pressure is \(P_{tot} = 3.4 \) mTorr and the ratio between the nitrogen and the total pressure is 33%. The film obtained has a superficial roughness of 1.4 Å (rms) and a critical temperature \(T_c \) of 11.5 K.

The nanolithography step to fabricate SSPD detectors has been already described in Ref. 10. Here we recall the main steps of the process. Our electron beam lithography (EBL) system is equipped with a field emission gun and electrons accelerated at high voltage (100 kV). A two step process is used to fabricate the devices. For the first step a PMMA (Polymethyl Methacrylate, positive tone) electronic resist is spun on top of the NbN film and then exposed by EBL direct writing and developed. A 60 nm Ti/Au film is then e-gun deposited and lifted off to define the pads of the SSPDs and the markers needed to align the next lithography. The second EBL step directly writes the meander structure on the HSQ (hydrogen silsesquioxane, negative tone) electronic resist. A reactive ion etching (RIE), based on a CHF₃/SF₆ gas mixture, is used to transfer the pattern obtained onto the NbN film, removing all the unwanted material (not covered by the HSQ). Patterns and exposure doses have been accurately optimized.

The standard device is a 10 × 10 \(\mu \)m² area meander-type SSPD with a filling factor \(^{10} \) (the ratio of the area occupied by the superconducting meander to the device nominal area) up to 0.4. The width of the superconductive strips ranges from 50 to 200 nm. A 3 × 3 matrix of chips is realized on top of the MgO substrate. Several layouts with linewidths ranging from 50 to 200 nm, have been fabricated in order to get a characterization of the linewidth uniformity.

III. ELECTRICAL CHARACTERIZATION

As pointed out in the Introduction, one of the most important requirements of a SSPD is the spatial uniformity of the critical current along the whole length of the meander. A small constriction in the width can affect considerably the critical current of a stripe, without changing too much its normal resistance and hence the total resistance of the meander. For diagnostic purposes then, it is better to characterize the critical current than the resistances of the single parts of a meander. SSPDs designed to allow the electrical access to each stripe of the meander, as shown in Fig. 1 and schematically in the inset of Fig. 2, have been fabricated specifically for analyzing the distribution of the critical current in the various stripes of the meander.

A. I-V characteristics

The two SSPDs showed in Figs. 1(a) and 1(b), called structures A and B, respectively, have been electrically characterized. Both of them have 100 nm wide stripes but the stripe spacing is 150 nm in structure A and 1.5 \(\mu \)m, i.e., ten times larger, in structure B. The two meanders have been made of five stripes, each electrically connected to pads, with total normal resistance \(R_n = 132 \) and 134 k\(\Omega \), respectively. By comparison, a standard SSPD with 41 stripes has a resistance of about 1.5−2 M\(\Omega \). Both I-V characteristics and switching current distributions have been acquired at 4.2 K in a rf shielded environment with all connection leads heavily filtered, because the noise can reduce considerably the critical current of a superconducting wire. To acquire the I-V characteristics of the SSPD we use a standard 10 V voltage generator in series with a \(R_g = 15 \) k\(\Omega \) resistance and a PC-controlled acquisition board. The current that is flowing in the circuit is obtained by measuring the voltage drop across \(R_g \) by means of a low-noise voltage amplifier (PAR113) and the voltage is directly measured from the SSPD leads. The schematic view of the contacts is shown in the inset of Fig. 2(a).

Figures 2(a) and 2(b) shows the I-V characteristics of structures A and B, respectively, as measured by using L and R leads. Both structures have been fabricated on the same substrate. As it can be seen from the I-V characteristics,
when the meander is in the superconducting state the circuit is effectively current biased but as soon as the first stripe of the SSPD becomes normal with a resistance of about 25 kΩ the resistance of the meander becomes suddenly larger than \(R_s \) and the current drops. Each time a new stripe of the SSPD becomes normal, the current drops and it is possible to follow each different branch of the \(I-V \) curve, avoiding the simultaneous transition of the whole structure, this because at both ends of each stripe the linewidth is much larger, strongly increasing the local critical current allowing only the transition of each stripe at once. As shown in Fig. 2(b) by increasing the bias current from the critical current \(A \), the \(I-V \) characteristics follow the letters in alphabetic order up to K through all the single branches B-C, D-E, F-G, H-I, and J-K. When the current starts to decrease, the characteristics follow a different path, from K to L, down to the supercurrent region. The hysterical behavior of the \(I-V \) curves is caused by the power dissipated in the meander while it is in the resistive regime. When the current has followed all the resistive branches of the \(I-V \)’s, the power dissipated is high enough to keep the meander in its normal state even if the current is decreased because the local temperature is higher than the transition temperature. In this condition [K-L part of the characteristics of Fig. 2(b)] the current must be reduced to a value lower than the other branches to allow again the normal to superconducting transition. From Fig. 2(b) the first switching from the superconducting to the normal state [A of Fig. 2(b)] is always the one with the higher-critical current and all the other transitions take place at lower currents. Again to explain this behavior we have to invoke heating effects, because the critical current strongly depends on the temperature.

Heating effects can also explain the differences between the \(I-V \) characteristics of the two different types of meander. In a type B meander the stripes are 1.5 µm apart while the width is the same of device A, so we expect a lower-thermal coupling between the stripes in the normal state and the others still in the superconducting state, less affecting their critical currents. This behavior is clearly shown comparing the \(I-V \) curve of Figs. 2(a) and 2(b): the first transition is the one with the largest critical current and all the other transitions take place at a lower current, but in case of type B, because of a larger thermal decoupling between stripes, this effect is lower.

B. Hot-spot plateau

Figures 3 and 4(b) show typical \(I-V \) characteristics of 10 µm long, 100 nm wide superconducting single stripe. When the device is voltage biased (Fig. 3), a transition occurs from the superconducting state (zero voltage branch of the \(I-V \) characteristics) to a current plateau called hot-spot plateau. The current of this plateau about 6 µA, in this case) generates by joule effect enough heat to sustain a normal spot balancing the heat diffusion out of this region. Increasing the voltage bias, the length of the normal region increases: As soon as the whole wire becomes normal, the \(I-V \) curve starts to follow a normal ohmic behavior. At this point the value of the resistance is a constant equal to the normal nanowire resistance.
The hot-spot plateau characterization is important because it is connected to the working regime of the SSPD. The correct current bias point for single-photon detection is in the zero voltage state, slightly lower than the critical current. With this bias, when the transition takes place due to the adsorption of a single photon, the device follows a properly designed load line and reaches a metastable region and not the stable hot-spot plateau generating a voltage drop. This pulse is proportional to the difference between bias current and plateau current multiplied by the transmission line resistance about 50 Ohm, say about 1 mV. The metastable region is that between the superconducting branch and the beginning of the hot-spot plateau. An accurate analysis of the critical current, of the hot-spot level and of the metastable region is necessary to correctly bias the SSPD.

C. Current switching distributions

To study in detail the homogeneity properties of each part of the meander we have measured the critical current of each wire not only by its I-V characteristics but also by using an escape-current-analysis technique. This technique is frequently used to study Josephson junctions, superconducting quantum interference devices (SQUIDs) and in general all phenomena correlated with an escape over a potential barrier. Here we use this technique in order to achieve a high-precision measurement of the critical current of each stripe of the meander. The schematic view of the experimental set up is shown in Fig. 4(a). The meander is current biased and the voltage across a single wire is sent to a voltage comparator. The voltage threshold value of the comparator [see dashed line in Fig. 4(b)] is set very close to the superconducting branch: in this way as soon as the transition takes place and the voltage starts to increase, the comparator sends a TTL (Transistor-Transistor Logic) pulse toward the acquisition board that acquires the current that is circulating in the nanowire at that time. As shown in Fig. 5, producing several times a switching event, a plot of the number of these switching events as a function of the current is obtained for each stripe of the meander, since each stripe was electrically contacted. From this analysis we can compare the critical current uniformity of a type A SSPD Fig. 5(a), with filling factor 0.4 and that of a type B SSPD Fig. 5(b), with filling factor 0.06. The critical current is about 20 μA and is smaller than the critical current measured in Ref. 14 for similar devices, this because of a poorer quality of our NbN film. The results obtained show that in this particular case the critical current uniformity is about the same, 6% and 8.5% for types A and B, respectively. These values indicate a good control of the linewidth uniformity even when the filling factor is increased by a factor of 10. From the lithographic point of view, we would expect that the linewidth control can
be spoiled because of the local electron overdose due to the nearby exposed patterns: This proximity effect becomes more and more important when spacing between stripes decreases. The fact that the uniformity is quite similar in types A and B is an encouraging result and we think is related to the high-acceleration voltage (100 kV) of the electrons in our lithography system that allowed us to spread the backscattered electrons in a larger area decreasing; at the same time, the amplitude of the local spurious effect due to electron overdosing.

IV. CONCLUSION

In this article, the low-temperature characterization of the critical current of each part of the meander has been used to check the fabrication parameters and enhance reproducibility and yield. The hot-spot plateau has been used to test the quality of the device and to find the optimal bias parameters. The comparison of meanders with different filling factors shows that heating effects are important in explaining the full I-V characteristics of the devices. Moreover, we have shown that the study of the current switching distributions of the stripes of the meander is a powerful tool to investigate fabrication process reliability.

ACKNOWLEDGMENTS

The authors wish to thank S. Pagano for helpful discussions, M. Benkahoul and F. Lévy for helpful discussion and granting access to the dc magnetron sputtering system, and H. Jotterand for experimental help. Funding is acknowledged from the European Commission under Project No. “SINPHONIA,” Contract No. NMP4-CT-2005–16433, and from the Swiss National Science Foundation, under “Professeur boursier” and NCCR “Quantum Photonics” programs.