Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser

Citation for published version (APA):

DOI:
10.1049/el:20057956

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser

Giant effective linewidth enhancement factors, close to 60, are measured on a quantum dot laser under specific biasing conditions. Consequently, 2.5 Gbit/s purely frequency modulated signal is obtained by direct current modulation at this operation point.

Introduction: Quantum dot (QD) lasers have received considerable interest in recent years owing to continuously improving QD materials and to expected high device performances. Low linewidth enhancement factor (LEF), down to 0.5 [1], high T0 and promising dynamic measurements: QD laser spectra near ES threshold (220 mA) obtained under CW operation.

Quantum dot lasers have received considerable interest in recent years owing to continuously improving QD materials and to expected high device performances. Low linewidth enhancement factor (LEF), down to 0.5 [1], high T0 and promising dynamic measurements: QD laser spectra near ES threshold (220 mA) obtained under CW operation.

Fig. 2 Linewidth enhancement factor (LEF) measurement on filtered GS lasing modes with interferometric method, below ES threshold

Phase/amplitude ratio measured above 3 GHz is noisy owing to the device bandwidth.

Device description: The laser used in our experiments was grown by molecular beam epitaxy [4]. The active region is formed by three layers of self-assembled InAs QDs, which are covered by a 5 nm InGaAs QW and separated from each other by a 40 nm GaAs spacer layer. The areal dot density of the lens-shaped QDs is 3×10^{10} cm$^{-2}$. The laser cavity is clad by 1.5 mm Al$_0.7$Ga$_0.3$As layers. Our device is a 1.5 mm-long Fabry-Perot ridge-waveguide laser with 3 mm-wide stripe. Coated front and rear facet reflectivities equal, respectively, 79 and 93% at 1.3 mm. At 25°C, the GS and ES transitions lase, respectively, at 13 (1290 nm) and 220 mA (1210 nm) (Fig. 1). Both quantum dot size distribution and the Fabry-Perot cavity lead to a widely multimode emission.

Fig. 1 QD laser spectra near ES threshold (220 mA) obtained under CW conditions

Linewidth enhancement factor measurements: The LEF has been measured on single GS and ES lasing modes with an interferometric method: the output optical signal from the laser operated under small-signal direct modulation is filtered in a 0.2 nm resolution monochromator and sent in a tunable Mach-Zehnder interferometer. From separate measurements on opposite slopes of the interferometer transfer function, phase and amplitude deviations are extracted against the modulating frequency, in the 50 MHz to 20 GHz range [5]. The LEF is given by the phase to amplitude responses ratio at the highest frequencies, in the limits of the device modulation bandwidth. In the present case, the device modulation bandwidth equals 3 GHz. The sign of the LEF is provided by the phase value. With this method, modulation-induced temperature effects are negligible [6]. LEF values between 2 and 5 are routinely measured on QW lasers with this method. Fig. 2 represents the ratio of phase and amplitude responses of a GS lasing mode at currents between 80 to 200 mA. Corresponding extracted LEF values are reported in Fig. 3. Opposite to what is commonly observed with QW lasers, an increase of the LEF above GS threshold can be noticed. This effect is related to the index change induced by the carrier pile-up in the ES level. Just below the ES threshold a giant value of the ground state LEF, equal to 57, is measured. It is attributed to the complete filling of the available GS states and the related differential gain decrease at the GS wavelength. This is the highest value ever measured on a semiconductor laser.

Fig. 3 GS and ES linewidth enhancement factor (LEF) against applied current

Above ES threshold, the GS differential gain, and thus the ground state LEF, becomes negative. While this effect is not well understood yet, this is the first time that a change of sign for the LEF is reported in a semiconductor Fabry-Perot laser. The excited state LEF just above the ES threshold presents values around 7, similar to the ground state LEF just above GS threshold.

Directly modulated laser FSK signal emission: The giant LEF values that have been reached suggest that direct current modulation in a properly biased QD laser will lead to frequency modulation rather than amplitude modulation. As a first application, pure frequency shift keying (FSK) signals have been encoded by simple modulation current. A 2.5 Gbit/s NRZ laser modulation is realised with a pseudorandom binary sequence (PRBS) generator emitting $2^7 - 1$
long words. The emitted optical NRZ signal is sent to the 13 GHz-bandwidth photodiode of an oscilloscope, without optical or electrical filtering. 2.5 Gbit/s eye diagrams (Fig. 4a) show a 6.7 dB extinction ratio on-off keyed (OOK) signal emitted at 60 mA, whereas amplitude modulation vanishes at around a 180 mA operating point, with a 0 and 1 mark levels inversion. Noisy eye diagram at 180 mA is attributed to spontaneous emission increase at ES wavelength and possibly to the multimode emission of the Fabry-Perot laser: in that case the vanishing of the amplitude modulation may occur at different bias conditions for the different longitudinal modes. High resolution spectra (Fig. 4b) present the characteristic profile of a frequency modulated signal: each Fabry-Perot mode peak is split into two sub-peaks that correspond to '0' and '1' codings, respectively. The cases where '0' and '1' have the same power show us a pure frequency modulation. Fig. 4b spectra reveal frequency modulation, as high as 9.7 GHz, for each GS lasing mode at 180 mA, '0' and '1' mark amplitude contrasts of 0.5 and −0.7 dB, respectively at 170 and 180 mA, demonstrating the existence of a pure frequency modulation operation point in this current range. This finally shows the possibility to generate a pure and highly contrasted FSK signal by a simple and low-consuming direct laser modulation, avoiding the usual association of a laser and a modulator.

Fig. 4 2.5 Gbit/s current modulation: +/- 26 mA

ELECTRONICS LETTERS 17th March 2005 Vol. 41 No. 6

Conclusion: Disruptive properties including a giant effective line-width enhancement factor, close to 60, have been demonstrated for the first time, based on the specific electronic band structure of a quantum dot laser. As a first strategic application of these unique properties, a purely FSK signal has been shown under direct laser modulation. These results more generally demonstrate that, beside a simple improvement of performance with respect to quantum well lasers, quantum dot structures offer the perspective of new functions that could impact directly modulated lasers in addition semiconductor amplifier based devices.

References
1 Ghosh, S., Pradhan, S., and Bhattacharya, P.: ‘Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature’, Appl. Phys. Lett., 2002, 81, pp. 3055–3057

© IEE 2005

23 November 2004

Electronics Letters online no: 20057956
doi: 10.1049/el:20057956

E-mail: beatrice.dagens@alcatel.fr

A. Markus, J.X. Chen and A. Fiore (Institute of Quantum Electronics and Photonics, EPFL, Lausanne CH-1015, Switzerland)

Present address of J.X. Chen: Bell Laboratories, Lucent Technologies Inc., 600 Mountain Ave., Murray Hill, NJ 07974, USA

Permanent address of A. Fiore: Institute of Photonics and Nanotechnology CNR-IFN, via del Cineto Romano 42, 00156 Roma, Italy

E-mail: beatrice.dagens@alcatel.fr

A. Markus, J.X. Chen and A. Fiore (Institute of Quantum Electronics and Photonics, EPFL, Lausanne CH-1015, Switzerland)

Present address of J.X. Chen: Bell Laboratories, Lucent Technologies Inc., 600 Mountain Ave., Murray Hill, NJ 07974, USA

Permanent address of A. Fiore: Institute of Photonics and Nanotechnology CNR-IFN, via del Cineto Romano 42, 00156 Roma, Italy