CD3CN as a probe of Lewis and Bronsted acidity of zeolites

Citation for published version (APA):

DOI:
10.1021/j100144a028

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
CD$_3$CN as a Probe of Lewis and Bronsted Acidity of Zeolites

A. G. Pelmenschikov,*,1,4 R. A. van Santen,1 J. Jânschen,1 and E. Meijer1

Schui Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, and Institute of Catalysis, Prosp. Lvaurentieva 5, 63090 Novosibirsk, Russia

Received: June 2, 1993; In Final Form: August 9, 1993

The well-known trio of IR bands (A, B, C) at ~2800, ~2400, and ~1700 cm$^{-1}$, typical for strong H complexes in vapors, liquids, and solids, is also found in CD$_3$CN adsorption on Bronsted sites of HZSM-5 and HY zeolites. The observed CN frequencies in interaction with different Bronsted and Lewis sites of these zeolites are quantitatively reproduced by ab initio 3-21g calculations combined with the frequency scaling procedure.

Introduction

Acetonitrile appears an attractive probe for zeolite acidity, since it will allow for two kinds of vibrational studies. When interacting with zeolite acid sites, both the zeolite OH frequencies and the acetonitrile v(CN) frequency will shift. This makes acetonitrile an interesting probe for Lewis as well as Bronsted acidity. CD$_3$CN is more appropriate for these studies than CH$_3$CN, as the CH$_2$CN CN spectral region is strongly complicated by Fermi resonance between the v(CN) and the combination δ(CH$_3$) + v(CC) frequencies. Here we will present results of an IR study on CD$_3$CN adsorption on HZSM-5 and HY zeolites. The analysis of the data will be supported by a comparison with literature data and results of ab initio calculations.

A very broad complex OH band, consisting of three subbands at ~2800, ~2400, and ~1700 cm$^{-1}$, was found in adsorption of many basic molecules on zeolites. The nature of this spectral trio was not unambiguously interpreted in the literature until now. In the present paper, we will apply a resonance theory of OH band profiles of molecular H complexes to hydrogen bonding in zeolites. These subbands, actually pseudobands, appear to be due to resonant interactions between the OH stretching and overtone bending modes of perturbed bridging OH groups.

Experimental Section

Zeolites. ZSM-5 was synthesized hydrothermally at 440 K for 48 h with TPA Br as a templating agent. Si/Al = 52 for this sample was estimated on the basis of adsorption calorimetric measurements, taking an amount of adsorbed ammonia at 423 K as a measure of the NH$_4^+$ ion-exchange capacity (see ref 13 for more details). NH$_4$Y zeolite was prepared from a commercial product (AKZO PA 4261 1B) by a moderate dealumination with a 50% excess of NH$_4$NO$_3$. The measurements, as described in ref 15, using a Bruker MSL 400 high-resolution spectrometer, were performed at 227 K in a vacuum cell. The samples were pressed into 7.5 mg/cm2 disks. The spectral resolution was 1 cm$^{-1}$.

Computational Method

Ab initio calculations were performed at the SCF level with the 3-21g basis set using the GAUSSIAN-90 package.

Optimized geometries of the molecules are reported in Table I. To eliminate a systematic error in ab initio 3-21g v(CN) frequencies of CD$_3$CN complexes, the scaling procedure was used (see, for example, refs 20 and 21) with the scale factor $k_{CN} = 0.8758$, chosen to fit the 3-21g v(CN) frequency of CD$_3$CN (2594 cm$^{-1}$) to the observed one (2272 cm$^{-1}$).

Results and Discussion

The fundamental ν_1(CD$_3$) and ν_2(CD$_3$) frequencies of adsorbed CD$_3$CN are equal to 2114 and 2250 cm$^{-1}$ on all the samples (Figure 1), being shifted to lower wavenumbers by 12 and 7 cm$^{-1}$, respectively, in comparison with gaseous CD$_3$CN. According to an ab initio study, electron density perturbation in the CD$_3$ group, caused by CD$_3$CN interaction with an electron–acceptor site, leads to insignificant upward shifts of the CD stretching frequencies. Therefore, as the small widths of the ν_2(CD$_3$) and ν_1(CD$_3$) bands and the ν_2(CD$_3$) degeneracy imply the absence of any specific interaction of the CD$_3$ group, the downward shift has to be due to a weak interaction with the zeolite channel wall. Such small shifts of CH and CD stretching frequencies by 10–15 cm$^{-1}$ are usual for organic molecules perturbed by dispersion interactions in going from gas to liquid.

Five bands appear in the CN spectral region at 2322–2323, 2300, 2284, 2278, and 2265 cm$^{-1}$ in the adsorption (Figure 1). The sequences of their appearance in increasing the pressure and their disappearance in outgassing the samples (Figure 1) are in agreement with the established dependence of the v(CN) on the strength of CD$_3$CN electron–donor interaction through the nitrogen electron lone pair: a strengthening of the interaction leads to an upward shift of the frequency.

According to literature data, the bands at 2322–2323, 2300, 2284, 2278, and 2265 cm$^{-1}$ can be tentatively attributed to the adsorption on Lewis alumina sites, bridging OH groups, terminal SiOH groups, and liquid CD$_3$CN, respectively. The v(CN) in interaction with Lewis sites in HZSM-5 being larger than those in HY (Figure 1) can be explained by a lower coordination number of extralattice alumina atoms in HZSM-5 than in HY zeolites, as suggested in ref 29. The calculated v(CN) frequencies (Table II) of CD$_3$CN in interaction with Si(OH)$_4$, (HO)$_3$SiOHA(OH)$_2$, and Al(OH)$_3$ molecular analogs of Bronsted and Lewis sites of zeolites (Figure 2), support this assignment. The nature of Bronsted sites responsible for the 2284–2324 cm$^{-1}$ CN band of adsorbed CD$_3$CN will be discussed below.

As to the Bronsted sites, at low coverage the adsorption occurs mainly on the bridging OH groups adsorbing at 3610 and 3630 cm$^{-1}$ in HZSM-5 and HY zeolites, respectively (spectrum 4 in Figure 3a and spectrum 3 in Figure 3b). The so-called (A, B, C) trio of bands appears at ~2800, ~2400, and ~1700 cm$^{-1}$, typical for medium-strong and strong H complexes in vapors, liquids, and solids. According to experimental and theoretical...
TABLE I: Bond Lengths, AB (Å), and Angles, ABC and ABCD (deg)

<table>
<thead>
<tr>
<th>molecule</th>
<th>geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>SiO₂, 1.629; O-H, 0.965; HN, 1.208; NC, 1.137; CC, 1.457; CH, 1.083; SiOH, 130.8; CCH, 110.0</td>
</tr>
<tr>
<td>1b</td>
<td>SiO₂, 1.672; SiO₂, 1.650; SiO₃, 1.631; AlO₂, 1.839; AlO₃, 1.703; O-H, 0.998; HN, 1.700; NC, 1.136; CC, 1.457; CH, 1.082; SiO₂H, 128.9; SiO₃H, 119.0; CCH, 109.9; O₂SiO₂, 99.9; O₂SiO₃, 113.5; AlO₂SiO₂, 61.3; O₃AlO₃, 100.6</td>
</tr>
<tr>
<td>1b'</td>
<td>SiO₂, 1.644; SiO₂, 1.630; SiO₃, 1.663; AlO₂, 1.695; AlO₃, 1.701; O-H, 0.993; HN, 1.716; NC, 1.136; CC, 1.457; CH, 1.082; O₂SiO₂, 96.3; SiO₃H, 120.3; CCH, 110.0</td>
</tr>
<tr>
<td>1b''</td>
<td>SiO₂, 1.654; SiO₂, 1.644; SiO₃, 1.684; AlO₂, 1.718; AlO₃, 1.707; O-H, 1.001; HN, 1.705; NC, 1.136; CC, 1.457; CH, 1.082; O₂SiO₂, 97.7; SiO₃H, 115.4; CCH, 110.0</td>
</tr>
<tr>
<td>1c</td>
<td>AlO₂, 1.695; Al-O, 1.993; NC, 1.132; CC, 1.455; CH, 1.082; O₂AlN, 99.6; CC, 109.7</td>
</tr>
<tr>
<td>1d</td>
<td>AlO₂, 1.784; AlO₂, 1.940; AlN, 2.083; NC, 1.133; CC, 1.456; CH, 1.082; CCH, 109.8</td>
</tr>
<tr>
<td>2a</td>
<td>SiH, 1.484; SiO₂, 1.669; SiO₃, 1.644; SiO₂, 1.638; SiO₃, 1.660; O-H, 0.993; AlO₂, 1.692; AlO₃, 1.700; HN, 1.720; NC, 1.136; CC, 1.457; CH, 1.082; O₂SiO₂, 110.3; O₂SiO₃, 97.3; SiO₃H, 119.7; CCH, 110.0</td>
</tr>
<tr>
<td>2b</td>
<td>AlH, 1.594; AlO₂, 1.699; SiO₂, 1.639; SiO₃, 1.645; SiO₂, 1.660; O-H, 0.991; AlO₂, 1.692; AlO₃, 1.699; HN, 1.736; NC, 1.136; CC, 1.457; CH, 1.082; O₂SiO₂, 110.3; O₂SiO₃, 98.0; SiO₃H, 119.7; CCH, 110.0</td>
</tr>
</tbody>
</table>

a O-H bond lengths and TOH angles (T = Si, Al) of the terminal OH groups not involved in the modeled interactions are equal to those optimized for Si(OH)₄.²⁻⁺ (D₃h group point symmetry) and H₂O-Al(OH)₃.³⁻⁺ molecules. b R(SiO) are equal to those for Si(OH)₄.²⁻⁺. 0₂, 0₃, 0₄, and 0₅ atoms in model 1b are fixed to model steric constraint of the Si-(OH)-Al fragment in the lattice (see refs 18 and 19 for more details): their positions correspond to those of (HO)₃SiOHAl(OH)₃ molecule (see the table), shifted from the optimal positions by AR(SiO₁) = AR(AlO₁) = 0.05 Å and AB₁₀₁A₁ = 5° for 1b' and by AB₁₀₁A₅ = 0.05 Å and AB₁₀₁A₅ = −5° for 1b''. c For H₂O molecule, its gas-phase geometry was adopted: R(OH) = 0.96 Å and L_OH = 104.0°. L_O₁A₁O₂ = 90.0°. d O₅, O₆, O₇, and O₈ positions as in model 1b'. e Designation of geometry parameters as in model 1b.

Table II: CN Stretching Frequencies (cm⁻¹)

<table>
<thead>
<tr>
<th>molecule</th>
<th>calc⁴⁺</th>
<th>obsd⁴⁺</th>
<th>molecule</th>
<th>calc⁴⁺</th>
<th>obsd⁴⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2283</td>
<td>2278</td>
<td>1c</td>
<td>2330</td>
<td>2332</td>
</tr>
<tr>
<td>1b</td>
<td>2298</td>
<td>2300</td>
<td>1d</td>
<td>2322</td>
<td>2323</td>
</tr>
</tbody>
</table>

* Scaled 3-21g frequencies. ² Figure 1.

Figure 1. Changes in 2500-2000-cm⁻¹ spectral region. (a) Activated HZSM-5, induced by CD₃CN adsorption: (1) at 295 K and 1.14 mbar; (2) at 295 K and 0.05 mbar; by the adsorption at 295 K and 1.14 mbar followed by outgassing (3) at 295 K for 15 min; (4) at 353 K; and (5) at 573 K for 1 h. (b) Activated HY, induced by CD₃CN adsorption: (1) at 295 K and 0.8 mbar; (2) at 295 K and 0.05 mbar; by the adsorption at 295 K and 0.8 mbar followed by outgassing (3) at 295 K; (4) at 353 K; and (5) at 573 K for 15 min.

Figure 2. Molecular models.

studies (refs 30–34 and references therein), in vapors and liquids these pseudobands are caused by Evans transmission windows at ~2600 and ~1900 cm⁻¹, in the broad ν(OH) ± kν(OH-−B) superposition band (ν₁/₂ ≥ 800 cm⁻¹) of the H complexes. These windows result from Fermi resonances of the δ(OH) in-plane overtone at ~2600 cm⁻¹ and γ(OH) out-of-plane overtone at ~1900 cm⁻¹ with the ν(OH) ± kν(OH-−B) modes in the vicinity of these two frequencies. For solids, the C band range can be complicated by δ(OH) + ν(TO) combination modes, ν(TO) being a lattice vibration of the OH group oxygen atom. IR data by Parker et al. on adsorption of a wide range of basic molecules on HZSM-5 can be used for a further demonstration of the validity...
CD$_3$CN as a Zeolite Acidity Probe

Figure 3. Changes in 4000–1400-cm$^{-1}$ spectral region of (a) activated HZSM-5, spectra 1–5 correspond to spectra 1–5 of Figure 1a, and of (b) activated HY, spectra 1–5 correspond to spectra 1–5 of Figure 1b.

Figure 4. Molecular models.

TABLE III: Pseudoband Wavenumbersa (cm$^{-1}$)

<table>
<thead>
<tr>
<th>adsorbed molecule</th>
<th>assignment</th>
<th>A</th>
<th>B</th>
<th>Cb</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td></td>
<td>2900</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>dimethyl ether</td>
<td></td>
<td>2950</td>
<td>2500</td>
<td>1900–1300</td>
</tr>
<tr>
<td>diethyl ether</td>
<td></td>
<td>2950</td>
<td>2300</td>
<td>1900–1300</td>
</tr>
<tr>
<td>tetrahydrofuran</td>
<td></td>
<td>2900</td>
<td>2370</td>
<td>1900–1300</td>
</tr>
<tr>
<td>di-n-butyl ether</td>
<td></td>
<td>2900</td>
<td>2300</td>
<td>1900–1300</td>
</tr>
<tr>
<td>acetone</td>
<td></td>
<td>2900</td>
<td>2370</td>
<td>1800–1300</td>
</tr>
<tr>
<td>n-butyraldehyde</td>
<td></td>
<td>2900</td>
<td>2400</td>
<td>1700–1300</td>
</tr>
<tr>
<td>acetonitrile</td>
<td></td>
<td>2820</td>
<td>2430</td>
<td></td>
</tr>
<tr>
<td>benzonitrile</td>
<td></td>
<td>2800</td>
<td>2360</td>
<td></td>
</tr>
<tr>
<td>formic acid</td>
<td></td>
<td>2900</td>
<td>2460</td>
<td>1700–1300</td>
</tr>
<tr>
<td>acetic acid</td>
<td></td>
<td>2900</td>
<td>2470</td>
<td>1800–1300</td>
</tr>
</tbody>
</table>

a From ref 23 with our assignment. b Apparently complicated by δ(OH) + ν(TO) modes (see text).

of this theory for surface H complexes (see Table III with our assignment of OH bands from ref 4): all the OH band maxima detected in the adsorption of strong bases can be explained in terms of the OH band profiles.

When the ν(OH) of the medium-strong AOH\cdotsB molecular complex falls in the 2500–2600-cm$^{-1}$ range (see, for example, the

TABLE IV: CN Stretching Frequencies (cm$^{-1}$)

<table>
<thead>
<tr>
<th>molecule</th>
<th>calcda</th>
<th>obsdb</th>
<th>molecule</th>
<th>calcda</th>
<th>obsdb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b'</td>
<td>2296</td>
<td>2a</td>
<td>2298</td>
<td>2300</td>
<td></td>
</tr>
<tr>
<td>1b''</td>
<td>2298</td>
<td>2b</td>
<td>2295</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Scaled 3–21g frequencies. b Observed for the adsorption on bridging OH groups.

IR spectrum of phenylphosphonic acid in ref 30), the C band is absent as the ν(OH) $\equiv \nu(A\cdots B)$ band is not spread enough to low frequencies (see about $\nu_{1/2}$ below) for a significant Fermi resonance with 2γ(OH) ~ 1900 cm$^{-1}$ to occur. Therefore, on the basis of recent theoretical study by Ratajczak et al.32 and by analogy with the similar spectrum for CsHSeO$_4$ crystal,3 we suppose the C band in the obtained spectra for HZSM-5 and HY (ν(OH) ~ 2500 cm$^{-1}$, Figure 3) to be due to δ(OH) + ν(TO) modes, apparently enhanced by the weak resonance with the ν(OH) $\equiv \nu$(OH\cdotsNCCD$_3$)$_2$.32 In zeolites, ν(TO) should correspond to TO stretching modes (T = Si, Al) from the 800–1200-cm$^{-1}$ spectral range.35

As shown by Odinokov et al.,31 the known empirical relations (refs 36 and 37 and references therein) between $\Delta\nu$(OH) and other measured characteristics of moderate hydrogen bonds (with only the A OH band in the spectra)

$$(\Delta\nu(OH) - 40)^{1/2} = 9.0\Delta A^{1/2}$$

$$(\Delta A)_{1/2} = 0.41\Delta\nu'$$

$${\Delta H = 2.91\Delta A}^{1/2}$$

(A, δ, and H being the OH band intensity, the proton chemical shift corrected for the base anisotropy, and the enthalpy, respectively) are valid also for medium-strong hydrogen bonds, with ν(OH) taken to be the center of gravity of the (A, B) doublet38 on the ν axis.31 Therefore, that these ν(OH) values are approximately the same for both the zeolites at low coverage (~ 2500 cm$^{-1}$, Figure 3; the A band in the spectrum of HY zeolite is slightly increased by a contribution from the perturbed 3550-cm$^{-1}$ OH groups) indicates equal absolute acidity of the most acidic 3630-cm$^{-1}$ OH groups in HY and bridging OH groups in HZSM-5. The $\Delta\nu$(OH) ≈ 1100 cm$^{-1}$ and $\nu_{1/2}$ ≈ 800 cm$^{-1}$ of these (A, B) doublets are also in good agreement with the empirical relation39

$$\nu_{1/2} = 0.72\Delta\nu(OH)$$

for H complexes, implying homogeneity of these strongly acidic bridging OH groups in both the zeolites.

Increasing the coverage on both the zeolites causes new bands to grow on the high-frequency side of the A band, showing an existence of other, weaker Bronsted sites. For HZSM-5, these are mainly the terminal SiOH groups: a decrease of the 3745-cm$^{-1}$ OH group.3 On HY, the growth of a new band at 3000 cm$^{-1}$ occurs in parallel with the 3550-cm$^{-1}$ OH groups) indicates equal absolute acidity of the most acidic 3630-cm$^{-1}$ OH groups in HY and bridging OH groups in HZSM-5. The $\Delta\nu$(OH) ≈ 1100 cm$^{-1}$ and $\nu_{1/2}$ ≈ 800 cm$^{-1}$ of these (A, B) doublets are also in good agreement with the empirical relation39

$$\nu_{1/2} = 0.72\Delta\nu(OH)$$

and of this theory for surface H complexes (see Table III with our assignment of OH bands from ref 4): all the OH band maxima detected in the adsorption of strong bases can be explained in terms of the OH band profiles.
of the 3550-cm\(^{-1}\) band to the O3–H group located in the cubooctahedra, which is hardly accessible for adsorption interactions. Obviously, the OH frequency shift does not characterize the absolute acidity in this case.

At high coverage, a decrease occurs of the 3630-cm\(^{-1}\) OH band intensity but without a parallel increase of the C band intensity, as at low coverage (cf. the C band changes in going from spectrum 4 to 3 and from spectrum 2 to 1 in Figure 3b). In agreement with ref 42, this indicates an inhomogeneity of the 3630-cm\(^{-1}\) OH groups in HY zeolites: at the high coverage the adsorption takes place on OH groups that are less acidic than those at the low coverage, with the ν(OH) being shifted too far to high frequencies for the δ(OH) + ν(TO) band to be enhanced by Fermi resonance with the ν(OH) ± ν(SiOH-NCCD\(_3\)) modes. Therefore, the C band intensity in the acetonitrile adsorption might be suggested as a measure of the strongest Bronsted site concentration in zeolites.

Conclusion

The well-known (A, B, C) trio of IR bands, typical for medium-strong and strong H complexes in vapors, liquids, and solids, is also found in C\(_2\)D\(_3\)N adsorption on HZSM-5 and HY zeolites. The theory of OH band profiles of H complexes in these media is shown to be valid for surface H complexes in zeolites. Tentative reproduction by 3-21g calculations of the corresponding theoretical and experimental studies, which show that the adsorption on strong and weak Lewis alumina sites, bridging bases can be different for bridging OH groups of equal absolute acidity for the bridging OH groups in zeolites.

Acknowledgment. We thank Dr. C. A. Emeis (Shell Research BV) and Prof. E. A. Paukshtis (Institute of Catalysis, Novosibirsk, Russia) for critical and informative discussions and Dr. G. Vorbeck (Eindhoven University of Technology) for the HZSM-5 preparation.

References and Notes