CD$_3$CN as a Probe of Lewis and Bronsted Acidity of Zeolites

A. G. Pelmenschikov,*1,4 R. A. van Santen,† J. Jánchen,† and E. Meijer‡

Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, and Institute of Catalysis, Prosp. Laurentieva 5, 630090 Novosibirsk, Russia

Received: June 2, 1993; In Final Form: August 9, 1993

The well-known trio of IR bands (A, B, C) at \sim2800, \sim2400, and \sim1700 cm$^{-1}$, typical for strong H complexes in vapors, liquids, and solids, is also found in CD$_3$CN adsorption on Bronsted sites of HZSM-5 and HY zeolites. The observed CN frequencies in interaction with different Bronsted and Lewis sites of these zeolites are quantitatively reproduced by ab initio 3-21g calculations combined with the frequency scaling procedure.

Introduction

Acetonitrile appears an attractive probe for zeolite acidity, since it will allow for two kinds of vibrational studies. When interacting with zeolite acid sites, both the zeolite OH frequencies and the acetonitrile \(\nu(CN)\) frequency will shift. This makes acetonitrile an interesting probe for Lewis as well as Bronsted acidity. CD$_3$CN is more appropriate for these studies than CH$_3$CN, as the CH$_2$CN CN spectral region is strongly complicated by Fermi resonance between the \(\nu(CN)\) and the combination \(\nu(CH_3) + \nu(CC)\) frequencies.\(^1\,^2\) Here we will present results of an IR study on CD$_3$CN adsorption on HZSM-5 and HY zeolites. The analysis of the data will be supported by a comparison with literature data and results of ab initio calculations.

A very broad complex OH band, consisting of three subbands at \sim2800, \sim2400, and \sim1700 cm$^{-1}$, was found\(^2\,^4\) in adsorption of many basic molecules on zeolites. The nature of this spectral trio was not unambiguously interpreted in the literature\(^2\,^4\) until now. In the present paper, we will apply a resonance theory of OH band profiles of molecular H complexes to hydrogen bonding in zeolites. These subbands, actually pseudobands, appear to be due to resonant interactions between the OH stretching and overtone bending modes of perturbed bridging OH groups.

Experimental Section

Zeolites. ZSM-5 was synthesized hydrothermally at 440 K for 48 h with TPA Br as a templating agent. Si/Al = 52 for this sample was estimated on the basis of adsorption calorimetric measurements, taking an amount of adsorbed ammonia at 423 K as a measure of the NH$_4^+$ ion-exchange capacity (see ref 13 for more details). NH$_4$Y zeolite was prepared from a commercial product (AKZO PA 42611B) by a moderate dealumination with K as a measure of the NH$_4^+$ ion-exchange capacity (see ref 13). The synthesis of Si/Al \approx 52 was found\(^2\) in adsorption of many basic molecules on zeolites. The nature of this spectral trio was not unambiguously interpreted in the literature\(^2\) until now. In the present paper, we will apply a resonance theory of OH band profiles of molecular H complexes to hydrogen bonding in zeolites. These subbands, actually pseudobands, appear to be due to resonant interactions between the OH stretching and overtone bending modes of perturbed bridging OH groups.

IR Measurements. IR spectra were recorded at room temperature using a Bruker IFS 113v FTIR spectrometer with a heatable vacuum cell. The samples were pressed into 7.5 mg/cm2 disks. The spectral resolution was 1 cm$^{-1}$.

Computational Method

Ab initio calculations were performed at the SCF level with the 3-21g basis set using the GAUSSIAN-90 package.\(^16\)

Results and Discussion

The fundamental \(\nu_1(\text{CD}_3)\) and \(\nu_2(\text{CD}_3)\) frequencies of adsorbed CD$_3$CN are equal to 2114 and 2250 cm$^{-1}$ on all the samples (Figure 1), being shifted to lower wavenumbers by 12 and 7 cm$^{-1}$, respectively, in comparison with gaseous CD$_3$CN.\(^2\) According to an ab initio study,\(^2\) electron density perturbation in the CD$_3$ group, caused by CD$_3$CN interaction with an electron–acceptor site, leads to insignificant upward shifts of the CD stretching frequencies. Therefore, as the small widths of the \(\nu_1(\text{CD}_3)\) and \(\nu_2(\text{CD}_3)\) bands and the \(\nu_2(\text{CD}_3)\) degeneracy imply the absence of any specific interaction of the CD$_3$ group, the downward shift has to be due to weak interaction with the zeolite channel wall. Such small shifts of CH and CD stretching frequencies by 10–15 cm$^{-1}$ are usual for organic molecules perturbed by dispersion interactions in going from gas to liquid.\(^2\)

Five bands appear in the CN spectral region at 2332–2323, 2300, 2284, 2278, and 2265 cm$^{-1}$ in the adsorption (Figure 1). The sequences of their appearance in increasing the pressure and their disappearance in outgassing the samples (Figure 1) are in agreement with the established dependences\(^3\,^3\) of \(\nu(CN)\) on the strength of CD$_3$CN electron–donor interaction through the nitrogen electron lone pair: a strengthening of the interaction leads to an upward shift of the frequency. According to literature data, the bands at 2332–2323, 2300, 2284, 2278, and 2265 cm$^{-1}$ can be tentatively attributed to the adsorption on Lewis alumina sites,\(^3\,^3\) bridging OH groups,\(^2\) terminal SiOH groups,\(^2\) and liquid CD$_3$CN,\(^2\) respectively. The \(\nu(CN)\) in interaction with Lewis sites in HZSM-5 being larger than those in HY (Figure 1) can be explained by a lower coordination number of extralattice alumina atoms in HZSM-5 than in HY zeolites, as suggested in ref 29. The calculated \(\nu(CN)\) frequencies (Table II) of CD$_3$CN in interaction with Si(OH)$_3$, (HO)$_3$SiOHAl(OH)$_2$, Al(OH)$_3$, and Al(OH)$_2$2H$_2$O molecular analogs of Bronsted and Lewis sites of zeolites (Figure 2), support this assignment. The nature of Bronsted sites responsible for the 2284–cm$^{-1}$ CN band of adsorbed CD$_3$CN will be discussed below.

As to the Bronsted sites, at low coverage the adsorption occurs mainly on the bridging OH groups adsorbing at 3610 and 3630 cm$^{-1}$ in HZSM-5 and HY zeolites, respectively (spectrum 4 in Figure 3a and spectrum 3 in Figure 3b). The so-called (A, B, C) trio of bands appears at \sim2890, \sim2400, and \sim1700 cm$^{-1}$, typical for medium-strong and strong H complexes in vapors, liquids, and solids.\(^30\,^3\) According to experimental and theoretical...
TABLE I: Bond Lengths, AB (Å), and Angles, ABC and ABCD (deg)

<table>
<thead>
<tr>
<th>molecule</th>
<th>geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>SiO₁, 1.629; O₁H, 0.965; H₁N, 1.137; CC, 1.457; CH, 1.083; SiO₂H, 130.8; CCH, 110.0</td>
</tr>
<tr>
<td>1b</td>
<td>SiO₂, 1.672; SiO₂, 1.650; SiO₃, 1.631; AlO₁, 1.839; AlO₂, 1.703; O₁H, 0.998; H₁N, 1.700; NC, 1.136; CC, 1.457; CH, 1.082; SiO₂H, 109.9; O₁SiO₂, 99.9; O₁SiO₃, 113.5; AlO₁SiO₂, 61.3; O₁AlO₄, 100.6</td>
</tr>
<tr>
<td>1b'</td>
<td>SiO₂, 1.644; SiO₂, 1.630; SiO₃, 1.663; AlO₂, 1.695; AlO₃, 1.701; O₁H, 0.993; H₁N, 1.716; NC, 1.136; CC, 1.457; CH, 1.082; SiO₂H, 96.3; SiO₂H, 120.3; CCH, 110.0</td>
</tr>
<tr>
<td>1b''</td>
<td>SiO₂, 1.654; SiO₂, 1.641; SiO₃, 1.684; AlO₂, 1.718; AlO₃, 1.707; O₁H, 1.001; H₁N, 1.705; NC, 1.136; CC, 1.457; CH, 1.082; O₁SiO₂, 97.7; SiO₂H, 115.4; CCH, 110.0</td>
</tr>
<tr>
<td>1c</td>
<td>AlO₁, 1.695; AlO₂, 1.593; NC, 1.132; CC, 1.455; CH, 1.082; O₁AlN, 99.6; CCH, 109.7</td>
</tr>
<tr>
<td>1d</td>
<td>AlO₂, 1.784; AlO₃, 1.590; AlN, 1.993; NC, 1.133; CC, 1.456; CH, 1.082; CCH, 109.8</td>
</tr>
<tr>
<td>1a</td>
<td>SiH, 1.484; SiO₂, 1.669; SiO₃, 1.644; SiO₄, 1.638; SiO₅, 1.660; O₁H, 0.993; AlO₂, 1.692; AlO₃, 1.700; H₁N, 1.720; NC, 1.136; CC, 1.457; CH, 1.082; O₁SiO₁, 97.3; SiO₂H, 97.7; SiO₃H, 119.7; CCH, 110.0</td>
</tr>
<tr>
<td>1b''</td>
<td>AlH, 1.594; AlO₂, 1.699; SiO₂, 1.639; SiO₃, 1.645; SiO₄, 1.660; O₁H, 0.991; AlO₂, 1.692; AlO₃, 1.699; H₁N, 1.756; NC, 1.136; CC, 1.457; CH, 1.082; O₁SiO₁, 97.3; SiO₂H, 98.0; SiO₃H, 119.7; CCH, 110.0</td>
</tr>
<tr>
<td>1b'</td>
<td>SiO₂, 1.684; SiO₂, 1.649; SiO₃, 1.627; SiO₄, 1.620; AlO₁, 1.784; AlO₂, 1.940; AlN, 2.083; NC, 1.132; CC, 1.456; CH, 1.082; O₁AlN, 99.6; CCH, 109.8</td>
</tr>
<tr>
<td>1d</td>
<td>AlO₂, 1.784; AlO₃, 1.940; AlN, 2.083; NC, 1.133; CC, 1.456; CH, 1.082; CCH, 109.8</td>
</tr>
</tbody>
</table>

* O-H bond lengths and TOH angles (T = Si, Al) of the terminal OH groups not involved in the modeled interactions are equal to those optimized for Si(OH)₄.
** R(SiO) are equal to those for Si(OH)₄.**
*** Designation of geometry parameters as in model 1 b.****

Figure 1. Changes in 2500-2000-cm⁻¹ spectral region. (a) Activated HZSM-5, induced by CD₃CN adsorption: (1) at 295 K and 1.14 mbar; (2) at 295 K and 0.05 mbar; by the adsorption at 295 K and 1.14 mbar followed by outgassing (3) at 295 K for 15 min; (4) at 353 K; and (5) at 573 K for 1 h. (b) Activated HY, induced by CD₃CN adsorption: (1) at 295 K and 0.8 mbar; (2) at 295 K and 0.05 mbar; by the adsorption at 295 K and 0.8 mbar followed by outgassing (3) at 295 K; (4) at 353 K; and (5) at 573 K for 15 min.

studies (refs 30–34 and references therein), in vapors and liquids these pseudobands are caused by Evans transmission windows at ~2600 and ~1900 cm⁻¹, in the broad v(OH) ± kν(OH–B) superposition band (ν₁/₂ ≥ 800 cm⁻¹) of the H complexes. These windows result from Fermi resonances of the δ(OH) in-plane overtone at ~2600 cm⁻¹ and γ(OH) out-of-plane overtone at ~1900 cm⁻¹ with the ν(OH) ± kν(OH–B) modes in the vicinity of these two frequencies. For solids, the C band range can be complicated by δ(OH) + ν(TO) combination modes, ν(TO) being a lattice vibration of the OH group oxygen atom. IR data by Parker et al. on adsorption of a wide range of basic molecules on HZSM-5 can be used for a further demonstration of the validity

TABLE II: CN Stretching Frequencies (cm⁻¹)

<table>
<thead>
<tr>
<th>molecule</th>
<th>calcda</th>
<th>obsdb</th>
<th>molecule</th>
<th>calcda</th>
<th>obsdb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2283</td>
<td>2278</td>
<td>la</td>
<td>2330</td>
<td>2332</td>
</tr>
<tr>
<td>1b</td>
<td>2298</td>
<td>2300</td>
<td>lb</td>
<td>2322</td>
<td>2323</td>
</tr>
</tbody>
</table>

* Scaled 3-21g frequencies. ** Figure 1.
CD$_3$CN as a Zeolite Acidity Probe

Figure 3. Changes in 4000–1400-cm$^{-1}$ spectral region of (a) activated HZSM-5, spectra 1–5 correspond to spectra 1–5 of Figure 1a, and of (b) activated HY, spectra 1–5 correspond to spectra 1–5 of Figure 1b.

Figure 4. Molecular models.

TABLE III: Pseudoband Wavenumbers* (cm$^{-1}$)

<table>
<thead>
<tr>
<th>adsorbed molecule</th>
<th>A</th>
<th>B</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>2900</td>
<td>2500</td>
<td>1900–1300</td>
</tr>
<tr>
<td>dimethyl ether</td>
<td>2950</td>
<td>2500</td>
<td>1900–1300</td>
</tr>
<tr>
<td>diethyl ether</td>
<td>2950</td>
<td>2300</td>
<td>1900–1300</td>
</tr>
<tr>
<td>tetrahydrofuran</td>
<td>2950</td>
<td>2370</td>
<td>1900–1300</td>
</tr>
<tr>
<td>di-n-butyl ether</td>
<td>2900</td>
<td>2300</td>
<td>1900–1300</td>
</tr>
<tr>
<td>acetone</td>
<td>2900</td>
<td>2370</td>
<td>1800–1300</td>
</tr>
<tr>
<td>n-butyraldehyde</td>
<td>2900</td>
<td>2400</td>
<td>1700–1300</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>2820</td>
<td>2430</td>
<td></td>
</tr>
<tr>
<td>benzonitrile</td>
<td>2800</td>
<td>2360</td>
<td></td>
</tr>
<tr>
<td>formic acid</td>
<td>2900</td>
<td>2460</td>
<td>1700–1300</td>
</tr>
<tr>
<td>acetic acid</td>
<td>2900</td>
<td>2470</td>
<td>1800–1300</td>
</tr>
</tbody>
</table>

* From ref 23 with our assignment. a Apparently complicated by δ(OH) + ν(TO) modes (see text).

of this theory for surface H complexes (see Table III with our assignment of OH bands from ref 4): all the OH band maxima detected in the adsorption of strong bases can be explained in terms of the OH band profiles.

When the ν(OH) of the medium-strong AOH=B molecular complex falls in the 2500–2600-cm$^{-1}$ range (see, for example, the

TABLE IV: CN Stretching Frequencies (cm$^{-1}$)

<table>
<thead>
<tr>
<th>molecule</th>
<th>calcda</th>
<th>obsdb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b$^+$</td>
<td>2296</td>
<td>2a</td>
</tr>
<tr>
<td>1b$^-$</td>
<td>2298</td>
<td>2b</td>
</tr>
</tbody>
</table>

* Scaled 3–21g frequencies. b Observed for the adsorption on bridging OH groups.

IR spectrum of phenylphosphonic acid in ref 30, the C band is absent as the ν(OH) $\neq k\nu$(OH\cdotsB) band is not spread enough to low frequencies (see about $\nu_{1/2}$ below) for a significant Fermi resonance with 2γ(OH) \sim 1900 cm$^{-1}$ to occur. Therefore, on the basis of recent theoretical study by Ratajczak et al.32 and by analogy with the similar spectrum for CsHSeO$_4$ crystal,32 we suppose the C band in the obtained spectra for HZSM-5 and HY (ν(OH) \sim 2500 cm$^{-1}$, Figure 3) to be due to δ(OH) + ν(TO) modes, apparently enhanced by the weak resonance with the ν(OH) $\neq k\nu$(OH\cdotsNCCD$_3$).32 In zeolites, ν(TO) should correspond to TO stretching modes (T = Si, Al) from the 800–1200-cm$^{-1}$ spectral range.35

As shown by Odinokov et al.31 the known empirical relations (refs 36 and 37 and references therein) between $\Delta\nu$(OH) and other measured characteristics of moderate hydrogen bonds (with only the A OH band in the spectra)

$$\Delta\nu(\text{OH}) - 40 = 0.9\Delta A^{1/2}$$

and

$$\Delta A^{1/2} = 0.41\Delta \delta'$$

$$-\Delta H = 2.91\Delta A^{1/2}$$

(A, δ', and H being the OH band intensity, the proton chemical shift corrected for the base anisotropy, and the enthalpy, respectively) are valid also for medium-strong hydrogen bonds, with ν(OH) taken to be the center of gravity of the (A, B) doublet38 on the ν axis.31 Therefore, that these ν(OH) values are approximately the same for both the zeolites at low coverage (\sim 2500 cm$^{-1}$, Figure 3; the A band in the spectrum of HY zeolite is slightly increased by a contribution from the perturbed 3550-cm$^{-1}$ OH groups) indicates equal absolute acidity of the most acidic 3630-cm$^{-1}$ OH groups in HY and bridging OH groups in HZSM-5. The $\Delta\nu$(OH) \approx 1100 cm$^{-1}$ and $\nu_{1/2}$ \approx 800 cm$^{-1}$ of these (A, B) doublets are also in good agreement with the empirical relation39

$$\nu_{1/2} = 0.72\Delta\nu(\text{OH})$$

for H complexes, implying homogeneity of these strongly acidic bridging OH groups in both the zeolites.

Increasing the coverage on both the zeolites causes new bands to grow on the high-frequency side of the A band, showing an existence of other, weaker Bronsted sites. For HZSM-5, these are mainly the terminal SiOH groups: a decrease of the 3745-cm$^{-1}$ OH groups) indicates equal absolute acidity of the most acidic 3630-cm$^{-1}$ OH groups in HY and bridging OH groups in HZSM-5. The $\Delta\nu$(OH) \approx 1100 cm$^{-1}$ and $\nu_{1/2}$ \approx 800 cm$^{-1}$ of these (A, B) doublets are also in good agreement with the empirical relation39

$$\nu_{1/2} = 0.72\Delta\nu(\text{OH})$$

for H complexes, implying homogeneity of these strongly acidic bridging OH groups in both the zeolites.
of the 3550-cm\(^{-1}\) band to the O\(\equiv\)H group located in the cubooctahedra,\(^{40,41}\) which is hardly accessible for adsorption interactions. Obviously, the OH frequency shift does not characterize the absolute acidity in this case.

At high coverage, a decrease occurs of the 3630-cm\(^{-1}\) OH band intensity but without a parallel increase of the C band intensity, as at low coverage (cf. the C band changes in going from spectrum 4 to 3 and from spectrum 2 to 1 in Figure 3b). In agreement with ref 42, this indicates an inhomogeneity of the 3630-cm\(^{-1}\) OH groups in HY zeolite: at the high coverage the adsorption takes place on OH groups that are less acidic than those at the low coverage, with the δ(OH) + ν(TO) band to be enhanced by Fermi resonance with the ν(OH) ± ν(HO-NCCD\(_3\)) modes.\(^{32}\) Therefore, the C band intensity in the acetonitrile adsorption might be suggested as a measure of the strongest Bronsted site concentration in zeolites.

Conclusion

The well-known (A, B, C) trio of IR bands, typical for medium- and strong H complexes in vapors, liquids, and solids, is also found in Cd\(\equiv\)CN adsorption on HZSM-5 and HY zeolites. The theory of OH band profiles of H complexes in these media is shown to be valid for surface H complexes in zeolites.

The CN stretching frequency of Cd\(\equiv\)CN is shown to be efficient in distinguishing different adsorbing sites of zeolites. Tentative attributions of the CN bands at 2352, 2323, 2300, and 2278 cm\(^{-1}\) to the adsorption on strong and weak Lewis alumina sites, bridging OH groups, and terminal SiOH groups, respectively, are supported by ab-initio calculations: the observed frequencies are quantitatively reproduced by 3–21g calculations of the corresponding molecular models, combined with the frequency scaling procedure.

The IR spectra show approximately equal absolute acidity of the most acidic bridging OH groups in HY, adsorbing at 3630 cm\(^{-1}\), and bridging OH groups in HZSM-5. This supports the theoretical and experimental studies\(^{18,19}\) which showed that the absolute acidity of SiOHAl groups in zeolites is mainly defined by the chemical nature of their neighboring T atoms: (SiO)\(_2\)SiOHAl lattice fragments in HY zeolites should possess the highest absolute acidity for the bridging OH groups in zeolites (see also refs 43 and 44 and references therein), corresponding to that in HZSM-5. It is to be noted that the acidity measured by adsorption calorimetry or temperature-programmed desorption of strong oxygen can be different for bridging OH groups of equal absolute acidity in different zeolites, due to a difference in the energy of the protonated bases’ solvation by the zeolite lattices.\(^{4,47}\)

Acknowledgment. We thank Dr. C. A. Emeis (Shell Research BV) and Prof. E. A. Paukshtis (Institute of Catalysis, Novosibirsk, Russia) for critical and informative discussions and Dr. G. Vorbeck (Eindhoven University of Technology) for the HZSM-5 preparation.

References and Notes

(3) Sempels, R. E.; Roxhet, P. G. J. Colloid Interface Sci. 1976, 55, 263.