Side-on versus end-on coordination of dinitrogen to titanium(II) and mixed-valence titanium(I)/titanium(II) amido complexes
Duchateau, R.; Gambarotta, S.; Beydoun, N.; Bensimon, C.

Published in:
Journal of the American Chemical Society

DOI:
10.1021/ja00023a080

Published: 01/01/1991

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 09. Sep. 2017
attributed to ylide 3. The spectrum of 3 is similar to those of the other known dialkylpyridine ylides but is somewhat shifted to the blue (364 versus 390–410 nm) of the homocubyl and adamantly ylides.

The optical yield of ylide 3 is reduced by the presence of oxygen, a selective trap of triplet carbones. From this result two conclusions are possible. The singlet and triplet states of 2 may be of comparable energy, as per aryl- and arylalkylcarbenes, and are in rapid equilibrium. Alternatively a referee has suggested that the excited state of 11* may undergo intersystem crossing to form 14* which extrudes nitrogen to form the triplet carbene.

The intensity of the ylide signal (\(\delta_y = \Delta A_{\text{hence}}\)) produced in a laser pulse increases steadily as the concentration of pyridine increases until \([\text{PYR}] \approx 1.5\) M, at which point the optical yield is saturated. A double reciprocal plot of the data (Figure 2) is linear with a slope of 0.45 = \(k_P/\text{PYRK}\), where \(k_P\) is the second-order rate constant for reaction of dimethylcarbene with pyridine, \(K\) is the equilibrium constant (\(K = [2S]/[2T] \ll 1\), assuming the triplet is the ground state as per methylene and that singlet–triplet equilibration is rapid), and \(k_T\) is the sum of all first-order and pseudo-first-order rate constants of all processes which consume the carbene in the absence of pyridine. These processes include isomerization \((k_{12})\) and reaction of the carbene with solvent \((k_{2A}B\) and \(k_{2B}B\)). Assuming that \(k_{2B}B \approx 10^{-10}\) s\(^{-1}\) pegs the lifetime of the carbene at 1–100 ns in pentane in the absence of pyridine. This lifetime must be controlled in part by reaction with solvent because there is a solvent deuteron isotope effect of 1.3 on the slope of plots such as that in Figure 2 in \(\text{CH}_2\text{CN vs CD}_2\text{CN and CHCl}_3\) vs \(\text{CDCl}_3\).

The data convincingly demonstrate that dimethylcarbene is a true reactive intermediate, a species which exists in a potential energy minimum, and has a finite lifetime in solution.

Acknowledgment. Support of this work by the National Science Foundation (CHE-881950) is gratefully acknowledged.

Side-On versus End-On Coordination of Dinitrogen to Titanium(II) and Mixed-Valence Titanium(I)/Titanium(II) Amido Complexes

Robbend Duchateau, Sandro Gamberotta, Norhna Beydoun, and Corinna Bensimon

Department of Chemistry
University of Ottawa, Ottawa Ontario K1N 6N5, Canada

Received May 29, 1991

Dinitrogen coordination\(^1\) and reduction\(^2\) are among the most challenging of the several transformations (dinitrogen activation,\(^3\) reactivity with unsaturated organic substrates,\(^4\) C–H bond activation,\(^5\) CO chemistry,\(^6\) and Ziegler–Natta catalysis\(^7\)) promoted by divalent titanium compounds. Although the great ability of titanocene systems to give dinitrogen fixation with a variety of bonding modes\(^8\) clearly underlines the strength of divalent titanium as a powerful reducing agent; however, the coordination chemistry of the oxidation state +II remains limited to only a few diverse cases.\(^9\) To date there are no clearly demonstrated examples where fixation/reduction of dinitrogen occurs on a nonmetalloocene titanium system.

Here we report the isolation and characterization of two novel dinitrogen Ti(II) and mixed-valence Ti(I)/Ti(II) amido complexes obtained via chloride replacement at trans-(TMEDA),TiCl\(_4\)\(^8\) to form \(K = [2S]/[2T] \ll 1\). The spectrum of \(\mu\text{-NO}_2\) \(\text{NiCl}_2\) in toluene under nitrogen at -80 °C formed a purple jelly suspension which turned into a deep-brown solution upon standing overnight at room temperature. Brown crystals of [(MeSi),N] TiCl(TMEDA)\(_2\) were obtained after evaporation and crystallization from ether at -30 °C (Scheme 1).\(^9\) Occasionally, small amounts of colorless crystals of-

nomic \([(\text{Me}_2\text{Si})_2\text{N}_2]\text{TiCl}_2(\text{TMEDA})_2\text{Li}] (2)\) were isolated upon concentration of the mother liquor and further freezing. Conversely, reaction with 2.5 equiv of \((\text{Me}_2\text{Si})_2\text{N}_2\text{Li}\) in the presence of a small amount of TMEDA led to a suspension of \(\text{TiCl}_3(\text{TMEDA})_2\text{Li}\) and standing at \(-30^\circ\text{C}\) upon concentration of the mother liquor and further freezing gave black crystals of \([(\text{Me}_2\text{Si})_2\text{N}_2]\text{TiCl}_2(\text{TMEDA})_2\text{Li}] (2) and deep-purple/black crystals of \([(\text{Me}_2\text{Si})_2\text{N}_2]\text{TiCl}_2(\text{TMEDA})_2\text{Li}] (3). The two species were isolated in moderate yield and analytically pure form, upon solvent evaporation and fractional crystallization in ether at \(-30^\circ\text{C}\) (Scheme I). In both cases a competitive reaction is probably responsible for the formation of 2 since complexes 1 and 3 are thermally robust and did not show any appreciable decomposition in benzene at \(-76^\circ\text{C}\). Furthermore, 2 was the only identifiable product when the two reactions were carried out in THF. Compound 2 could conveniently be prepared on a very large scale by direct reaction of \(\text{TiCl}_4(\text{THF})_2\) with 2 equiv of \(\text{R}_2\text{N}Li\) and 2 equiv of TMEDA in ether.\(^9\)

The structures of 1 and 3 have been determined by X-ray analysis.\(^11\) Complex 1 is binuclear and consists of two identical \([(\text{Me}_2\text{Si})_2\text{N}_2]\text{TiCl}(\text{TMEDA})_2]\) fragments each bonded to one of the two nitrogen atoms of a bridging dinitrogen moiety (Figure 1). The two titanium fragments are rotated with respect to each other [torsion angle \(\text{Cl}(1)-\text{Ti}(1)-\text{Cl}(1a)-\text{Cl}(1a) = 48.7 (5)^\circ\)] probably as a result of minimization of steric repulsion between the two bulky amido groups. The coordination geometry of the titanium atom is square-pyramidal with the titanium atom quite elevated above the basal plane [distance from the plane \(0.466 (3)^\AA\)] 9 defined by chlorine and the nitrogen atoms of TMEDA and amido groups [\(\text{N}(1)-\text{Ti}(1)-\text{N}(3) = 92.0 (2)^\circ\), \(\text{N}(1)-\text{Ti}(1)-\text{N}(2) = 76.2 (2)^\circ\), \(\text{N}(2)-\text{Ti}(1)-\text{Cl}(1) = 84.9 (2)^\circ\), \(\text{Cl}(1)-\text{Ti}(1)-\text{N}(1) = 36.6 (2)^\circ\)]. The apical position of the square-pyramid is occupied by one of the two atoms of the bridging dinitrogen molecule. The remarkably short Ti-N distance \([\text{Ti}(1)-\text{N}(4) = 1.762 (5)^\AA]\) together with the almost linear arrangement of the \(\text{Ti}(\mu-\text{N}_2)\)-moiety \([\text{Ti}(1)-\text{N}(4)-\text{N}(4a) = 168.5 (2)^\circ]\) and the rather long \(N-N\) distance \([\text{N}(4)-\text{N}(4a) = 1.289 (9)^\AA]\) are in agreement with the presence of considerable electronic delocalization over the \(\text{Ti}(\mu-\text{N}_2)\) moiety. The Ti-N distance with the trigonal-planar amido group [\(\text{Ti}(1)-\text{N}(1) = 2.023 (5)^\AA\)] is significantly shorter than those formed by the nitrogen atoms of the TMEDA groups [\(\text{Ti}(1)-\text{N}(2) = 2.352 (6)^\AA\), \(\text{Ti}(1)-\text{N}(3) = 2.351 (6)^\AA\) suggesting the presence of some \(\pi\)-bond character with both silicon and titanium atoms.

(11) Complex 1: tetragonal, \(P4_2\text{2}2_1, a = 11.500 (5)^\AA, c = 31.644 (9)^\AA, V = 4813 (3)^\AA^3, Z = 4, R = 0.059, T = 298 K for 182 parameters and 1672 significant reflections out of 2244. All non-hydrogen atoms were anisotropically refined. Hydrogen atoms were introduced at calculated positions but not refined. Complex 3: orthorhombic, \(C222_1, a = 13.240 (5)^\AA, b = 22.381 (3)^\AA, c = 11.575 (1)^\AA, V = 3430.0 (13)^\AA^3, Z = 2, R = 0.077 (R(C) = 0.088), T = 298 K for 133 parameters and 1058 significant reflections out of 1447. All non-hydrogen atoms were anisotropically refined. Hydrogen atoms were introduced at calculated positions but not refined. One of the two atoms of the dinitrogen molecules was found disordered over two positions. Disorder was modeled by assigning an occupancy of 50% to one of the two nitrogen atoms.)
Metal-centered (MC) excited states play an important role in the photophysics and photochemistry of coordination compounds. However, the study of MC states has been essentially limited to d and f block elements, while the main group metal complexes have been largely ignored. This lack of knowledge is quite surprising since MC excited states of many main group metal complexes can be easily studied by emission spectroscopy under ambient conditions. Although single halide complexes of s block metals such as Ti⁺, Sn⁺², Pb⁺², and Sb⁺⁴ are known to be luminescent in solution, this observation has been occasionally used only for analytical applications but hardly for the characterization of the emitting excited state. On the contrary, the emission of s² ions which are doped into host lattices has been studied in detail by solid-state physicists. We report here our observations on the photoluminescence of SbCl⁺⁴, SbCl⁺², BiCl⁺⁴, and BiCl⁺² in solution and discuss the nature of the emitting excited state. While an emission of SbCl⁺² in CHCl₃ has been reported before, the other three complex ions are not yet known to show photoluminescence in solution at room temperature.

The compounds [NEt₄]SbCl⁺⁴ and [NEt₄]BiCl⁺⁴ were prepared according to a published procedure. The complex ions SbCl⁺⁴ and BiCl⁺² in acetonitrile were formed by the addition of an excess of [NEt₄]Cl to the MC₁₄⁻ ions. The absorption spectrum of SbCl⁺⁴ in acetonitrile (Figure 1) displays three bands (Table I). Light absorption by SbCl⁺⁴ was accompanied by a red emission (Figure 1, Table I). The excitation spectrum agreed well with the absorption spectrum. Upon addition of chloride SbCl⁺⁴ was converted to SbCl⁺² which has an absorption spectrum (Figure 1, Table I) similar to that of SbCl⁺⁴. Light absorption by SbCl⁺² led to a green emission (Figure 1, Table I). Again, the excitation spectrum matched the absorption spectrum. If light absorption was complete (A > 2), the progressive conversion of SbCl⁺⁴ to SbCl⁺² was accompanied by the appearance of an isosbestic point at λ = 613 nm. The absorption and emission spectra of BiCl⁺⁴ and BiCl⁺² (Figure 2) showed features (Table I) which are analogous to those of SbCl⁺² and SbCl⁺⁴. In contrast to the antimony complexes, the B band of the bismuth compounds was not observed in accordance with results on Cs₂NaYC₁₆ doped with Bi⁺².

According to the VSEPR model, the structures of complexes of s² metal ions should be determined by the presence of a stereochemically active lone pair. However, s² complexes with a coordination number of six are generally octahedral, and thus they are exceptions from the rule. This applies also to the structures of complexes of elemental sulfur and selenium. The structures of complexes with a nitrogen lone pair are determined by the presence of a steric bulk of the complexes.

Acknowledgment. This work was supported by the Natural Sciences and Engineering Research Council of Canada (operating grant) and the Petroleum Research Funds administered by the American Chemical Society.

Supplementary Material Available: Tables listing atomic positional parameters, anisotropic thermal parameters, and complete bond distances and angles for 1 and 3, and an ORTEP plot for Li(TMEDA)₂ Cl (15 pages); tables of observed and calculated structure factors for 1 and 3 (21 pages). Ordering information is given on any current masthead page.