Birefringence evaluation of multimode multilayer AlGaAs/AlAs waveguides
Leo, G.; Secondini, M.; Morabito, M.; Rossi, de, A.; Assanto, G.; Fiore, A.; Berger, V.; Calligaro, M.; Nagle, J.
Published in:
Applied Physics Letters

DOI:
10.1063/1.1355005

Published: 01/01/2001

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 09. Jan. 2019
Birefringence evaluation of multimode multilayer AlGaAs/AlAs waveguides

G. Leo, M. Secondini, M. Morabito, A. De Rossi, and G. Assanto
Department of Electronic Engineering and National Institute for the Physics of Matter INFM-RM3,
Terza University of Rome, Via della Vasca Navale 84, 00146 Rome, Italy

A. Fiore, V. Berger, M. Calligaro, and J. Nagle
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91400 Orsay, France

(Received 17 October 2000; accepted for publication 17 January 2001)

We investigate surface-emitting second harmonic generation as a powerful technique for the evaluation of birefringence in optical waveguides supporting several modes. This one-shot diagnostic is demonstrated at 1319 nm in multilayer AlGaAs waveguides, before and after the lateral oxidation of AlAs layers. © 2001 American Institute of Physics.

Nowadays material and device characterization for integrated optics has to face more and more stringent requirements, due to the tighter and tighter design compliances of state-of-the-art resonant/phase-matched devices. In spite of this, however, characterization tools are still essentially based on the measurement of waveguide effective indices and losses.

Concerning waveguide design, significant efforts have been recently undertaken to tailor modal birefringence (MB) with two main goals: (i) MB minimization for fiber-compatible, polarization-degenerate devices through geometrical compensation of material anisotropy; (ii) controlled MB through form birefringence, for phase matching in parametric wavelength generators.

In this letter we describe a one-shot technique which allows the simultaneous measurement of the TE/TM birefringence of all the eigenmodes supported by a multimode optical waveguide in a quadratically nonlinear composite semiconductor. Our approach exploits surface emitting second harmonic generation (SESHG), first demonstrated in 1981 using Ti:LiNbO₃ waveguides. SESGH has been later employed in GaAs/AlGaAs, and more recently in selectively oxidized GaAs/AlAs multilayers. The main concept underlying SESGH is sketched in Fig. 1 for a slab waveguide: the wave vector mismatch \(\Delta \beta = \beta_{\text{TE}} - \beta_{\text{TM}} \) between two non-linearly interacting, counter-propagating eigenmodes at the fundamental frequency \(\omega \) sets the out-of-plane emission angle \(\theta \) for the radiated second harmonic \(2\omega \). This angle relates to the effective indices of the counter-propagating fields at \(\omega \). The relation between these fields and the nonlinear polarization \(P^{(2\omega)} \) can be conveniently cast in the scalar form \(P^{(2\omega)} = 2\varepsilon_0 d_{\text{eff}} E^+ E^- \), where \(\varepsilon_0 \) is the dielectric permittivity of vacuum and the effective coefficient \(d_{\text{eff}} \) depends on both the tensor structure and the polarizations of the coupled fields at \(\omega \), \(E^+ \) and \(E^- \), respectively. Hereby, we refer to a GaAs-based guiding structure on (100) substrates, with \(d_{\text{eff}} \sim d_{123} \), where SESGH is driven by the nonlinear interaction of a TE with a TM mode oppositely propagating along the waveguide, with \(\Delta \beta = \beta_{\text{TE}} - \beta_{\text{TM}} \). The simplest approach to excite SESGH consists in launching both TE and TM eigenfields at one input facet of the sample, exploiting the \(\sim 30\% \) Fresnel reflection at the opposite semiconductor/air interface in order to generate the required counter-propagating cross-polarized modal components at \(\omega \). In this case, pictured in Fig. 2, two distinct out-of-plane emissions take place due to the interactions \(E^{+}_{\text{TE}} - E^{-}_{\text{TM}} \) and \(E^{+}_{\text{TM}} - E^{-}_{\text{TE}} \), respectively. These are associated with a stationary nonlinear polarization wave

\[
P^{(2\omega)} \propto E_{\text{TE}} E_{\text{TM}}
\]

\[
= (A_{\text{TE}}^+ e^{-i\beta_{\text{TE}} z} + A_{\text{TM}}^- e^{i\beta_{\text{TM}} z})(A_{\text{TE}}^+ e^{-i\beta_{\text{TM}} z} + A_{\text{TM}}^- e^{i\beta_{\text{TE}} z})
\]

\[
= A_{\text{TE}}^+ A_{\text{TM}}^- e^{i\beta_{\text{TE}} z} + A_{\text{TM}}^+ A_{\text{TE}}^- e^{-i\beta_{\text{TM}} z} + A_{\text{TE}}^+ A_{\text{TM}}^- e^{-i(\beta_{\text{TE}} + \beta_{\text{TM}}) z}
\]

\[
\approx 2r A_{\text{TE}}^+ A_{\text{TM}}^- \cos(\Delta \beta z)
\]

where \(r = A_{\text{TE}}^+ A_{\text{TM}}^- A_{\text{TM}}^+ A_{\text{TE}}^- \). The relevant term of \(P^{(2\omega)} \) is the source of a surface-emitted field at \(2\omega \), with \(P^{(2\omega)} \propto \cos(\omega N z/\varepsilon) \). It is therefore possible to evaluate the birefringence \(\Delta N \) at \(\omega \) by fringe counting in the near-field distribution of the harmonic \(f^{(2\omega)}(z) \propto |P^{(2\omega)}|^2 \), varying sinusoidally with period \(\lambda/2\Delta N \). In a multimode waveguide, however, several TE–TM interactions can give rise to SESGH. While each (sign-reversed) pair produces a distinct (near-field) sinusoidal fringe pattern at \(2\omega \), the visibility of

\(^{a} \)present address: Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91400 Orsay, France.

\(^{b} \)present address: Institut de Micro et Opto-electronique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

\(^{c} \)Electronic mail: assanto@ele.uninroma3.it

FIG. 1. Phase-matching scheme of SESGH at frequency \(2\omega \) from two non-linearly interacting guided-wave fields at \(\omega \).
each depends strongly on: end-fire mode excitations, overlap integral between the counter-propagating fields associated with each SESHG process, coherence length and Maker-like interference in the second harmonic field at each depth within the thickness of the nonlinear film. For different launch conditions at \(\omega \), therefore, the near field at \(2\omega \) appears as either a single fringe system (fundamental mode coupling, \(\text{TE}_{00} - \text{TM}_{00} \) interactions), or a superposition of sinusoidal patterns (several mode couplings). In the latter case, the Fourier-transformed intensity distribution \(I^{(2\omega)} \) in the far field can spatially resolve the phase-matched components originated by the corresponding SESHG processes, such that one observation can provide complete information on both birefringence and modal content of multimode waveguides.

To ascertain the applicability of the above approach, we performed experiments on AlGaAs waveguides. Samples were realized by molecular beam epitaxy according to the following structure: \(\text{Al}_{0.7}\text{Ga}_{0.3}\text{As} \) were realized by molecular beam epitaxy according to the performed experiments on AlGaAs waveguides. Samples birefringence and modal content of multimode waveguides. One observation can provide complete information on both origin of SESHG processes, such that one observation can provide complete information on both birefringence and modal content of multimode waveguides.

In order to acquire the image of the far-field pattern, as sketched in Fig. 3(b), the SESHG was imaged onto the CCD with a lens of focal length \(f = 2.5 \text{ cm} \). Because of the CCD finite aperture \(w \), the choice of \(f \) follows from the maximum amount of birefringence to be measured \((f \leq w/\Delta N_{\text{max}}) \). A typical result is shown in Fig. 4(b), where each pair of \(\delta \) functions (Fourier transform of a sinusoid) refers to the corresponding set of counter-propagating modes. While the vertical extent of the \(\delta \) is due to diffraction from the finite width of the ridge, lateral confinement bears no discernible effects on the observed pattern with respect to the case of a planar waveguide. From Fig. 4(b) it is straightforward to infer the value of MB for each couple of eigenmodes, as the ratio of the distance \(D_{ij} \) between the corresponding \(\delta \)s and the focal length, as presented in Table I. The case \(N(\text{TE}_{10}) - N(\text{TM}_{10}) \), although not visible in the photograph, was readily obtained by slightly changing the launch conditions.

(Fig. 2) Sketch of SESHG with two out-of-plane emissions at opposite angles.

FIG. 3. MB evaluation through the detection of SESHG in: (a) near field, (b) far field.

FIG. 4. (a) Typical near-field intensity distribution \(I^{(2\omega)} \). (b) Far-field picture of SESHG modes from an AlGaAs ridge 7 \(\mu \)m wide, for \(\text{TE}_{00} - \text{TM}_{00} \) (\(\bigcirc \)), \(\text{TE}_{10} - \text{TM}_{00} \) (+), \(\text{TE}_{00} - \text{TM}_{10} \) (+). (c) Same as (b), after selective oxidation of AlAs layers.

For the relative uncertainty

\[
\left| \frac{d(\Delta N)}{\Delta N} \right| = \left| \frac{dm}{m} + \frac{dL}{L} + \frac{d\lambda}{\lambda} \right|.
\]

For the relative uncertainty

\[
\left| \frac{d(\Delta N)}{\Delta N} \right| = \left| \frac{dm}{m} + \frac{dL}{L} + \frac{d\lambda}{\lambda} \right|.
\]
TABLE I. Measured and calculated TE–TM modal birefringences.

<table>
<thead>
<tr>
<th>Interacting modes</th>
<th>Measured ΔN</th>
<th>Calculated ΔN</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE${00}$–TM${00}$</td>
<td>0.0138±0.0008</td>
<td>0.014±0.001</td>
</tr>
<tr>
<td>TE${01}$–TM${00}$</td>
<td>0.125±0.002</td>
<td>0.122±0.002</td>
</tr>
<tr>
<td>TE${00}$–TM${10}$</td>
<td>0.160±0.002</td>
<td>0.158±0.002</td>
</tr>
<tr>
<td>TE${01}$–TM${10}$</td>
<td>0.0220±0.0008</td>
<td>0.022±0.001</td>
</tr>
</tbody>
</table>

and is also listed in the table. The uncertainties here are associated with both f and D.

$$\frac{d(\Delta N_{ij})}{\Delta N_{ij}} = \frac{d(D_{ij})}{D_{ij}} + \frac{df}{f}. \tag{3}$$

While $|df/f|\approx 1\%$ after the manufacturer’s specifications, the first term on the right-hand side of Eq. (3) depends on pixel discretization, i.e., on the resolution of both CCD and acquisition board. In fact, distances are measured in pixels (in our case the pixel size was $d_p = 15 \mu m$), and the relative uncertainty $|dD/D| = d_p/D$, which is lower for wider separated δ‘s. The overall error ranges from 1.5% to 3%, with a smaller contribution given by the finite linewidths in the far field ($\sim 5 \mu m$ due to the finite waveguide length), and a negligible one by absorption.

In Table I the calculated ΔN‘s and related uncertainties are also listed, as derived from Afromowitz’s dispersion model (due to the ridge aspect ratio, a slab-waveguide mode solver was more than adequate). As apparent from Table I, this simple single-shot technique allows the accurate estimate of birefringence between all the existing modes at ω, in excellent agreement with model predictions.

Finally, we employed SESHG to investigate waveguides with a higher birefringence, i.e., AlGaAs/AlAs samples (as described above) after lateral oxidation of the AlAs layers. In general, due to form birefringence, the field in low-index layers is higher for TM than for TE polarization. It is therefore expected that by selectively lowering the refractive indices of thin AlAs layers, the effective indices of TM modes decrease more than TE. This is experimentally verified and visible in Fig. 4(c), where two features are noticeable: on the one hand the MB between TE$_{00}$ and TM$_{00}$ is greatly enhanced by oxidation, from 0.0138 to 0.08. On the other hand, while $N(\text{TE}_{00}) < N(\text{TM}_{00})$ in the as-grown samples, oxidation lowers $N(\text{TM}_{00})$ far more than $N(\text{TE}_{10})$, thus reducing the corresponding MB from 0.125 to 0.11. Line pairs associated with larger ΔN‘s fell outside the CCD field of view. Due to incomplete oxidation of AlAs layers through our process, such MB values were inferred from the experiment by assuming $n(\text{AlO}_x) = 1.61$, and using the oxide penetration distance as a fitting parameter.

In conclusion, we have demonstrated that SESHG can be effective in characterizing modal birefringence of nonlinear waveguides with high accuracy. This technique is a valuable complement to standard m-line evaluation, and allows a precise spectral determination of phase mismatch in structures for parametric generation.

This research was funded by the European Union (ESPRIT Project OFCORSE II).