On a pairing heuristic in binpacking

Citation for published version (APA):

Document status and date:
Published: 01/01/1986

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us:
openaccess@tue.nl
providing details. We will immediately remove access to the work pending the investigation of your claim.

Download date: 05. Feb. 2019
Memorandum COSOR 86-13

On a pairing heuristic
in binpacking

by

J.B.G. Frenk

Eindhoven, the Netherlands
October 1986
ON A PAIRING HEURISTIC IN BINPACKING

ABSTRACT

For the analysis of a pairing heuristic in binpacking an important result is used without proof in [1] and [2].
In this note we discuss this result and give a detailed proof of it.

Introduction
Let \(n \in \mathbb{N} \) be given and suppose \((X_1, \cdots, X_n)\) is a \(n \)-dimensional stochastic vector with joint density \(f(x_1, \cdots, x_n) \).
Moreover assume

(i) \(0 \leq X_i \leq 1 \quad i = 1, \cdots, n \)
(ii) The stochastic vector \((X_{\sigma(1)}, X_{\sigma(2)}, \cdots, X_{\sigma(n)})\) is distributed as \((X_1, X_2, \cdots, X_n)\) for every permutation \(\sigma\) on \(\{1, \cdots, n\}\).
(iii) \(f(x_1, x_2, \cdots, x_n) = f(1-x_1, \cdots, x_n) \)

Remark
Condition (ii) states that we are dealing with a finite sequence of so-called exchangeable random variables (cf. [3]), while condition (iii) is a symmetry condition.
Note that by (ii) the symmetry in (iii) holds in every component.

Before stating the main result introduce the following notations

\[
I_A := \begin{cases}
1 & \text{if the event } A \text{ happens} \\
0 & \text{otherwise}
\end{cases}
\]

\[
Y_i := (1-X_i)I_{\{X_i > \frac{1}{2}\}} + X_i I_{\{X_i \leq \frac{1}{2}\}}. \quad i = 1, \cdots, n
\]

\[
(\iota):= \begin{cases}
+1 & \text{if } X_i > \frac{1}{2} \\
-1 & \text{if } X_i \leq \frac{1}{2}
\end{cases} \quad i = 1, \cdots, n
\]

If we order the random variables \(Y_i\) in non-decreasing order, say \(Y_{i_1} \leq Y_{i_2} \leq \cdots \leq Y_{i_n}\), we denote by \((\iota_k)\) the label of the \(k\)-order statistic of the sequence \(\{Y_i\}_{i=1}^{n}\).

Now the main result reads as follows.
Theorem 1

Suppose the random variables \(\{X_i, i \in A\} \) satisfy the conditions (i), (ii) and (iii). Then the following results hold

a) \(\{X_i, i \in A\} \) and \(\{(j), i \in A\} \) are independent for every subset \(A \subset \{1,2, \cdots, n\} \)

b) \(P \{(j_k) = \pi(j_k), k \in A\} = \prod_{k \in A} P \{(j_k) = \pi(j_k)\} = 2^{-|A|} \)

for every subset \(A \subset \{1,2, \cdots, n\} \) and

for every function \(\pi: \{1,2, \cdots, n\} \rightarrow \{-1,1\} \).

Proof For every sequence \(\{y_i\}_{i=1}^n \) with \(y_i \in (0, \frac{1}{2}) \) and \(\sigma \) some permutation on \(\{1, \cdots, n\} \) we obtain

\[
P \{X_{\sigma(i)} \leq y_{\sigma(i)}, (\sigma(i)) = \pi(\sigma(i)), i=1, \cdots, k\} =
\]

\[
= P \{1 - X_{\sigma(i)} \leq y_{\sigma(i)} (i \in C) \land X_{\sigma(i)} \leq y_{\sigma(i)} (i \in \{1, \cdots, k\} - C)\}
\]

where \(1 \leq k \leq n \) and \(C := \{j: 1 \leq j \leq k \land \pi(\sigma(j)) = 1\} \)

By (ii) and (iii) it follows easily

\[
P \{X_{\sigma(i)} \leq y_{\sigma(i)}, (\sigma(i)) = \pi(\sigma(i)), i=1, \cdots, k\} =
\]

(1) \(P \{X_{\sigma(i)} \leq y_{\sigma(i)}; i = 1, \cdots, k\} = P \{X_i \leq y_{\sigma(i)}; i = 1, \cdots, k\} \)

and this implies

\[
P \{Y_{\sigma(i)} \leq y_{\sigma(i)}; i = 1, \cdots, k\} =
\]

\[
= \sum_{\tau \in D} P \{X_{\sigma(i)} \leq y_{\sigma(i)}, (\tau(i)) = \pi(\sigma(i)); i = 1, \cdots, k\} =
\]

(2) \(= \sum_{\tau \in D} P \{X_i \leq y_{\sigma(i)}; i = 1, \cdots, k\} = 2^k \cdot P \{X_i \leq y_{\sigma(i)}; i = 1, \cdots, k\} \)

where \(D \) is the set of functions \(\tau: \{1,2, \cdots, n\} \rightarrow \{-1,1\} \) which are different on \(\{\sigma(1), \cdots, \sigma(k)\} \).

Moreover by (1)
\(IP \{ (\sigma(i)) = \pi(\sigma(i)); i = 1, \ldots, k \} = \)

\(= IP \{ X_{\sigma(i)} \leq \frac{1}{2}, (\sigma(i)) = \pi(\sigma(i)); i = 1, \ldots, k \} = \)

(3) \(= \{ X_i \leq \frac{1}{2}; i = 1, \ldots, k \} \).

Since the density \(f(x_1, \ldots, x_n) \) is symmetric it is easy to prove that for every \(1 \leq l \leq n - 1 \)

\(IP \{ X_1 \leq \frac{1}{2}, \ldots, X_l \leq \frac{1}{2} \} = 2 IP \{ X_1 \leq \frac{1}{2}, \ldots, X_{l+1} \leq \frac{1}{2} \} \)

and this implies using \(IP \{ X_1 \leq \frac{1}{2} \} = \frac{1}{2} \) that

(4) \(IP \{ X_1 \leq \frac{1}{2}, \ldots, X_l \leq \frac{1}{2} \} = 2^{-l} \)

Now by the relations (1), (2), (3) and (4)

\(IP \{ X_{\sigma(1)} \leq \gamma_{\sigma(1)}, (\sigma(i)) = \pi(\sigma(i)); i = 1, \ldots, k \} = \)

\(IP \{ X_i \leq \gamma_{\sigma(i)}; i = 1, \ldots, k \} = \)

\(2^{-k} \cdot 2^k \cdot IP \{ X_i \leq \gamma_{\sigma(i)}; i = 1, \ldots, k \} = \)

\(IP \{ (\sigma(i)) = \pi(\sigma(i)); i = 1, \ldots, k \} \cdot IP \{ X_{\sigma(i)} \leq \gamma_{\sigma(i)}; i = 1, \ldots, k \} \)

and so we have proved the result in (a)

In order to prove the result in (b) we note that for every subset \(A \subset \{ 1, 2, \ldots, n \} \) and every function \(\pi: \{ 1, 2, \ldots, n \} \to \{-1, +1\} \)

\(IP \{ (i_k) = \pi(i_k); k \in A \} = \)

\(= \sum_{\sigma} IP \{ X_{\sigma(1)} \leq \frac{1}{2}, X_{\sigma(1)} \leq X_{\sigma(2)} \leq \cdots \leq Y_{\sigma(n)}, (\sigma(k)) = \pi(\sigma(k)); k \in A \} \)

\(= \sum_{\sigma} IP \{ X_{\sigma(1)} \leq \frac{1}{2}, X_{\sigma(1)} \leq \cdots \leq Y_{\sigma(n)} \} \cdot IP \{ (\sigma(k)) = \pi(\sigma(k)); k \in A \} \)

where we have used (a) to obtain the last equality.

Hence

\(IP \{ (i_k) = \pi(i_k); k \in A \} = \)
\begin{align*}
&= 2^{-|A|} \sum_{\sigma} P\{ \sum_{i=1}^{n} Y_{\sigma(i)} \leq \cdots \cdots \leq \sum_{i=1}^{n} Y_{\sigma(n)} \leq \frac{1}{2} : i = 1, \cdots, n\} \\
&= 2^{-|A|} \prod_{k \in A} P\{ (i_k) = \pi(i_k) \}
\end{align*}

References

