Note on the optimal strategies for the finite-stage Markov game

Citation for published version (APA):

Document status and date:
Published: 01/01/1975

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Note on the optimal strategies for the finite-stage Markov game

by

J. van der Wal

Eindhoven, June 1975
Note on the optimal strategies for the finite-stage Markov game

by

J. van der Wal

Abstract. In this note we consider the finite-stage Markov game with finitely many states and actions as described by Zachrisson [5]. Zachrisson proves that this game has a value and shows that value and optimal strategies may be determined with a dynamic programming approach. However, he silently assumed that both players would use only Markov strategies. Here we will give a simple proof which shows this restriction to be irrelevant.

1. Introduction and notations

The finite-stage Markov game considered here is a game between two players which proceeds as follows. At each of a finite number of time instants both players select an action out of a finite set of allowed actions. As a result of these two actions the state of the game is changed and one of the players receives some amount, specified by the rules of the game, from the other. This we formalize as follows.

We will consider a dynamic system with finite state space \(S := \{1, \ldots, N\} \), the behavior of which is influenced by two players, \(P_1 \) and \(P_2 \), having opposite aims. For each state \(x \in S \) two finite non-empty sets of actions exist, one for each player, denoted by \(K_x \) for \(P_1 \) and \(L_x \) for \(P_2 \). At \(T \) equidistant time instants, numbered in reversed order \(n = T, T-1, \ldots, 1 \), both players select an action out of the set available to them. As a joint result of the two selected actions, \(k \) for \(P_1 \) and \(\ell \) for \(P_2 \), the system moves to a new state \(y \) with probability \(p(y|x,k,\ell) \), with \(\sum_{y \in S} p(y|x,k,\ell) = 1 \), and \(P_1 \) will receive some (possibly negative) amount from \(P_2 \), denoted by \(r(x,k,\ell) \). Moreover we will assume, that if - as a result of the actions at \(n = 1 \) - the system moves to state \(y \) at the end of the game, \(P_1 \) will receive a final payoff \(q(y) \) from \(P_2 \).

We will call this game the \(T \)-stage Markov game with final payoff \(q \).

In this note we will prove that this game has a value and we will derive some properties of the strategies which maximize the total expected income.
for a player over the duration of the game. Moreover we will give a way to
determine value and optimal strategies. First we give some definitions and
notations.

A strategy π for P_1 for the game is any function that specifies for each
time instant $n = 1, 2, \ldots , T$, and for each state $x \in S$, the probability
$\pi(k|x, n, h^n_n)$ that action $k \in K_x$ will be taken as a function of x, n and the
history h^n_n. By h^n_n we mean the history of the game up to time-instant n, the
sequence $h^n_n = (x^n_1, k^n_1, x^n_2, k^n_2, \ldots , x^n_n, k^n_n)$ of prior states and actions
(h^n_T is the empty sequence). We will call π a Markov strategy if all
$\pi(k|x, n, h^n_n)$ are independent of h^n_n.

A policy f for P_1 will be defined as any function such that $f(x)$ is a prob-
ability distribution on K_x for all $x \in S$. Thus a Markov strategy π consists of T policies and we will denote it by $\pi = (f_1, \ldots , f_T)$ (f_n is the policy to be used at time instant n). Similarly we defined strategies ρ and policies g
for P_2.

Let $V(\pi, \rho)$ denote the S-column vector with x-th component equal to the total
expected reward for P_1 when the game starts in state x, P_1 plays strategy π
and P_2 plays strategy ρ. Strategies π^* and ρ^* satisfying
$V(\pi^*, \rho^*) \leq V(\pi, \rho) \leq V(\pi^*, \rho^*)$ for all π and ρ will be called optimal and
$V(\pi^*, \rho^*)$ is called the value of the game.

The finite-stage Markov game has already been considered by Zachrisson [5].
However, he (silently) assumed that both players would use only Markov
strategies. Under this assumption Zachrisson proves that the game has a
value and that the value and optimal strategies for both players can be
determined by a dynamic programming approach. In the early days of Markov
decision processes the same restriction was made. Derman [1] proved that the "intuitively obvious" restriction to Markov strategies was correct.

Here we will do the same for finite-stage Markov games.

So we will show that there exist Markov strategies π^* and ρ^* satisfying
for all strategies π and ρ $V(\pi^*, \rho^*) \leq V(\pi, \rho) \leq V(\pi^*, \rho^*)$.
λ. The existence of optimal Markov strategies

In order to simplify the notations we introduce two operators.

Let \(f \) and \(g \) be arbitrary policies then the operators \(L(f, g) \) and \(U \) on \(\mathbb{R}^N \) are defined by

\[
(L(f, g)\nu)(x) := \sum_{k \in K} f^k(x) \sum_{x \in L_x} g^k(x) \left[r(x, k, \xi) + \sum_{y \in S} p(f|x, k, \xi) \right], \quad x \in S
\]

with \(f^k(x) \) \((g^k(x)) \) denoting the probability that in state \(x \) action \(k(\xi) \) will be taken when policy \(f(g) \) is used.

\[
\nu := \max_{f} \min_{g} L(f, g)\nu
\]

(where \(\max_{f} \min_{g} \) is taken componentwise).

Now the sequence \(\nu_n, n = 0, 1, \ldots, T, \nu_n \in \mathbb{R}^N \) is defined by

\[
\nu_0(x) := q(x), \quad x \in S
\]

\[
\nu_n := U\nu_{n-1}, \quad n = 1, \ldots, T.
\]

We expect \(\nu_T \) to be the value of the game. Before we prove this we first give two lemmas.

Lemma 1. The 1-stage Markov game with final payoff \(\nu \) has value \(\nu \) and there exist policies \(f^* \) and \(g^* \) satisfying \(L(f^*, g^*)\nu \leq L(f^*, g^*)\nu \leq L(f^*, g^*)\nu \) for all \(f \) and \(g \).

Proof. For any \(x \in S \) the game with initial state \(x \) is a matrix game with value \((\nu)(x) \). For this game (randomized) optimal actions \(f^*(x) \) and \(g^*(x) \) exist. Thus the game has value \(\nu \) and the policies \(f^* \) and \(g^* \) are optimal. \(\square \)

Let \(f^*_n \) and \(g^*_n \) be optimal policies in the 1-stage Markov game with final payoff \(\nu_{n-1}, n = 1, \ldots, T \). That is \(f^*_n \) and \(g^*_n \) satisfy

\[
L(f^*_n, g^*_n)\nu_{n-1} = L(f^*_n, g^*_n)\nu_{n-1} = \nu_n \leq L(f^*_n, g^*_n)\nu
\]

Define the strategies \(\pi^* \) and \(\rho^* \) by \(\pi^* = (f^*_T, \ldots, f^*_1), \rho^* = (g^*_T, \ldots, g^*_1) \).

Let \(v_n(\tau^*, \rho^*, h_n, x), n = 1, \ldots, T \) denote the conditional expected reward for \(P \) from the \(n \)-th epoch onwards if the system is in state \(x \) at epoch \(n \), strategies \(\tau^* \) and \(\rho^* \) are used and history \(h_n \) has been observed.

And define \(v_0(\tau^*, \rho^*, h_0, x) := q(x) \) for all \(\tau, h_0 \) and \(x \in S \).
Lemma 2. Strategy π^* satisfies $V(\pi^*, \rho^*) \geq V(\pi, \rho^*)$ for all π.

Proof. We will prove the assertion by induction. By definition we have for all π and h_0

$$v_0(\pi, \rho^*, h_0, x) \leq v_0(\pi^*, \rho^*, h_0, x) = v_0(x), \quad x \in S.$$

Now assume $v_t(\pi, \rho^*, h_t, x) \leq v_t(\pi^*, \rho^*, h_t, x) = v_t(x), \quad t = 0, \ldots, n$ for all π, h_t and x. So for all π, h_{n+1} and x we have

$$v_{n+1}(\pi, \rho^*, h_{n+1}, x) = \sum_{k \in K} \pi(k \mid x, n, h_{n+1}) \sum_{l \in L} g_{n+1}^l(x)[r(x, k, l) + \sum_{y \in S} p(y \mid x, k, l)v_n(\pi^*, \rho^*, h_{n+1} \circ (x, k, l), y)] \leq \sum_{k \in K} \pi(k \mid x, n, h_{n+1}) \sum_{l \in L} g_{n+1}^l(x)[r(x, k, l) + \sum_{y \in S} p(y \mid x, k, l)v_n(y)] \leq v_{n+1}(x) = v_{n+1}(\pi^*, \rho^*, h_{n+1}, x),$$

where $h_{n+1} \circ (x, k, l)$ denotes the concatenation of h_{n+1} and (x, k, l) with result h_n. The first inequality follows from the induction assumption and the latter one from the definition of v_{n+1} and g_n^*. The latter equality follows from $v_{n+1} = L(f_{n+1}^*, g_{n+1}^*)v_n$ and the induction assumption. Hence for all $x \in S$

$$v_T(\pi, \rho^*, h_T, x) \leq v_T(\pi^*, \rho^*, h_T, x) \quad \text{or} \quad V(\pi, \rho^*) \leq V(\pi^*, \rho^*). \quad \square$$

The proof of the above Lemma is a shortcut of the proof given by Derman [1] for the existence of memoryless optimal strategies in finite stage Markov decision processes.

We are now ready to show:
Theorem. The T-stage Markov game with final payoff q has the value v_T^* and the Markov strategies π^* and ρ^* are optimal, that is $V(\pi, \rho^*) \leq V(\pi^*, \rho^*) = v_T^* \leq V(\pi^*, \rho)$ for all strategies π and ρ.

Proof. From Lemma 2 we have $V(\pi, \rho^*) \leq V(\pi^*, \rho^*)$. By interchanging the roles of π and ρ we may show in the same way $V(\pi^*, \rho^*) \leq V(\pi^*, \rho)$. This proves the assertion.

Summarizing we see that we have shown that the following algorithm provides the value v_T^* of the game and optimal strategies π^* and ρ^*.

(i) Set $v_0(x) = q(x)$, $x = 1, \ldots, N$.

(ii) Determine for $n = 1, \ldots, T$ policies f_n^* and g_n^* satisfying for all f and g

\[
L(f, g_n^*) v_{n-1} \leq L(f_n^*, g_n^*) v_{n-1} \leq L(f_n^*, g_n^*) v_{n-1}
\]

and define $v_n := L(f_n^*, g_n^*) v_{n-1}$.

(iii) v_T^* is the value of the game and $\pi^* = (f_T^*, \ldots, f_1^*)$ and $\rho^* = (g_T^*, \ldots, g_1^*)$ are optimal strategies for P_1 and P_2 respectively.

3. Extensions and remarks

We considered the case that neither the state space nor the action spaces depend on the time t. And we demanded $\sum_{y \in S} p(y|x,k,\xi) = 1$ for all x, k and ξ and the times at which the system is influenced to be equidistant.

None of these restrictions however, is essential. It is easily seen that we may allow the state space and the action spaces to depend on t. And only trivial changes in the proofs are needed if we allow $\sum_{y \in S} p(y|x,k,\xi) < 1$ for some or all x, k and ξ. If the time between two epochs is a random variable with probability distribution $F(.|y,x,k,\xi)$ if in state x actions k and ξ are taken and the system moves to y we must be careful. In order to avoid difficulties we demand these random variables to have finite expectations. For these finite-stage semi-Markov games only minor changes in the proofs are needed to obtain the same results. E.g. we would have to extend the history of the system with the time elapsed before the next state is reached.
Instead of considering the criterion of total expected rewards it is also possible to use the criterion of total expected discounted rewards. For the game with equidistant time instants we may use any discount factor $\beta \in [0, \infty)$. For the semi-Markov game we may use $\beta \in [0, 1]$ but if we want to use $\beta > 1$ we must demand $0^\infty \beta^t dF(t|y, x, k, \ell) < \infty$ for all y, x, k and ℓ.

Here we only considered finite-stage Markov games. However, our results may easily be extended to some infinite-horizon Markov games. For example consider the infinite-horizon Markov game as described by Shapley [2] with the criterion of total expected reward (Shapley considers the case

$$\sum p(y|x, k, \ell) < s < 1$$

for all x, k and ℓ) or the β-discounted ($\beta \in [0, 1]$) infinite horizon Markov game. In order to prove that these games have a value and to find (near) optimal strategies for both players one usually approximates the game by a finite-stage Markov game. If we let v_n denote the value of the n-stage Markov game we may easily show that v_n tends to the value v^* of the infinite horizon Markov game if n tends to infinity. Moreover, one may prove that if $f(g)$ is an optimal policy for the 1-stage (discounted) Markov game with final payoff v^* the strategy $f^{(\infty)} = (f, f, \ldots)$ ($g^{(\infty)}$) will be optimal in the infinite horizon Markov game. This is shown in Van der Wal [4]. Two other types of infinite horizon Markov games with the criterion of total expected rewards may be found in Van der Wal [3].

References.

