Fuel Economy Benefits of Advanced Techniques for CVT Actuation and Control

Citation for published version (APA):

Document status and date:
Published: 01/01/2005

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Patrick Albers was born in Nijmegen, The Netherlands, on the 12th of November 1980. After high school he started the study Mechanical Engineering in 1999. After completing two internships (CVT application for wind turbines, and oil churning losses for a gearbox) he started in 2004 with his graduation project.

Dr. P.A. Veenhuizen received his M.Sc. degree in experimental physics from the Free University of Amsterdam, The Netherlands in 1984. From 1988 he received his PhD degree from the University of Amsterdam on the subject of Electronic properties of Ce- and U-based compounds. In 1988 he joined SKF Engineering and Research Centre where his work focused on Electromagnetic detection techniques for material characterization and X-ray characterization of material fatigue. In 1995 he joined van Doorne’s Transmisie bv, where he was responsible for the realization of some advanced drive train projects. Since 2002 he is assistant professor in the CST group of the ME department of the Eindhoven University of Technology. His general interest is to link academic research to the (automotive) industry. He specializes in automotive transmission technology, with special focus on CVT’s and other force-closed components.
Abstract- Modern control techniques allow drive train components to operate under more optimal operating conditions than previously possible. Powerful electric servo-motors and modern controllers are necessary for the development and refinement of automated transmissions like the Double Clutch Transmission and the Continuously Variable Transmission, in order to arrive at fuel consumption, comfort and performance levels that are expected from today's power trains.

In order to benchmark the effect of various improvement measures on fuel economy at an early stage in the development process based on above-mentioned technologies, detailed simulations can be made. This paper describes the results of a simulation study of the effects on efficiency and fuel economy of a vehicle equipped with a CVT, resulting from the introduction of the following new variator actuation and control techniques [1]:

- Replacement of the high pressure hydraulic pump by a servo-electromechanical actuation system (EMPAct) and
- Introduction of variator slip control

For this study, the TNO-Advance simulation package is used, in which detailed models of all loss contributions of the CVT were implemented. The fuel economy benefit of the EMPAct system in comparison to the conventional CVT is shown to be substantial, about 6% on the NEDC cycle.

Keywords: continuously variable transmission, simulation, power train modeling, efficiency, CVT

I. Introduction

Since its introduction over 15 years ago, the CVT has contributed to the improvement of fuel economy of passenger cars. It gives a better fuel economy than the stepped automatic transmission (AT) due to its wider ratio coverage and its ability to shift ratio without compromising comfort. Another advantage is that it allows for the torque converter to lock up at lower vehicle speeds than when an AT is applied. Unfortunately, the metal V-belt CVT does not have a much better efficiency than the AT. An important reason for this is that it needs significantly higher hydraulic pressure for variator actuation purposes, (typically up to 50 [bar]) than an AT does, which leads to a larger oil pump drive torque. Since the oil pump usually rotates at a speed proportional to engine speed, quick ratio shifts at low engine speed dictate rather large pump displacement. For a typical CVT, rated at 200 [Nm], the pump displacement amounts to about 19 [cc/rev]. Making use of the double piston principle in combination with a two stage torque sensor, allows for a more favorable pump displacement of 11 [cc/rev] at 310 [Nm] rated torque [2]. Additionally, the power loss in the variator (defined as belt, pulleys and shaft bearings) is not small. This leads to transmission efficiencies which barely exceed 90 [%] at rated load. Under part load conditions, efficiency drops even further. This is caused by limitations in the actuation system, preventing the clamping
force to drop to sufficiently low values, causing over-clamping. In order to prevent variator slip, over-clamping is applied, causing increased variator torque loss. It is mainly by these causes that the efficiency may have dropped to values below 75 [%] at 25 [%] of rated load. On various driving cycles used for fuel consumption benchmarks, a large time fraction is spent in part load conditions. Therefore, improving part load efficiency receives considerable attention. Improving efficiency at rated load will be beneficial for high torque situations like top speed, launch and fast acceleration maneuvers.

In order to reduce actuation system power consumption, Bradley and Frank [3] proposed a servo-electro hydraulic system, largely eliminating excessive oil flow. The pumps need to deliver enough flow to compensate for seal leak. A reduction of actuation power of about one order of magnitude was reported.

By using variator slip as a control variable for determining the distance between actual clamping force and the slip threshold at which the variator is irreversibly damaged, Faust et. al. [2] indicate a transmission efficiency improvement of almost 2 [%].

This paper first shows the principle of the CVT. Next, the modeling of the efficiency of the reference transmission will be presented. The most important models, describing variator torque and slip loss and pump power loss, were based on measurements on a commercially available CVT. Losses in the final drive and clutch drag losses are based on literature data. Next the transmission efficiency improvements that can be expected after replacing the hydraulic pump with a servo-electromechanical actuation system (EMPAct) and after introduction of variator slip control will be presented. Simulations will show the fuel consumption benefit of these measures.

For the EMPAct system simulations are made in Matlab/ Advance. Advance is a simulation package developed by TNO Automotive. The EMPAct system strongly reduces the power needed for clamping and shifting the variator. It avoids the situation where an engine driven pump delivers excess oil at high pressure at elevated engine speeds, thereby not only improving part load but also full load transmission efficiency. Slip control allows the variator clamping force to be set to very low values, thereby avoiding losses associated with over-clamping. Slip losses, which are usually neglected in a CVT efficiency assessment, are seen to increase somewhat when the clamping force is lowered and must therefore be taken into account. The models for the EMPAct system and the slip controller are implemented in the Advance simulation and the results are compared to the measurements.

II. Continuously Variable Transmission

Applying a Continuously Variable Transmission (CVT) in an automotive driveline has several advantages. A CVT can operate at a wider range of transmission ratios, therefore the engine can be operated more efficiently than with a stepped transmission. Also, a CVT does not abruptly change the torque level when shifting. This gives a smoother ride than a stepped transmission does. A V-belt based CVT uses a belt or a chain to transmit torque from a driving side to a driven side by means of friction. The layout of the CVT and the V-belt are shown in Fig. 1 and Fig. 2.

The variator consists of two pulleys, which are wedge shaped. Both pulley sets have a fixed and a moveable pulley, in opposite position. The movable pulleys are actuated by hydraulic pressure cylinders. By changing the axial position of the pulley sheaves the ratio of the CVT can be adjusted. The variator can cover any ratio between two extremes as shown in Fig. 1, low and overdrive.

The V-belt consists of blocks, which are held together by two rings. These rings consist of a set of bands, see Fig. 2. To achieve torque transmission, sufficiently high clamping force levels are needed to prevent slip in the variator. Because the torque level is not exactly known at all times, since no torque sensor is used due to cost and packaging considerations, a safe clamping force level based on the maximum possible load is maintained at all times. This safety level is based on the assumed maximum shock load levels from the road and the engine torque.
For benchmark purposes, the 2 liter class Jatco CK2, manufactured by Jatco Transtechnology Co. Ltd. is selected. This type of transmission will also be used as a carrier for the servo-electromechanical actuation system that is currently in the realization phase. The reference transmission comprises a torque converter as drive-off element, a DNR set, a hypotrochoid gear pump, a push-belt type variator, followed by the final reduction and differential gear [4]. The majority of the presented data will be limited to the over-drive ratio, since this ratio is most relevant for fuel economy evaluations.

TRANSMISSION LOSS ANALYSIS METHOD

In order to assess the efficiency improvement potential of the proposed modifications, first the power loss occurring in the reference transmission were carefully modeled. The main power losses are caused by the hydraulic pump and by the variator and were obtained by means of measurements. Losses in the final reduction were calculated by means of models obtained from literature [5]. These loss components will be treated separately in the following sections.

PUMP LOSS

One of the major loss sources within the transmission is the power absorbed in driving the hydraulic pump. This loss was measured on a spin loss test rig. This test rig allows driving the transmission with unloaded output. For these measurements, the clutch plates of the DNR set were removed to eliminate the torque loss due to friction between clutch plates. In order to control pump torque independent from the original transmission controller, a separate pressure control system was developed. The dependence of pump power loss on input speed (equal to engine speed), pump output pressure (equal to the clamping pressure in the secondary variator cylinder) and temperature, was measured in a wide operating range and mapped into lookup tables.

VARIATOR LOSSES

Contrary to form closed transmission components like gears, the variator not only loses power by torque loss, but also slip loss occurs. Although slip loss is generally much smaller than torque loss in a V-belt variator, it can not be neglected, since slip loss tends to increase when over clamping is reduced. Next the methods will be described by which these losses were analyzed.

Variator slip loss may be defined as follows:

\[\omega_{\text{loss}} = \omega_{\text{pri}} - \frac{\omega_{\text{sec}}}{r_{\text{soft}}} \] \hspace{1cm} (1)

A relative slip number \(s_\omega \) can be defined by
\[s_\omega = \frac{\omega_{\text{loss}}}{\omega_{\text{pri}}} = 1 - \frac{r_\omega}{r_{\text{ref}}}, \text{with } r_\omega = \frac{\omega_{\text{sec}}}{\omega_{\text{pri}}}. \]

(2)

Here \(r_{\text{ref}} \) is defined as the speed ratio \(r_\omega \) at zero variator output load. Furthermore \(\omega_{\text{pri}} \) and \(\omega_{\text{sec}} \) are defined as the angular speed of the primary and secondary variator shaft, respectively. This definition ensures that \(s_\omega \) equals zero at zero variator output load.

Power is transmitted by means of friction between the belt and the pulleys. The torque that is transmitted through the variator can be calculated using the force balance on a pulley, according to [6]:

\[T_{\text{pri}} = \frac{2F_s R_s \mu_{\text{eff}}(s_{\omega})}{\cos \alpha} \]

(3)

where \(T_{\text{pri}} \) is the torque on the primary shaft, \(F_s \) is the secondary clamping force, which is the axial force applied by the pulleys onto the belt, \(R_s \) represents the primary running radius of the belt, \(\alpha \) is half the pulley wedge angle and \(\mu_{\text{eff}} \) is the effective traction coefficient between belt and pulley. The traction coefficient \(\mu_{\text{eff}} \) is not constant but depends on the relative slip between the belt and the pulleys, defined by Eq. 2.

The relation between the traction coefficient \(\mu_{\text{eff}} \) and the slip \(s_{\omega} \) is shown for three ratios in Fig. 3 [8]. It can be seen that the slope of the curves and the maximum traction coefficients clearly depends on the ratio, but all curves show the same distinct shape. At first, for low slip values the traction coefficient increases with increasing slip, until a maximum value is reached. This region is called the microslip region. When the maximum value of the traction coefficient is reached, increasing slip will result in a slow decrease of the traction coefficient. This region is known as the macroslip region.

For normal operation, where only the micro-slip region is used, the dependence of torque on slip can effectively be approximated by a linear relationship. The dependence of the slope of this linear relationship on ratio and clamping force was captured in a lookup table.

Variator torque loss may be defined by:

\[T_{\text{loss}} = T_{\text{pri}} - r_{\text{ref}} T_{\text{sec}} \]

(4)

where \(T_{\text{pri}} \) and \(T_{\text{sec}} \) are defined as the torque on the primary and the secondary shaft respectively and \(r_{\text{ref}} \) is defined as the ratio of primary torque and secondary torque at zero torque loss.
Measurements of T_{loss} have been carried out on a variator test rig. Generally, the variator torque loss is considered to be a function of four variables, i.e. secondary pressure p_{sec}, primary speed ω_{pri}, speed ratio r_{ω}, and input torque T_{pri}. According to measurements results shown in Fig. 4, the torque loss of the variator shows very small dependency on T_{pri}. This is in line with the literature data [7]. The solid line represents a fit of Eq. 4 to the measured data. It was therefore decided to measure torque loss under unloaded conditions ($T_{\text{sec}} = 0$ [Nm]) on a CK2 transmission on the same test rig that was used for pump loss determination.

By removing the intermediate shaft, power loss in the final reduction was eliminated from the measurement. By switching the transmission into drive and applying torque converter lock-up and by subtracting pump torque loss from the measured data, variator torque loss as a function of input speed, ratio and clamping force could be determined over a wide operating range. A result from these measurements is shown in Fig. 5. Here, the data is used to calculate variator efficiency as a function of safety factor S_f, which is defined as the ratio of actual clamping force and the minimum clamping force, required for transfer of a specific input torque at a specific variator ratio. The graph shows that S_f must be reduced to the lowest possible value in order to obtain the best variator efficiency. Usually, lowering of the safety factor is severely limited, especially for part load conditions. Very often, the secondary or line pressure, which is directly related to secondary clamping force, cannot be lowered to values below 5-7 [bar]. This is caused by the fact that auxiliary pressures, which should not drop below 5-7 [bar], are derived from line pressure. Low safety value at low nominal torque increases the risk of variator slip caused by torque peaks originating from road irregularities. This forms another reason why safety values are seen to be considerably higher than 1 in practice.

FINAL REDUCTION LOSSES

The final drive of the CVT is similar to that found in any conventional transmission and can be modeled in a similar way. The calculations have been based on literature data [5] and references therein. Bearing losses, oil churning losses and gear meshing losses have been taken into account. During measurements it was noticed the torque losses in the final reduction depends on the applied torque to the primary shaft. This is in line with the literature data [10].

IV. Reference transmission loss breakdown

The efficiency analysis mentioned in the previous sections was used to generate Fig. 6, showing the power loss breakdown of the reference transmission in overdrive at input speed of 1500 [rpm].
Obviously torque loss in the variator and pump loss are the most important loss sources. The change in slope occurring at about 120 [Nm] is caused by the limitation in hydraulic line pressure (equal to pressure in secondary cylinder) to drop below $p_{sec_{min}} = 6.6$ [bar]. This leads to rather severe over-clamping at low torque levels, causing both pump driving loss and variator torque loss to be high.

V. Efficiency improvement options

From the previous sections it may be concluded that for the optimization of transmission efficiency by actuation and control measures, the following aspects should be taken into account:

- Over-clamping should be avoided or, equivalently, the safety factor S_f should be kept close to 1, also at low torque levels.
- In order to realize this, hydraulic limitations for lowering clamping force should be avoided
- Actuation power must be reduced

In order to realize this, a servo-electromechanical actuation system with variator slip control has been proposed, which will be described in the following sections.

VARIATOR SLIP CONTROL

As shown in Fig. 5, variator torque loss can be reduced by minimizing over-clamping. However, this increases the risk of variator slip. In order to limit variator slip as defined before, variator slip control has been proposed [8]. With this type of control, safety values very close to $S_f \cong 1$ can be realized. Road irregularities may cause short torque peaks in the drive train, causing a temporary macro-slip condition. Recent experimental results [9] have shown however, that the push-belt variator is much more robust against macro-slip than previously assumed. It will be the subject of further research to what extent this property of the push-belt variator can be used when applying slip control.

THE SERVO-ELECTROMECHANICAL ACTUATION SYSTEM (EMPACT)

In order to assess the apparent advantages of an all-mechanic system, an electrically driven variator actuation system has been proposed by van de Meerakker et al. [1]. This system is schematically shown in Fig. 7 and is characterized by the following features:

- Both moveable sheaves are actuated by means of electric motors (Mp and Ms in Fig. 7)
- Both motors are stationary when both clamping force and variator ratio are constant. This is accomplished by applying two differential gear sets at each shaft, serving as a decoupling mechanism between the rotating transmission shafts and the transmission housing.
• By coupling two moving ring gears of the adjustment mechanisms, shifting energy can be exchanged between one movable sheave which is shifted with positive power and the other shifted with negative power.
• It is important to note that the EMPAct system calls for a novel way of estimating the clamping force, since a hydraulic pressure signal is absent. Slip control seems therefore to be a logical approach for assessing the clamping status of the variator.
• Clamping force loops are closed on the rotating shaft and not supported via the transmission housing, thereby avoiding highly loaded thrust bearings.
• A separate low pressure pump for auxiliary hydraulic functions is required.

VI. Efficiency modeling for a transmission with EMPAct system

The efficiency analysis mentioned in the previous sections, was used to generate Fig. 8, showing the loss breakdown of the transmission with EMPAct system and slip control in over-drive at an input speed of 1500 [rpm]. For the torque loss calculation see also section VIII. In comparison to Fig. 6 the following differences can be noted:

• The change in slope at about 120 [Nm] has disappeared. This is associated with the ability of the EMPAct system to reduce clamping force to low levels.
• Especially the power loss at part load is strongly reduced.
• Actuation power is strongly reduced.
• Part load variator torque loss is reduced considerably, which must be attributed to the reduction of over-clamping.
• Variator slip loss has increased slightly by the reduction of the safety factor to values close to 1. This is most clearly seen at high input torque levels.
In order to appreciate the contribution of the various measures to the reduction of power loss, they were analyzed separately. Table 1 defines the various improvement measures.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variant A</td>
<td>Reference transmission with (S_f = 1.3) and (p_{sec_min} = 6.6) [bar]</td>
</tr>
<tr>
<td>Variant B</td>
<td>Reference transmission with slip control, (S_f \cong 1) and (p_{sec_min} = 6.6) [bar]</td>
</tr>
<tr>
<td>Variant C</td>
<td>Reference transmission with (S_f = 1.3) and decreased secondary pressure (p_{sec_min} = 1.35) [bar]</td>
</tr>
<tr>
<td>Variant D</td>
<td>Slip control, (S_f \cong 1) and (p_{sec_min} = 1.35) [bar]</td>
</tr>
<tr>
<td>Variant E</td>
<td>EMPAct system, slip control (S_f \cong 1) and (F_{sec_min} = 1.9) [kN]</td>
</tr>
</tbody>
</table>

From Fig. 9 the effects of various measures on power loss can be estimated. Curve A and curve B both have high torque losses for low input torque because of the minimum secondary pressure \(p_{sec_min} = 6.6 \) [bar]. Curve C indicates the very important effect of decreasing the clamping force boundary to a secondary pressure of \(p_{sec_min} = 1.35 \) [bar]. Curve D represents a further lowering of safety to \(S_f \cong 1 \), meaning that variator slip control must be applied, in order to avoid gross slip. Curve E (EMPAct system), with a minimum clamping force of 1.9 [kN] which represents a minimum line pressure of \(p_{sec_min} = 6.6 \) [bar], shows the most important loss reduction at higher torques, due to the reduction of actuation power.
VII. Measurement setup

To validate the results of the reference model a test rig is available (see Fig. 10). This test rig is designed to perform realistic drive train experiments. The rig consists of two electric Siemens motors (engine and brake), two torque sensors (Te and Ts), a Jatco CK2 CVT and a manual gearbox. The Siemens motors both include an encoder to measure the rotational speed. With the electric motors the combustion engine of a passenger car and the road load and brake torque can be simulated respectively. The torque sensors are used to measure the ingoing and outgoing torque of the CVT on the primary shaft and the drive shaft. The gearbox is used to increase the speed applied to the Siemens brake motor.

![Figure 10: Overview of the test rig used for loss measurements](image)

Normally the Jatco CK2 will be controlled by the Transmission Control Module (TCM). On this test rig no TCM is available so the clamping force to transmit engine torque has been calculated using an implemented safety 1.3 controller (Variant A from table 1) or with the slip controller (Variant B). To simulate a driveline both electric motors should be controlled. The test rig is controlled with Matlab/Simulink in combination with a dSpace data acquisition system.

To track a reference from a driving cycle, a driveline controller is implemented which calculates the necessary throttle position and brake torque. To obtain a stable behavior which minimizes the tracking error, a PI controller is used with anti-windup. A variogram is used to get a reference for the CVT input speed, given the vehicle speed and the throttle position. The throttle position has been calculated with an inverted engine torque map. Here the measured engine torque and engine speed result in a throttle position. With the test rig the NEDC cycle and the FTP-72 cycle are simulated. Both cycles are shown in Fig 11.

![Figure 11: Speed cycles: NEDC and FTP-72](image)

Now the results of the measurements can be compared with the results of the reference model described in section III. This comparison is done in order to check the correctness of the implementation of various component loss models and also to ascertain that these models can be used also under loaded conditions. The engine speed, primary speed, secondary speed and engine torque of the measurements are the inputs for the reference model. In Fig. 12 and Fig. 13 the comparison of secondary pressure and torque loss between the measurements and the reference model (Variant A) is given. What can be noticed is the difference in...
secondary pressure. This difference is caused by the difference in the modeling of the torque converter. In the model only an estimated clamping force multiplier is used for take off. On the test rig the model of the torque converter has a safety factor which assures there will be enough clamping force on the secondary pulley to prevent slip. The differences in secondary pressure are shown not to have a large influence on the torque losses. Fig. 13 shows that the model predicts the torque loss accurately. Only for higher speeds and therefore higher input torque the model has some difference compared to the measurements. The most likely explanation for this discrepancy is that the final reduction exhibits more torque loss than what was calculated on the basis of models.

![Figure 12: Secondary pressures for the NEDC and FTP-72 cycle](image)

Figure 12: Secondary pressures for the NEDC and FTP-72 cycle

![Figure 13: Torque loss for the NEDC and FTP-72 cycle](image)

Figure 13: Torque loss for the NEDC and FTP-72 cycle

VIII. Modeling total EMPAct losses

For analysis, control design and testing of the electro-mechanically actuated CVT, a simulation model is built [11]. The model incorporates all major driveline components and the proposed actuation system with servomotor actuation. The clamping forces in the variator are calculated using an explicit formulation of a model based on Coulomb friction. The model also includes slip and shifting losses based on transient variator models.

For torque loss calculation due to the friction forces in the bearings, gears and spindles, Lugre friction models are incorporated in the model [11]. To calculate the power consumed by the actuation system, electromotor models and characteristics are taken into account. Also the power loss due to the external oil pump used for auxiliaries is taken into account.
IX. Fuel consumption calculations with Advance

In order to assess the potential for fuel economy improvement, the data described in section III was used in the simulation package Advance, developed by TNO Automotive [12]. This package allows for detailed fuel consumption simulations.

With the simulation package first a comparison has been made between the results measured on the test rig and the results from Advance with the conventional CVT with control strategy \(S_f = 1.3 \) (Variant A). Both results are measured with a minimum secondary pressure of 6.6 [bar]. In Fig. 14 the torque loss and secondary pressure for the test rig and for the Advance simulation are drawn. From this figure it appears the results look sufficiently similar. The results show that the model of the torque converter in Advance can be compared to the model of the torque converter on the test rig, because now there is only a minimal difference in the secondary pressure between the measured cycle and the simulated cycle.

Efficiency and fuel consumption improvement can be reached when it becomes possible to decrease the minimum line pressure (for example Variant C and Variant D from table 1). Decreasing the line pressure will increase the risk of slip. As mentioned before, road irregularities may cause short torque peaks in the drive train, causing a temporary macro-slip condition. The implemented slip controller should avoid these problems. Interesting is the question in which way the control strategy \(S_f = 1.3 \) can handle with such torque peaks.

In Fig. 15 a simulation is shown with the reference CVT with a minimum line pressure of 6.6 [bar] (Variant B) in comparison with a CVT with minimum line pressure of 1.35 [bar] (Variant D), both slip controlled. These results show that the CVT with decreased minimum line pressure has lower torque losses, while the amount of slip is within acceptable limits. So when the line pressure can be decreased, the efficiency will increase and the fuel consumption will decrease. Also the fuel consumption for both cases can be simulated. As expected, the fuel consumption for a CVT with minimum line pressure of 1.35 [bar] (Variant D) will be lower and gives a benefit of approximately 2.2 %. The same simulation can be done for the FTP-72 cycle. For this cycle the CVT with decreased minimal pressure gives a profit of around 1.5 %.
In Fig. 16 the comparison has been made between a CVT with decreased minimum line pressure $p_{sec_min} = 1.35$ [bar] (D) and the EMPAct system (E). The secondary clamping forces resulting from the measurements are almost equal. The advantage of the EMPAct system is the removal of the oil pump, and therefore the removal of these torque losses. The oil pump always rotates at engine speed and therefore dissipates always an amount of power. The torque losses for the EMPAct system are significantly lower.

Because of the decrease in torque loss for the EMPAct system, the efficiency will increase and therefore the fuel consumption will decrease. In comparison to a CVT with decreased minimum line pressure of 1.35 [bar] (Variant D), the new EMPAct system (Variant E) has an advantage of almost 4 percent for the NEDC cycle.

When the EMPAct system (E) is compared to the conventional CVT (Variant A) an advantage of 6 percent can be reached, see Fig. 17. For the FTP-72 cycle the same simulations can be made. Also here the EMPAct system (E) results in lower torque losses and slip can be kept within acceptable limits. For the FTP-72 cycle the EMPAct system (E) has a fuel consumption benefit of 4.2 percent compared to the CVT with decreased line pressure (D). In comparison with the conventional CVT (A), the EMPAct system (E) has a benefit of around 5.7 % with respect to fuel consumption.
The results for the two different speed cycles are summarized in the table 2.

Table 2: Fuel consumption reduction for different clamping force control strategies

<table>
<thead>
<tr>
<th>Clamping force control strategy</th>
<th>Fuel consumption reduction [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Compared to:</td>
</tr>
<tr>
<td>Safety strategy 1.3 (A)</td>
<td>Slip controller (B)</td>
</tr>
<tr>
<td>Slip controller (B)</td>
<td>Slip controller with minimum pressure (D)</td>
</tr>
<tr>
<td>Slip controller with minimum pressure (D)</td>
<td>EMPAct (E)</td>
</tr>
<tr>
<td>Safety strategy 1.3 (A)</td>
<td>EMPAct (E)</td>
</tr>
</tbody>
</table>

X. Conclusions and recommendations

Both model calculations and test rig measurements have been used to construct a detailed efficiency model of a commercially available CVT. The model results are compared to the measurements results and show similarity to these results. By subtracting pump loss and adding loss due to the EMPAct system and by mapping variator loss as a function of over-clamping, the effect of the new actuation system and slip control on the efficiency can be estimated and an indication is given for the consequences for fuel consumption. By applying a servo-electromechanical actuation system and variator slip control, significant reduction of power loss can be expected. This leads to a large improvement of efficiency, especially at part load, which in turn leads to a significant fuel economy potential, especially on driving cycles where part load conditions prevail (about 6% on the NEDC cycle). Simulations for fuel consumption reduction are made with the simulation package Advance, developed by TNO Netherlands.

The proposed servo-electromechanical actuation system is currently in the realization phase. The slip control technique will be optimized, but it has already been applied and demonstrated in a passenger car.

XI. References

