ANALYSIS OF OIL TRAPPING IN POROUS MEDIA FLOW

M. BERTSCH*, R. DAL PASSO*, AND C.J. VAN DULN†

* Dipartimento di Matematica, Università di Roma, “Tor Vergata”,
Via della Ricerca Scientifica, I-00133 Roma, Italy.
†Department of Mathematics and Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

1. Introduction and problem formulation. It is well-known that capillary forces, combined with spatial variations of rock properties, considerably reduce the recovery factor of an oil reservoir. For instance, it is difficult to remove oil from parts of the reservoir with small scale heterogeneities. Sometimes, the oil may even remain trapped; see for instance [K, W]. This is clearly a difficult problem, mainly due to the complex nature of rock (soil) heterogeneities.

To understand oil trapping in heterogeneous media more quantitatively, [DMN] considered the case of a 2-phase water-oil flow which is perpendicular to an interface, separating two types of rock, across which the permeability changes abruptly. Under simplifying assumptions this leads to a one dimensional flow problem which allowed them to investigate the role of convection and capillary diffusion in relation to the discontinuous permeability. They used formal asymptotics and numerical techniques. In this paper we will take their formulation as starting point. The aim is to analyse the structure of the model equations resulting in existence, uniqueness and regularity properties, as well as matching conditions between the two rock types.

Following [DMN], further references are given there, the one dimensional flow of water and oil through a porous medium is described by a nonlinear convection-diffusion equation for the reduced water saturation $S = S(x,t)$, with $0 \leq S \leq 1$. This equation has the form

$$
\Phi \frac{\partial S}{\partial t} + \frac{\partial}{\partial x}\left(q f_w(S) + k(x) H(s) \frac{\partial p}{\partial x} \right) = 0 ,
$$

where Φ (porosity) and q (discharge) are positive constants, and where the functions $f_w, H : [0,1] \to [0, \infty)$ satisfy $f_w(0) = 0$, $f_w(S) > 0$ for $0 < S \leq 1$ (typically convex-concave behaviour) and $H(0) = H(1) = 0$, $H(S) > 0$ for $0 < S < 1$. Further $k(x)$ denotes permeability and p capillary pressure. Situating the discontinuity in permeability at $x = 0$, we have

$$
k(x) = \begin{cases}
k^- & \text{for } x < 0 , \\
k^+ & \text{for } x > 0 .
\end{cases}
$$

Without loss of generality we take $0 < k^+ < k^- < \infty$. This means that coarse material occupies $\{x < 0\}$ and fine material $\{x > 0\}$. The flow is in positive x-direction.

For the capillary pressure the Leverett model [L] was used. With $\sigma > 0$ denoting interfacial tension, this means

$$
p = p(x, S) = \sigma \frac{J(S)}{\sqrt{k(x)/\Phi}} \text{ for } 0 < S \leq 1 ,
$$

where the Leverett function J is strictly decreasing in $(0,1]$ with $J(1) \geq 0$. The quantity $\sqrt{k/\Phi}$ may be associated with the mean pore diameter, and the J-Leverett function is typical for the lithology of the porous medium. When $J(1) > 0$, the
medium has an entry pressure given by $J(1)/\sqrt{k/\phi}$. This is the minimum pressure needed for the oil to enter a medium that is saturated by water. In this paper we assume $J(1) > 0$ and show that the occurrence of an entry pressure causes trapping of oil at the interface when the medium changes from coarse to fine. Figure 1 shows two typical capillary pressure functions, the top curve for fine material ($x > 0$), the bottom curve for coarse material ($x < 0$).

Because k is discontinuous, the capillary pressure may be discontinuous as well. This makes the interpretation of (1.1) across $x = 0$ difficult. To circumvent this problem, [DMN] considered (1.1) for $x < 0$ and $x > 0$, with matching conditions at $x = 0$. One condition is obvious. Conservation of mass across $x = 0$ requires that the fluxes to the left and right of $x = 0$ are equal:

$$\left(q_{f_w} + k^- H \frac{\partial p}{\partial x} \right)_{x=0^-} = \left(q_{f_w} + k^+ H \frac{\partial p}{\partial x} \right)_{x=0^+},$$

for all $t > 0$. A condition related to the pressure was obtained by a formal regularization procedure. Replacing in (1.1) $k(x)$ by C^∞ approximations $k_n(x)$, according to

$$k_n(x) = \begin{cases}
 k^- & \text{for } x \leq -\frac{1}{n}, \\
 \varphi(n,x) & \text{for } -\frac{1}{n} < x < \frac{1}{n}, \\
 k^+ & \text{for } x \geq \frac{1}{n},
\end{cases}$$

with φ smooth ($\varphi(-1) = k^-$, $\varphi(1) = k^+$ and $\varphi' \leq 0$), blowing up the transition
region by $x \to nx$ and letting $n \to \infty$, the following was found. Let S^* be defined by the relation
\begin{equation}
\frac{J(S^*)}{\sqrt{k^-}} = \frac{J(1)}{\sqrt{k^+}} > 0 ,
\end{equation}
and let S^- and S^+ denote, respectively, the left and right limit of S at $x = 0$. Then for all $t > 0$, see also Figure 1,
\begin{equation}
(M_2) \quad \begin{cases}
\frac{J(S^-)}{\sqrt{k^-}} = \frac{J(S^+)}{\sqrt{k^+}} & \text{if } S^- \leq S^* \text{ (pressure continuous)} \\
S^+ = 1 & \text{if } S^- > S^* \text{ (positive pressure jump)}.
\end{cases}
\end{equation}

Instead of analysing (1.1) and conditions $(\widetilde{M}_{1,2})$ in the form presented above, we shall consider a further simplified model problem, without losing essential characteristic features. We take in (1.1)
\begin{equation*}
f(S) = S , \quad H(S) = 1 - S \quad \text{and} \quad J(S) = 2 - S .
\end{equation*}
After a trivial scaling, the following equations result for the oil saturation $u = 1 - S$:
\begin{align}
(1.6) & \quad u_t + f_x = 0 \quad (u \geq 0) , \\
(1.7) & \quad f = u - N_c k u p_x , \\
(1.8) & \quad p = \frac{1 + u}{\sqrt{k(x)}} ,
\end{align}
where f denotes the flux and N_c the dimensionless capillary number
\begin{equation*}
N_c = \frac{\sigma \sqrt{K \phi}}{q \mu_w L}.
\end{equation*}
Here K is a characteristic k-value, L a characteristic length scale and μ_w the water viscosity. By an additional scaling we may set $N_c = 1$. Further, k is given by (1.2) and the subscripts t and x denote partial differentiation.

We solve equation (1.6)–(1.8) in the subdomains
\begin{equation*}
Q^\pm = \{(x,t) : x \in \mathbb{R}^\pm , \ t \in (0, \infty)\} ,
\end{equation*}
with transformed matching conditions at $x = 0$. These are
\begin{equation*}
(M_1) \quad [f] = 0 \quad \text{in } (0, \infty) ,
\end{equation*}
and, see Figure 2,
\begin{equation*}
(M_2) \quad \begin{cases}
1 + \frac{u^-}{\sqrt{k^-}} = 1 + \frac{u^+}{\sqrt{k^+}} & \text{if } u^- \geq u^* \quad \text{in } (0, \infty) , \\
u^+ = 0 & \text{if } u^- < u^*
\end{cases}
\end{equation*}
or, equivalently,
\begin{equation*}
(M_2) \quad u^+[p] = 0 , \quad [p] \geq 0 \quad \text{in } (0, \infty) .
\end{equation*}
Here \(u^* = \sqrt{\frac{k^*}{k}} - 1 \). As before, \(u^\pm = u^\pm(t) = u(0 \pm, t) \), \([u] = u^+ - u^-\) and similar notation for \(f \) and \(p \).

At \(t = 0 \) we prescribe

\[
(1.9) \quad u(\cdot, 0) = u_0(\cdot) \quad \text{in} \quad \mathbb{R}
\]

with \(u_0 \) satisfying

\[
(H) \quad \begin{cases}
 u_0 : \mathbb{R} \to [0, \infty), \quad \text{supp}(u_0) \subset \mathbb{R} \text{ is bounded;}

 u_0 \text{ uniformly Lipschitz continuous in } \mathbb{R}\{0\};

 u_0^\pm[p_0] = 0, \quad f_0 := u_0 - \frac{\sqrt{k^*}}{2}(u_0^2)' \in BV(\mathbb{R}\{0\}).
\end{cases}
\]

The pressure condition at \(t = 0 \) is needed to construct an approximate sequence \(\{u_n\} \) for which the corresponding fluxes \(f_{on} := u_{on} - k_n u_{on}(p_{on})' \) are uniformly bounded in \(BV(\mathbb{R}) \). This in turn will imply \(f \in L^\infty((0, \infty); BV(\mathbb{R})) \), which is a crucial point in the existence proof. If the \(k_n \) are taken as in (1.4), then \([p_0] \geq 0\) is needed as well. We will return to this in Section 2 and in the Appendix.

For steady state solutions, the role of \((M_2)\) can be seen explicitly. Assume \(u = u(x) \) only, with \(u(-\infty) = u(+\infty) = 0 \). Then

\[
(1.10) \quad f = u - k u p' = 0 \quad \text{in} \quad \mathbb{R}\{0\}.
\]

Using \(u \geq 0 \), we obtain

\[
u(x) = 0 \quad \text{for} \quad x > 0.
\]

Hence the first condition in \((M_2)\) is always satisfied. Given any \(u^- \geq 0 \), we see that

\[
u(x) = \left(u^- + \frac{1}{\sqrt{k^-}} x \right)_+
\]
satisfies (1.10) for $x < 0$. Here $(\cdot)_{+} := \max\{\cdot, 0\}$. However only for $u^{-} \in [0, u^+]$ we have $[p] \geq 0$. Thus we have a family of admissible steady state solutions as shown in Figure 3.

Integrating the maximal steady state gives the maximal amount of oil that can be trapped to the left of the permeability discontinuity. It is given by

$$\mathcal{M} = \frac{1}{2}(u^+)^2 \sqrt{k^-}.$$

(1.12)

Next we give the weak formulation of the trapping problem. Because the flux is expected to be continuous across $x = 0$, it will be defined globally in the formulation. The saturation (and pressure) will be considered in the subdomains Q^{-} and Q^{+} separately. Let

$$Q^0 := Q^{-} \cup Q^{+} \quad \text{and} \quad Q := \mathbb{R} \times (0, \infty).$$

Combining the saturation equations and the matching conditions gives Problem P: Find $u : Q^0 \to [0, \infty)$, $f : Q \to \mathbb{R}$ such that

(i) $u, (u^2)_x \in L^\infty(Q^0)$; u is uniformly continuous in Q^0;

(ii) $f \in L^\infty((0, \infty); BV(\mathbb{R}))$;

(iii) $f = u - \frac{\sqrt{k^-}}{2}(u^2)_x$ a.e. in Q^0 and $\int_Q (u \zeta + f \zeta_x) dx dt + \int_{\partial Q} u_0(x) \zeta(x, 0) dx = 0$

for all $\zeta \in H^1(Q) \cap C(Q)$, vanishing for large $|x|$ and for large t;

(iv) $u^+[p] = 0$ and $[p] \geq 0$ in $(0, \infty)$, where $p := \frac{1 + u}{\sqrt{k^-}}$ in Q^0.

To prove existence we apply a k-regularization as in (1.4). This yields a sequence of approximating problems on Q for which we derive the necessary estimates. This is done in Section 2. In Section 3 we consider the limit $n \to \infty$ giving existence for Problem P, with u satisfying a porous media equation $(m = 2)$ with linear convection in Q^0. Clearly (M_2) is satisfied. The weak equation in (iii) implies $[f] = 0$ a.e. in $(0, \infty)$. The comparison principle, with uniqueness as a consequence, is shown in

![Figure 3. Admissible steady state solutions $u^{-} \leq u^+$.](image-url)
Section 4. In Section 5 we give sufficient conditions for oil trapping; i.e. conditions that imply \(u(x, t) = 0 \) for \(x > 0 \) and for all \(t > 0 \). Finally, in Section 6, we present some closing remarks about non-uniqueness, waiting times and optimal regularity.

In a recent paper [DMP] considered oil transport in a multi-layered porous medium. This work involves a discontinuous permeability which varies periodically in space. Using homogenisation techniques they derived effective (upscaled) transport equations for the case where the periodicity length is small compared to the characteristic length \(L \). In their analysis matching conditions \(\tilde{M}_1 \) and \(\tilde{M}_2 \) play a crucial role. They lead to a macroscopic irreducible oil saturation.

2. The approximate problem. In this section we study the approximate equation in which \(k \) is replaced by the smooth function \(k_n \), defined by (1.4). Together with \(k \) we also need to approximate the initial value \(u_0 \). We construct approximations \(u_{0n} \), so that the corresponding fluxes

\[
(2.1) \quad f_{0n} := u_{0n} - k_n u_{0n} p_{0n}^1, \quad p_{0n} := \frac{1 + u_{0n}}{\sqrt{k_n}},
\]

have a uniformly bounded total variation. In addition we require that each \(u_{0n} \) is strictly positive, to eliminate the degeneracy of the equation at points where \(u \) vanishes. The existence of such \(u_{0n} \) is given in the following lemma. Since the proof is quite technical, we have put it in the appendix.

Lemma 2.1. Let \(n \in \mathbb{Z}^+ \) and let \(k_n \) be defined by (1.4). Suppose \(u_0 \) satisfies hypothesis \(H \) and in addition

\[
(2.2) \quad [p_0] = \frac{1 + u_0^+}{\sqrt{k_0^+}} - \frac{1 + u_0^-}{\sqrt{k_0^-}} \geq 0.
\]

Then there exist \(u_{0n} \in W^{1, \infty}(\mathbb{R}) \) and \(\epsilon_n \in \mathbb{R}^+ \) such that:
(i) \(u_{0n} \geq \epsilon_n > 0 \) in \(\mathbb{R} \), and \(u_{0n}(x) = \epsilon_n \) for \(|x| \) sufficiently large;
(ii) \(u_{0n} \) is uniformly bounded in \(\mathbb{R} \) and \(f_{0n} \), defined by (2.1), is uniformly bounded in \(BV(\mathbb{R}) \);
(iii) As \(n \to \infty \),

\[
\begin{align*}
\lim_{n \to \infty} u_{0n} &\to u_0 \quad \text{uniformly in } \mathbb{R}\setminus\{0\} \\
\lim_{n \to \infty} u_{0n} - \epsilon_n &\to u_0 \quad \text{in } L^1(\mathbb{R}).
\end{align*}
\]

For each \(n \in \mathbb{Z}^+ \) we consider the approximate problem

\[
(P_n) \quad \begin{cases}
 u_t + u_x = (k_n u p_x)_x, & p = \frac{1 + u}{\sqrt{k_n}} \quad \text{in } Q \\
 u(x, 0) = u_{0n}(x) & \text{for } x \in \mathbb{R}.
\end{cases}
\]

In the remainder of this section we prove the following results.

Theorem 2.2. Let \(u_{0n} \) be given by Lemma 2.1. Then Problem \(P_n \) has a solution \(u_n \in C^\infty(Q) \cap C(\bar{Q}) \) such that
(i) \(0 < u_n \leq C \) in \(Q \), where \(C \) does not depend on \(n \);
(ii) \(f_n := u_n - k_n u_n (\frac{1 + u}{\sqrt{k_n}})_x \) is uniformly bounded in \(L^\infty([0, \infty); BV(\mathbb{R})) \);
(iii) \(u_n \) is uniformly continuous in \(\{\mathbb{R}\setminus(-\epsilon, \epsilon)\} \times [0, \infty) \) for all \(\epsilon > 0 \).
Proof. Since \(u_{0n} \geq \varepsilon_n > 0 \) in \(\mathbb{R} \), Problem \(P_n \) is non-degenerate at \(t = 0 \). Hence it has a unique local (with respect to \(t \)) classical solution \(u_n \), see for instance [LSU] and [F]. This solution can be continued as long as it remains bounded and bounded away from zero. Let \(Q_{T_n} := \mathbb{R} \times (0, T_n) \) denote the maximal existence domain for \(u_n \).

A positive lower bound follows from the maximum principle. Indeed, if we set \(L_n := \max_{\mathbb{R}} \left| (\sqrt{k_n})' \right| \) we observe that the solution of the initial value problem

\[
(LB) \quad \begin{cases}
 s' = -L_n s(1 + s) & \text{for } t > 0, \\
 s(0) = \varepsilon_n,
\end{cases}
\]

is a subsolution for Problem \(P_n \). Hence if \(s_n \) denotes the solution of \(LB \), we have

\[
(2.3) \quad u_n(x, t) \geq s_n(t) > 0 \quad \text{for } (x, t) \in Q_{T_n}.
\]

Before proving a uniform upper bound for \(u_n \), we observe that the flux \(f_n \) is uniformly bounded in \(Q_{T_n} \). A straightforward calculation yields for \(f_n \) the linear equation

\[
(2.4) \quad f_t = a_n f_{xx} + b_n f_x,
\]

where

\[
(2.5) \quad a_n(x, t) := u_n \sqrt{k_n}, \quad b_n(x, t) := -\frac{f_n}{u_n} - \frac{u_n k_n'}{2 \sqrt{k_n}}.
\]

Hence, by the maximum principle

\[
(2.6) \quad \|f_n\|_{L^\infty(Q_{T_n})} \leq \|f_{0n}\|_{L^\infty(\mathbb{R})} \leq C
\]

for all \(n \in \mathbb{Z}^+ \).

We use this estimate to demonstrate a uniform upper bound for \(u_n \) in \(Q_{T_n} \). As a first observation we note that (2.6) implies the differential inequality

\[
(2.7) \quad |u_n - \sqrt{k_n} u_n u_{nx}| \leq C \quad \text{in} \quad (-\infty, -\frac{1}{n}] \times [0, T_n).
\]

Then the upper bound for \(u_n \) in this set is immediate if we can control the decay of \(u_n \) as \(x \to -\infty \). This decay results from the following argument.

Let \(\bar{a}_n \) be a steady state solution satisfying

\[
\begin{cases}
 u - k_n u p' = \varepsilon_n, \quad p = \frac{1 + u}{\sqrt{k_n}}, \quad \text{in } \mathbb{R} \\
 u(\pm \infty) = \varepsilon_n.
\end{cases}
\]

Clearly, \(\bar{a}_n(x) = \varepsilon_n \) for all \(x \geq \frac{1}{n} \). The corresponding pressure \(\bar{p}_n \) satisfies

\[
\begin{cases}
 k_n (p \sqrt{k_n} - 1) p' = p \sqrt{k_n} - 1 - \varepsilon_n \quad \text{for } x < \frac{1}{n}, \\
 \frac{p(1)}{n} = \frac{1 + \varepsilon_n}{\sqrt{k_n}}.
\end{cases}
\]

At points where \(\bar{p}_n' = 0 \) and \(\bar{p}_n > 0 \), we must have \(\bar{p}_n'' < 0 \). We use this to show \(\bar{p}_n' > 0 \) and \(\bar{p}_n > \frac{1 + \varepsilon_n}{\sqrt{k_n}} \) on \((-\infty, \frac{1}{n}) \), and \(\bar{p}_n(x) \to \frac{1 + \varepsilon_n}{\sqrt{k_n}} \) as \(x \to -\infty \). In particular, \(\bar{a}_n(x) = \varepsilon_n \) exponentially as \(x \to -\infty \) and \(\bar{a}_n - \varepsilon_n \in L^1(\mathbb{R}) \), uniformly in \(n \in \mathbb{Z}^+ \).
Now using Lemma 2.1 (iii) and an argument as in the proof of Theorem 4.1, one finds for \(t > 0 \) the \(L^1 \)-contraction
\[
\int_{\mathbb{R}} |u_n(x,t) - a_n(x)| dx \leq \int_{\mathbb{R}} |u_{0n}(x) - a_n(x)| dx .
\]
This inequality controls the behaviour of \(u_n \) as \(|x| \to \infty \). Combined with (2.7) it gives the upper bound in \((-\infty, -\frac{1}{n}] \times (0, T_n)\). Arguing similarly for \(x > \frac{1}{n} \), we conclude that for all \(n \in \mathbb{Z}^+ \)
\[
(2.8) \quad u_n(x,t) \leq C \quad \text{for} \quad |x| \geq \frac{1}{n}, \quad 0 \leq t < T_n .
\]
To obtain the upper bound in the remaining strip \([-\frac{1}{n}, \frac{1}{n}] \times [0, T_n)\) we express (2.6) in terms of the pressure \(p_n \):
\[
(2.9) \quad |p_n \sqrt{k_n} - 1 - k_n (p_n \sqrt{k_n} - 1) \rho_{nx}| \leq C .
\]
By (2.8), \(p_n(\pm \frac{1}{n}, t) \) is uniformly bounded. Then (2.9) implies that \(p_n \), and thus \(u_n \), is uniformly bounded as well.

The uniform upper bound, together with lower bound (2.3) guarantees existence for all \(t > 0 \). Hence, \(T_n = \infty \) for each \(n \in \mathbb{Z}^+ \). This completes the proof of (i).

The proof of (ii) is a direct consequence of Lemma 2.1(ii) and the total variation estimate for the flux in Lemma 2.4 below.

We conclude by proving (iii). The boundedness of \(u_n \) and the flux estimate (2.7) imply that \(u_n \) is uniformly Hölder continuous (exponent \(\frac{1}{2} \)) with respect to \(x \) in \(\{(x,t) : x < -\frac{1}{n}, t > 0\} \). The same result holds in \(\{(x,t) : x > \frac{1}{n}, t > 0\} \). The smoothness and boundedness of the coefficients in the \(u_n \)-equation allow us to apply [G1], yielding that \(u_n \) is uniformly Hölder continuous (exponent \(\frac{1}{4} \)) with respect to \(t \) in \(\{(x,t) : |x| > \frac{1}{n}, t > 0\} \). Since, for fixed \(\varepsilon > 0 \), \(\frac{1}{n} < \varepsilon \) for \(n \) large enough, this proves (iii) and completes the proof of Theorem 2.2.

Remark 2.3. It is not difficult to show that the steady states \(a_n \), corresponding to \(k = k_n \) and \(a_n(\pm \infty) = \varepsilon_n \), approximate the maximal steady state in Figure 3. In essence this follows from \(a_n(x) = \varepsilon_n \) for all \(x \geq \frac{1}{n} \) and, using the pressure equation,
\[
0 < p_n \left(\frac{1}{n} \right) - p_n \left(- \frac{1}{n} \right) = \int_{\frac{1}{n}}^{\frac{1}{n}} \frac{1}{k_n} \frac{p_n(x) \sqrt{k_n} - 1 - \varepsilon_n}{p_n(x) \sqrt{k_n} - 1} dx \to 0
\]
as \(n \to \infty \).

It remains to prove the following lemma used in the proof of Theorem 2.2.

Lemma 2.4. Let \(u_{0n} \) be given by Lemma 2.1 and let \(u_n \) be the corresponding solution of Problem \(P_n \). Then
\[
TV_2(f_n(t)) \leq TV_2(f_{0n}) \quad \text{for all} \quad t > 0 .
\]

Proof. Each flux \(f_n \) satisfies the linear problem
\[
\begin{cases}
 f_t = a_n f_{xx} + b_n f_x & \text{in} \; Q \\
 f(x,0) = f_{0n}(x) & \text{for} \; x \in Q
\end{cases}
\]
where \(a_n \) and \(b_n \), defined in (2.5), are bounded functions and where \(f_{0n} \) has uniformly bounded variation. First we proceed formally. Let us fix \(\varepsilon > 0 \) and calculate (dropping the subscript \(n \))

\[
\frac{d}{dt} \int_{\mathbb{R}} \left\{ \sqrt{f_x^2 + \varepsilon} - \sqrt{\varepsilon} \right\} = \int_{\mathbb{R}} \frac{f_x}{\sqrt{f_x^2 + \varepsilon}} (a f_{xx} + b f_x)_x \\
= -\varepsilon \int_{\mathbb{R}} \frac{f_{xx}(a f_{xx} + b f_x)}{(f_x^2 + \varepsilon)^{3/2}}.
\]

Integrating in time gives for any \(t > 0 \)

\[
\int_{\mathbb{R}} \left\{ \sqrt{f_x^2(t) + \varepsilon} - \sqrt{\varepsilon} \right\} - \int_{\mathbb{R}} \left\{ \sqrt{f_{0n}^2 + \varepsilon} - \sqrt{\varepsilon} \right\} = -\varepsilon \int_{\mathbb{R} \times (0, t)} \frac{a f_{xx}^2 + b f_x f_{xx}}{(f_x^2 + \varepsilon)^{3/2}} \\
\leq -\varepsilon \int_{\mathbb{R} \times (0, t)} \frac{\varepsilon f_x}{(f_x^2 + \varepsilon)^{3/2}} b f_{xx}.
\]

Since

\[
\left| \frac{\varepsilon f_x}{(f_x^2 + \varepsilon)^{3/2}} \right| \leq 1
\]

and

\[
\frac{\varepsilon f_x}{(f_x^2 + \varepsilon)^{3/2}} \to 0, \quad \text{pointwise in } Q \text{ as } \varepsilon \to 0,
\]

the boundedness of \(b \) and Lebesgue’s dominated convergence theorem imply

\[
\int_{\mathbb{R}} |f_x(t)| \leq \int_{\mathbb{R}} |f_{0n}|,
\]

provided \(f_{xx} \in L^1(\mathbb{R} \times (0, t)) \). To complete the proof of the lemma we need to make this argument rigorous.

It is enough to apply a mollifier to the initial function \(f_{0n} \) of the linear flux problem. This ensures the necessary smoothness up to \(t = 0 \), to carry out the above calculations.

3. **Existence for Problem P.** Let \(u_n \) be the solution of Problem \(P_n \) as stated in Theorem 2.2. By a standard argument there exist a subsequence of \(\{u_n\} \), denoted again by \(\{u_n\} \), and \(u \in L^\infty(Q \cap C((\mathbb{R}^- \cup \mathbb{R}^+) \times (0, \infty)) \) such that

\[
u_n \to u \quad \text{in } C_{loc}((\mathbb{R}^- \cup \mathbb{R}^+) \times [0, \infty))
\]

as \(n \to \infty \). Below we show

Theorem 3.1. \(u \) is a solution of Problem \(P \).

Proof. Clearly \(u \) is a (weak) solution of the equation

\[
u_t + u_x = \frac{1}{2} \sqrt{k^2(u^2)}_{xx} \quad \text{in } Q^\pm
\]

and

\[
f = u - \frac{1}{2} \sqrt{k^2(u^2)}_{x} \in L^\infty([0, \infty); BV(\mathbb{R}^\pm)).
\]
The boundedness of u and f implies that u^2 is uniformly Lipschitz continuous with respect to x in Q^0. Hence the following quantities are well defined for each $t > 0$:

$$u^\pm(t), \quad f^\pm(t) \quad \text{and} \quad p^\pm(t) = \frac{1 + u^\pm(t)}{\sqrt{k^\pm}}.$$ Using the equation

$$u_t + f_x = 0 \quad \text{a.e. in } Q^\pm$$

and again the boundedness of f, we obtain as in [DP] that the functions

$$t \rightarrow u^\pm(t)$$

are continuous in $[0, \infty)$.

Next we claim

(3.1) \quad f^+(t) = f^-(t) \quad \text{for almost all } t > 0 .

Indeed, using the asymptotic behavior of $u_n(x,t)$ as $|x| \rightarrow \infty$ we find for $n \rightarrow \infty$,

$$\int_{\mathbb{R}}(u_n(x,t) - \varepsilon_n)dx = \int_{\mathbb{R}}(u_{0n}(x) - \varepsilon_n)dx + \int_{\mathbb{R}}u_0(x)dx$$

and hence

$$\int_{\mathbb{R}}u(x,t)dx = \int_{\mathbb{R}}u_0(x)dx \quad \text{for all } t > 0 ,$$

which expresses conservation of mass. This identity implies

$$0 = \lim_{t \rightarrow 0^+} \left(\int_{-\infty}^{-b} u(x,t)dx + \int_{b}^{\infty} u(x,t)dx - \int_{-\infty}^{-b} u_0(x)dx - \int_{b}^{\infty} u_0(x)dx \right)$$

$$= \int_{0}^{t} (f^+(s) - f^-(s))ds \quad \text{for all } t > 0 .$$

Together with the equations in Q^\pm, equality (3.1) implies the weak form (iii) of Problem P.

It remains to prove

(3.2) \quad u^n|y| = 0 \quad \text{and } |p| \geq 0 \quad \text{for all } t > 0 .

For this purpose we study u_n and p_n in the interval $(-\frac{1}{n}, \frac{1}{n})$. Since k_n changes rapidly there, we make the blow up

$$y = nx \quad \text{for} \quad -\frac{1}{n} < x < \frac{1}{n} .$$

Knowing that the fluxes f_n are uniformly bounded, we obtain

$$|u_n - n k_n u_n(p_n)| \leq C ,$$

i.e.

$$|u_n(p_n)| \leq \frac{C}{n} ,$$
for all \(-1 < y < 1\) and \(t > 0\). This implies that as long as \(u_n(y, t)\) remains bounded away from zero, say \(u_n(y, t) \geq \delta > 0\) for all \(n \in \mathbb{N}\), then

\[
|(p_n)_y(y, t)| \leq \frac{C}{n\delta}.
\]

First suppose \(u^+(t) > 0\) for some \(t > 0\). Then there is a left neighborhood of \(y = 1\) where \(u_n(y, t) \geq \delta > 0\). In that neighborhood (3.3) applies, giving

\[
p_n(y, t) = p_n(1, t) + O\left(\frac{1}{n}\right)
\]

and

\[
u_n(y, t) = p_n(y, t)\sqrt{k_n(y)} - 1 = p_n(1, t)\sqrt{k_n(y)} - 1 + O\left(\frac{1}{n}\right).
\]

Since \(k_n\) is non-increasing, we obtain that \(u_n(y, t)\) remains uniformly bounded away from zero, and hence (3.4), in the entire interval \(-1 \leq y \leq 1\). As a consequence \([p] = 0\).

Next consider \(u^+(t) = 0\). We now have to show \([p] \geq 0\). If \(0 \leq u^-(t) \leq u^+\), we find

\[
[p] = p^+ - p^- \geq \frac{1}{\sqrt{k^+}} - \frac{1 + u^+}{\sqrt{k^-}} = 0.
\]

If \(u^-(t) > u^+\), then \(u_n(y, t) \geq \delta > 0\) in a right neighborhood of \(y = -1\). As above, \((p_n)_y\) is uniformly small as long as \(u_n\) is bounded away from 0, giving

\[
u_n(y, t) = -1 + \sqrt{k_n(y)}\frac{u_n(-1, t) + 1}{\sqrt{k^-}} + O\left(\frac{1}{n}\right)
\]

\[
> -1 + \sqrt{k^-}(u^* + 1) + O\left(\frac{1}{n}\right)
\]

as long as \(u_n(y, t)\) is bounded away from 0. But since the right hand side of the latter inequality vanishes as \(n \to \infty\), we conclude that the inequality holds up to \(y = 1\), and we find \(u^+(t) > 0\) and \([p] = 0\).

4. The comparison principle. We start with some preliminary observations for solutions \((u, f)\) of Problem P. Choosing test functions with support in \(Q^\pm\) we obtain

\[
\int_{Q^\pm} u_t + \int_{Q^\pm} \left(u - \frac{\sqrt{k^\pm}}{2}(u^2)_x \right)_x \zeta_x = 0.
\]

This implies that

\[
u_t + \left(u - \frac{\sqrt{k^\pm}}{2}(u^2)_x \right)_x = 0 \quad \text{a.e. in } Q^\pm
\]

and that

\[
supp(u(t)) \text{ is bounded in } \mathbb{R}.
\]
for all $t \in [0, \infty)$. Using (4.1) and the weak form (iii) in Problem P, we find again
\begin{equation}
[f] = 0 \text{ a.e. in } (0, \infty) .
\end{equation}

Let
\[Q^\delta := \mathbb{R}\backslash(-\delta, \delta) \times (0, \infty) \quad (\text{for } \delta > 0, \text{ fixed}). \]

Applying a Bernstein argument to (4.1) as in [A], and using hypothesis H we find
\begin{equation}
||u_x||_{L^\infty(Q^\delta)} \leq C(\delta) .
\end{equation}

Next we derive an estimate on u_t in Q^δ. Let u be a smooth solution of (4.1), in the sense of the usual ‘porous media’ approximations, and let $\xi: \mathbb{R} \to [0,1]$ be an even C^1 cut-off function satisfying
\[\xi(x) = \begin{cases}
0 & \text{for } 0 \leq x \leq \delta/2 , \\
1 & \text{for } \delta \leq x \leq L , \\
0 & \text{for } x \geq L + 1 ,
\end{cases} \]
for any $L > \delta$. Multiplying (4.1) by $\xi^2 u_t$ gives
\[\int_Q \xi^2 u_t^2 = -\int_Q \xi^2 u_t u_x - \int_Q \xi^2 \sqrt{k} u (u^2)_x - \int_Q \xi^2 \frac{\sqrt{k}}{2} u_{xx} (u^2)_x . \]

Using $u_{xx}(u^2)_x = u(u^2)_x$, the last integral becomes
\[\int_{\mathbb{R}} \xi^2 \frac{\sqrt{k}}{2} u u^2_x \big|_0^\infty - \int_Q \xi^2 \frac{\sqrt{k}}{2} u_t u^2_x . \]

Then (i) of Problem P and (4.4) in $Q^{\delta/2}$ give
\[\int_Q \xi^2 u_t^2 \leq C(\delta) , \]
implying
\begin{equation}
(4.5) \quad u_t \in L^2_{\text{loc}}(\bar{Q}^\delta) .
\end{equation}

We are now in a position to prove:

Theorem 4.1. Let (u_1, f_1) and (u_2, f_2) be weak solutions of Problem P corresponding to initial values u_{01} and u_{02}, respectively. Then $u_{01} \leq u_{02}$ in \mathbb{R} implies $u_1 \leq u_2$ in Q^0.

Proof. Let $\tau > 0$ be arbitrary. In the weak equation for the difference
\[\int_Q \{u_1 - u_2\} \zeta_t + (f_1 - f_2) \zeta_x \} + \int_\mathbb{R} \zeta(u_{01} - u_{02}) = 0 , \]
we take the following test function:
\[\zeta = \xi \psi S_\epsilon(u_1^2 - u_2^2) , \]
where
(i) ξ is an even C^1 cut-off function near $x = 0$:

$$
\xi(x) = \begin{cases}
0 & \text{for } 0 \leq x \leq \delta/2, \\
1 & \text{for } x \geq \delta,
\end{cases} \quad \xi'(x) \geq 0 \text{ for } \delta/2 < x < \delta.
$$

(ii) ψ is a C^1 cut-off function near $t = \tau$:

$$
\psi(t) = \begin{cases}
1 & \text{for } 0 \leq t \leq \tau - \mu, \\
0 & \text{for } \tau \leq t,
\end{cases} \quad \psi'(t) \leq 0 \text{ for } \tau - \mu < t < \tau.
$$

(iii) $S_{\varepsilon} : \mathbb{R} \to [0, 1]$ is given by

$$
S_{\varepsilon}(r) = \begin{cases}
0 & r \leq 0, \\
\frac{r}{\sqrt{r^2 + \varepsilon^2}} & r > 0.
\end{cases}
$$

Here δ, μ and ε are small positive parameters. Note that for $\varepsilon \searrow 0$

$$
(4.6) \quad S_{\varepsilon}(r) \to \chi_{(r>0)} := \begin{cases}
1 & r > 0 \\
0 & r \leq 0
\end{cases} \text{ pointwise in } \mathbb{R}.
$$

Integrating the first term by parts gives, with $Q_+ = \mathbb{R} \times (0, \tau),$

$$
\int_{Q_+} (u_1 - u_2) \xi \psi S_{\varepsilon}(u_1^2 - u_2^2)
= \int_{Q_+} (f_1 - f_2) \psi \left\{ \xi' S_{\varepsilon}(u_1^2 - u_2^2) + \xi S_{\varepsilon}'(u_1^2 - u_2^2)(u_1^2 - u_2^2)_x \right\}
\leq \int_{Q_+} (f_1 - f_2) \psi \xi' S_{\varepsilon}(u_1^2 - u_2^2) + \int_{Q_+} (u_1 - u_2) \psi \xi S_{\varepsilon}'(u_1^2 - u_2^2)(u_1^2 - u_2^2)_x.
$$

For fixed $\mu, \delta > 0$, we first let $\varepsilon \searrow 0$. Using (4.6) we have

$$
(u_1 - u_2)\psi \xi S_{\varepsilon}'(u_1^2 - u_2^2) \to 0 \text{ pointwise in } Q_+.
$$

Hence there results

$$
\int_{Q_+} \xi \psi ((u_1 - u_2)_+ t \leq \int_{Q_+} (f_1 - f_2) \psi \xi' \chi_{\{u_1 > u_2\}}.
$$

Next we let $\mu \searrow 0$. This gives

$$
\int_{\mathbb{R}} \xi (u_1 - u_2)_+(\tau)
\leq \int_0^\tau \left\{ \int_{-\delta}^{\delta/2} (f_1 - f_2) \xi' \chi_{\{u_1 > u_2\}} + \int_{\delta/2}^{\delta} (f_1 - f_2) \xi' \chi_{\{u_1 > u_2\}} \right\}
= : \int_{-\delta}^\delta \{ I_+ + I_- \}.
$$

Let $t \in (0, \tau)$ be chosen such that f^-, f^+ exist. Consider the possibilities:
(i) \(u_1^+ \neq u_2^+ \), say \(u_1^+ > u_2^+ \). Then \(u_1 > u_2 \) in a right neighbourhood of \(x = 0 \) and \(\chi_{(u_1 > u_2)} = 1 \) in \((\delta/2, \delta)\) for \(\delta \) sufficiently small. The pressure conditions \((M_2)\) give \(u_1^+ > u_2^- \): if \(u_1^+ > 0 \) then \([p] = 0 \) implies \(u_1^+ > u_2^- \); if \(u_2^- = 0 \) then \([p] \geq 0\) gives \(u_2^- \leq u^* \), while \(u_1^- > u^* \). Therefore also \(\chi_{(u_1 > u_2)} = 1 \) in \((-\delta, -\delta/2)\). As a consequence
\[
\lim_{\delta \downarrow 0} (I^- + I^+_e) = [f_1] - [f_2] = 0.
\]

(ii) \(u_1^+ = u_2^+ \). Then we need to compare the corresponding fluxes. Suppose \(f_1^+ = f_2^+ \). Then
\[
\sup_{(\delta/2, \delta)} (f_1 - f_2)\chi_{(u_1 > u_2)} \to 0 \quad \text{as} \quad \delta \downarrow 0,
\]
and the same in \((-\delta, -\delta/2)\). Thus again
\[
\lim_{\delta \downarrow 0} (I^- + I^+_e) = 0.
\]
If \(f_1^+ > f_2^+ \), then \((u_1^+)_x < (u_2^+)_x \) and therefore \(u_1 < u_2 \) in \((\delta/2, \delta)\). Thus
\[
I^- + I^+_e = I^- \leq 0 \quad \text{for} \quad \delta > 0, \text{ sufficiently small}.
\]
Finally, if \(f_1^+ < f_2^+ \), then \((u_1^+)_x > (u_2^+)_x \) and \(u_1 > u_2 \) in \((\delta/2, \delta)\). Thus \(\lim_{\delta \downarrow 0} I^+_e = f_1^+ - f_2^+ \). Furthermore, since
\[
(f_1 - f_2)\chi_{(u_1 > u_2)} \leq (f_1 - f_2)\chi_{(\omega)} \quad \text{in} \quad (-\delta, -\delta/2),
\]
for \(\delta \) small enough, we have for any \(\omega > 0 \)
\[
I^- + I^+_e \leq \omega \quad \text{for} \quad \delta < \delta(\omega).
\]
Combining these results we obtain from (4.7)
\[
u_1(\cdot, \tau) - u_2(\cdot, \tau) \leq 0 \quad \text{in} \quad \mathbb{R} \setminus \{0\},
\]
which proves the theorem.

As an immediate consequence we have

Corollary 4.2. Problem \(P \) has at most one solution \((u, f)\).

5. **Oil trapping.** The steady state solutions shown in Figure 3 suggest that oil may be trapped at the interface between coarse and fine material. Indeed, if \(u_0(x) = 0 \) for \(x > 0 \) and if for some \(u^- \in (0, u^*) \)
\[
u_0(x) \leq \left(u^- + \frac{1}{\sqrt{k-}}x \right)_+ \quad \text{for} \quad x < 0,
\]
then the comparison principle guarantees
\[
u(x, t) \leq \left(u^- + \frac{1}{\sqrt{k-}}x \right)_+ \quad \text{for all} \quad (x, t) \in Q^-,
\]
and

\[u = 0 \quad \text{in} \quad Q^+. \]

The following theorem explains trapping in terms of the oil mass. For convenience, let

\[u(x) := \begin{cases}
 \left(u^* + \frac{1}{\sqrt{k}} x \right) & \text{for } x < 0, \\
 0 & \text{for } x > 0,
\end{cases} \]

denote the maximal admissible steady state having \(\tilde{M} \), given by (1.12), as corresponding mass.

Theorem 5.1. Let \(u_0 \) satisfy hypothesis \(H \) and let

\[\int_{-\infty}^x u_0(s)ds \geq \int_{-\infty}^c u(s)ds \quad \text{for } x < 0. \]

Then the solution of Problem \(P \) satisfies

\[\int_{-\infty}^0 u(s,t)ds \geq \tilde{M} \quad \text{for all } t > 0. \]

Proof. Fix any \(\delta > 0 \) and set

\[V_\delta(x,t) = \int_{-\infty}^x u(s,t)ds + \delta \quad \text{for } (x,t) \in \bar{Q}. \]

Then \(V_\delta \in C(\bar{Q}), V(\cdot,t) \in C^1((-\infty,0]) \cup C^1([0,\infty)) \) for all \(t > 0 \), and

\[V_\delta = \delta \quad \text{to the left of the free boundary of } u \text{ in } Q^-, \]
\[V_\delta = \int_{\mathbb{R}} u_0(s)ds + \delta \quad \text{to the right of the free boundary of } u \text{ in } Q^+. \]

As a consequence \(V_\delta \) satisfies

\[V_\delta + V_x - \sqrt{k^\pm} V_x V_{xx} = 0 \quad \text{in } Q^\pm. \]

Setting

\[\sigma(x) := \int_{-\infty}^x u(s)ds \quad \text{for } x \in \mathbb{R}, \]

we have

\[V_\delta > \sigma \quad \text{in } Q_t := \mathbb{R} \times (0,t) \]

for \(t \) sufficiently small. Let

\[t_0 = \sup\{t > 0 : V_\delta > \sigma \quad \text{in } Q_t\}. \]

Below we show \(t_0 = \infty \). Suppose \(t_0 < \infty \). Then there exists \((x_0, t_0) \in Q\) such that

\[V_\delta > \sigma \quad \text{in } Q_{t_0}. \]
We first rule out \(x_0 = 0 \).

If \(x_0 = 0 \), we distinguish the cases

(i) \(u(0^-, t_0) > u^* \). Using the pressure condition \(M_2 \) we have

\[
\frac{\partial V}{\partial x}(0^-, t_0) - \frac{\partial V}{\partial x}(0^+, t_0) = u(0^-, t_0) - u(0^+, t_0) = u^*(u(0^+, t_0) + 1) > u^* ,
\]

while

\[
\frac{dv}{dx}(0^-) - \frac{dv}{dx}(0^+) = u^* .
\]

This contradicts (5.3).

(ii) \(u(0^-, t_0) < u^* \). By continuity there exists \(\varepsilon > 0 \) such that \(u(0^-, t_0) < u^* \) and \(u(0^+, t_0) = 0 \) for \(t_0 - \varepsilon < t < t_0 \). Since \(f^-(t) = f^+(t) \leq 0 \) for almost all \(t \in (t_0 - \varepsilon, t_0) \), see also Section 6, we find from integrating the \(u \)-equation in \((-\infty, 0) \times (t_0 - \varepsilon, t_0)\)

\[
\int_{-\infty}^0 u(s, t_0)ds - \int_{-\infty}^0 u(s, t_0 - \varepsilon)ds = - \int_{t_0-\varepsilon}^{t_0} f^-(t)dt \geq 0 .
\]

Hence

\[
V(0, t_0 - \varepsilon) \leq V(0, t_0) = v(0) ,
\]

which contradicts (5.2).

(iii) \(u(0^-, t_0) = u^* \). Then \(V(0^-, t_0) = v(0) \) as well as

\[
\frac{\partial V}{\partial x}(0^-, t_0) = \frac{dv}{dx}(0^-) = u^* .
\]

Using equation (5.1) locally in \(Q^- \) and the strong maximum principle, we obtain again a contradiction.

Hence \(x_0 \neq 0 \) and \(V(0, t_0) > v(0) \) in \([0, t_0] \). We then apply the comparison principle to equation (5.1) in \(Q_{t_0} \) to find \(V > v \) in \(\mathbb{R} \times [0, t_0] \). This shows that \(t_0 = \infty \). As a consequence \(V > v \) in \((-\infty, 0] \times [0, \infty) \) for any \(\delta > 0 \), which implies the assertion of the theorem.

Similarly one shows

Theorem 5.2. Let \(u_0 \) satisfy hypothesis \(H \) and let

\[
\int_{x}^{\infty} u_0(s)ds \leq \int_{x}^{\infty} a(s)ds \quad \text{for} \quad x \in \mathbb{R} .
\]

Then

\[
u = 0 \quad \text{in} \quad \overline{Q}^+ .
\]
6. Closing remarks. In this section we briefly discuss some qualitative properties of solutions of Problem P.

6.1. Non-uniqueness. In the proof of the comparison principle, implying uniqueness, we have used the pressure condition

\[
[p] \geq 0 .
\]

By means of a counterexample we show here that uniqueness fails if we drop condition (6.1). Let \(u_0 \) satisfy the structural properties

\[
(\tilde{H}) \quad \begin{cases}
 u_0(x) = 0 & \text{if } x > 0 , \ u_0 \not\equiv \bar{u} \text{ in } \mathbb{R} , \\
 \bar{u}(x) \leq u_0(x) \leq (u^* + \delta x)_+ & \text{if } x < 0 \text{ for some } 0 < \delta < \frac{1}{\sqrt{k^-}} .
\end{cases}
\]

Based on the results of Section 5, we expect that the corresponding solution \(u \) of Problem P will have a non-trivial component in \(Q^+ \); i.e. \(u \not\equiv 0 \) in \(Q^+ \). We will construct a second solution \(\tilde{u} \) which solves Problem P, except condition (6.1) and which satisfies \(\tilde{u} \equiv 0 \) in \(Q^+ \). This construction is based on a modification of \(k \). Instead of (1.2) we consider

\[
(6.2) \quad \tilde{k}_n(x) = \begin{cases}
 k^- & \text{for } x < 0 , \\
 \kappa & \text{for } 0 < x < \frac{1}{n} , \\
 k^+ & \text{for } x > \frac{1}{n} .
\end{cases}
\]

where \(0 < \kappa < k^+ < k^- \), and we let \(n \to \infty \).

Theorem 6.1. Let \(u_0 \) satisfy hypotheses \(H \) and \(\tilde{H} \) and let \(u \) denote the unique solution of Problem P. Then

(i) \(u \not\equiv 0 \) in \(Q^+ \);

(ii) there exists a second solution \(\tilde{u} \) of Problem P, except (6.1), which satisfies \(\tilde{u} \equiv 0 \) in \(Q^+ \).

Proof. We first show that \(u \not\equiv 0 \) in \(Q^+ \). Arguing by contradiction, we assume

\[
u(0^+, t) = 0 \quad \text{for all } t > 0 .\]

Using \([p] \geq 0 \) and \(u \geq \bar{u} \) in \(Q \), we conclude

\[
u(0^-, t) = u^* \quad \text{for all } t > 0 .\]

Hence in \(Q^- \) \(u \) solves the problem

\[
(P^-) \quad \begin{cases}
 u_t + (u - \sqrt{k^-} uu_x)_x = 0 & \text{in } Q^- \\
 u(0, t) = u^* & \text{for } t > 0 \\
 u(x, 0) = u_0(x) & \text{for } x < 0 .
\end{cases}
\]

Now observe that \(\tilde{u} := (u^* + \delta x)_+ \) is a supersolution for Problem \(P^- \). Hence the solution \(\tilde{u}(x, t) \) of Problem \(P^- \) with initial data \(u(\cdot, 0) = \tilde{u}_0 \), is decreasing with respect to time and converges to a steady-state solution \(\tilde{u}(x) \). By comparison \(\tilde{u} \geq \bar{u} \) in \(\mathbb{R}^- \), but since \(\bar{u} \) is maximal we have

\[
\tilde{u} = \bar{u} \quad \text{in } \mathbb{R}^- .
\]
Using
\[\bar{u}(x) \leq u(x,t) \leq \bar{u}(x,t) \quad \text{for all} \quad (x,t) \in Q^-, \]
we obtain
\[\lim_{t \to \infty} u(x,t) = \bar{u}(x) \quad \text{uniformly in} \quad x < 0. \]
Combining this result with \(u \equiv 0 \) in \(Q^+ \), we find
\[\lim_{t \to \infty} \int_{-\infty}^{+\infty} u(x,t)dx \to \int_{-\infty}^{+\infty} \bar{u}(x)dx < \int_{-\infty}^{+\infty} u_0(x)dx, \]
which contradicts mass conservation for \(u \).

Next we use (6.2) to explain the construction of \(\bar{u} \). As a first observation we note that the class of steady state solutions of the equation
\[\left(u - \tilde{k}_n \left(\frac{1 + u}{\sqrt{k_n}} \right) \right)' = 0 \quad \text{in} \quad \mathbb{R}, \]
having compact support and satisfying \(M_1 \) and \(M_2 \), has the same structure as the one shown in Figure 3, but with \(u' = \sqrt{\frac{k}{\tilde{k}}} - 1 \) replaced by \(\tilde{u}' = \sqrt{\frac{k}{\kappa}} - 1 \). In particular this class does not depend on \(n \). For \(\kappa \) sufficiently small we find for \(\tilde{u} \), the maximal steady state,
\[u_0 \leq \tilde{u} \quad \text{in} \quad \mathbb{R}. \]
As a consequence, the solution \(\tilde{u}_n \) of the problem
\[
\begin{cases}
u_t + \left(u - \tilde{k}_n \left(\frac{1 + u}{\sqrt{k_n}} \right) \right)_x & \text{in} \quad Q, \\
u(x,0) = u_0(x) & \text{for} \quad x \in \mathbb{R},
\end{cases}
\]
satisfies
\[\tilde{u}_n(x,t) \leq \tilde{u}(x) \quad \text{for all} \quad (x,t) \in Q. \]
In particular
\[\tilde{u}_n \equiv 0 \quad \text{in} \quad Q^+ \]
for all \(n \in \mathbb{Z}^+ \). Finally, letting \(n \to \infty \), \(\tilde{u}_n \) converges along subsequences to a function \(\tilde{u} = \tilde{u}(x,t) \) which satisfies all properties required for Problem P, except (6.1).

6.2. Waiting times and optimal regularity. Numerical simulations reported in [DMN] show that the right free boundary of \(u \) has a ‘waiting time’ when it reaches the permeability discontinuity. The free boundary becomes stagnant there, while the oil saturation increases. It continues whenever the pressure exceeds the entry pressure of the low permeable region.

The following makes this precise.
Theorem 6.2. Let u_0 satisfy hypothesis H and let supp$(u_0) \subset \mathbb{R}^-$. Further, let the solution u of Problem P satisfy $u \not\equiv 0$ in Q^+. Set
\[t_1 := \lim_{\varepsilon \to 0} \sup \{ \tau > 0 : u \equiv 0 \text{ in } (-\varepsilon, \infty) \times (0, \tau) \} \]
and
\[t_2 := \sup \{ \tau > 0 : u \equiv 0 \text{ in } \mathbb{R}^+ \times (0, \tau) \} . \]
Then
\[0 < t_1 < t_2 < \infty \quad (t_2 - t_1 \text{ is the waiting time}) \]
and
\[u(0-, t_1) = 0 , \quad u(0-, t_2) = u^* . \]

Proof. Clearly t_1 and t_2 are well-defined. Continuity of $u^{\pm}(t)$ and M_2 imply directly $t_2 > t_1$ and $u(0-, t_1) = 0$.

Suppose $u(0-, t_2) < u^*$. By continuity, there exists $\delta > 0$ such that $u(0-, t) < u^*$, and thus $u(0+, t) = 0$, for $t_2 \leq t < t_2 + \delta$. Thus $u \equiv 0$ in $\mathbb{R}^+ \times (0, t_2 + \delta)$, contradicting the definition of t_2.

Next we consider the case where the oil initially is positioned in the fine material ($x > 0$). If the initial position is sufficiently close to the interface at $x = 0$, diffusion may drive the oil towards $x = 0$, i.e. against the flow, where it will penetrate the coarse material. This follows from the transformation $y = x - t$, $t = t$ and by considering an appropriate subsolution for the resulting porous media equation, see [G2].

Supposing the oil reaches $x = 0$, we have the following result.

Theorem 6.3. Let u_0 satisfy hypothesis H and let supp$(u_0) \subset \mathbb{R}^+$. Further, let the solution u of Problem P satisfy $u \not\equiv 0$ in Q^-. Set
\[t_1 := \sup \{ \tau > 0 : u \equiv 0 \text{ in } \mathbb{R}^- \times (0, \tau) \} . \]
\[t_2 := \sup \{ \tau > 0 : u(0+, t) = 0 \text{ for } 0 < t < \tau \} . \]
Then
\[0 < t_1 < t_2 \leq \infty . \]
In addition, there exists $t \in (t_1, t_2)$ such that for some $A > 0$
\[u(x, t) = A \sqrt{\tau}(1 + o(1)) \quad \text{as} \quad x \to 0^+ . \]

Proof. By the finite speed of propagation we have $t_1 > 0$. Continuity of $u(0-, \cdot)$ implies $u(0-, t_1) = 0$ and $u(0-, t) \leq u^*$ and hence $u(0+, t) = 0$, for all t in an upper neighbourhood of t_1. Hence $t_2 > t_1$. If $u(0-, t) \leq u^*$ for all $t > 0$, we have $t_2 = \infty$. Since $u \not\equiv 0$ in $\mathbb{R}^- \times (t_1, t_2)$ and $u(0+, \cdot) = 0$ in (t_1, t_2), there exists $t \in (t_1, t_2)$ such that
\[f(t) = f^-(t) = f^+(t) < 0 . \]
Hence, for this \(t \) fixed, setting \(f(t) = -C(\mathcal{C} > 0) \),

\[
 u - \sqrt{k^+} uu_x = -C(1 + o(1)) \quad \text{as} \quad x \to 0^+ ,
\]
giving

\[
 \frac{1}{2} u'^2(x,t) = \frac{C}{\sqrt{k^+}} x(1 + o(1)) \quad \text{as} \quad x \to 0^+ .
\]

\[\square\]

Appendix A. Proof of Lemma 2.1. Let \(\varepsilon_n > 0 \) be such that

\[
 \varepsilon_n = o\left(\frac{1}{n} \right) \quad \text{as} \quad n \to \infty ,
\]

and set

\[
 u_{0n}(x) = \begin{cases}
 \sqrt{u_0^2(x - \frac{1}{n}) + \varepsilon_n^2} & \text{if} \quad x > \frac{1}{n} , \\
 (u_0^2 + \varepsilon_n^2)^{\frac{1}{2}} & \text{if} \quad x = \frac{1}{n} ,
 \end{cases}
\]

where \(u_0^+ = \lim_{x \to 0} u_0(x) \). Since \(|u_{0n}(x)| \leq |u_0(x - \frac{1}{n})| \) for \(x > \frac{1}{n} \), the uniform Lipschitz continuity of \(u_0 \) in \(\mathbb{R}^+ \) implies

\[
 u_{0n} \text{ is uniform Lipschitz continuous in } [\frac{1}{n}, \infty].
\]

Since

\[
 f_0 = u_0 - \frac{1}{2} \sqrt{k^+}(u_0^2)' \quad \text{in} \quad \mathbb{R}^+ ,
\]
\[
 f_{0n} = u_{0n} - \frac{1}{2} \sqrt{k^+}(u_{0n}^2)' \quad \text{in} \quad \left[\frac{1}{n}, \infty \right) ,
\]

the total variation of \((u_0^2)'\) in \(\mathbb{R}^+ \), \(TV_{\mathbb{R}^+}(u_0^2)' \), is bounded, and since \((u_{0n}^2)'(x) = (u_0^2)'(x - \frac{1}{n})\),

(A.1) \[TV_{\left[\frac{1}{n}, \infty \right)}(f_{0n}) \to TV_{\mathbb{R}^+}(f_0) \quad \text{as} \quad n \to \infty .\]

In order to extend \(u_{0n} \) to the interval \([-\frac{1}{n}, \infty] \) we distinguish two different cases: \(u_0^+ > 0 \) and \(u_0^+ = 0 \). At this point we remind the reader that the constant \(u^* \) is defined by

\[
 \frac{1 + u^*}{\sqrt{k^-}} = \frac{1}{\sqrt{k^+}} , \quad \text{i.e.} \quad u^* = \frac{k^-}{k^+} - 1 .
\]

(i) Case \(u_0^+ > 0 \).

We define \(u_{0n} \) in \([-\frac{1}{n}, \frac{1}{n}] \) by the relation \(p_{0n} = p_{0n}(\frac{1}{n}) \) in \([-\frac{1}{n}, \frac{1}{n}] \), i.e.

\[
 u_{0n}(x) = -1 + \sqrt{\frac{k_n(x)}{k^+} \left(1 + \sqrt{(u_0^2)'(x - \frac{1}{n})}^2 + \varepsilon_n^2 \right)} .
\]
In particular, as \(n \to \infty \),

\[
\begin{align*}
 u_{0n}(\frac{-1}{n}) &= -1 + \sqrt{\frac{k^-}{k^+}} \left(1 + \sqrt{(u_0^-)^2 + \varepsilon_n^2} \right) \\
 &\to -1 + \sqrt{\frac{k^-}{k^+}(1 + u_0^+)} = u_0^+ ,
\end{align*}
\]

where we have used, by hypothesis H, \([p_0] = 0 \) if \(u_0^+ > 0 \). Since \(u_{0n}(\frac{-1}{n}) > u_0^- \), there exist \(\delta_n > 0 \) such that

\[
\tag{A.3} u_{0n}\left(\frac{-1}{n}\right) = \sqrt{(u_0^-)^2 + \delta_n^2} .
\]

It follows directly from the construction of \(u_{0n} \) that

\[
\tag{A.4} TV(-\frac{1}{n}, \frac{1}{n}) (f_{0n}) = u_{0n}\left(\frac{1}{n}\right) - u_{0n}\left(\frac{-1}{n}\right) \to [u_0] \text{ as } n \to \infty ,
\]

and

\[
\tag{A.5} f_{0n}\left(\frac{1}{n} + \right) - f_{0n}\left(\frac{1}{n} - \right) = -\frac{1}{2} \sqrt{k^-}(u_0^+)'\left(\frac{1}{n} + \right) = -\frac{1}{2} \sqrt{k^-}(u_0^+)'(0+) .
\]

(ii) Case \(u_0^+ = 0 \).

Since \([p_0] \geq 0 , u_0^+ = 0 \) implies that

\[
0 \leq u_0^- \leq -1 + \sqrt{\frac{k^-}{k^+}} = u^+ .
\]

Hence

\[
(1 + \varepsilon_n)^{\sqrt{k^-}} > \sqrt{k^-} \geq \sqrt{k^+}(1 + u_0^-) ,
\]

and there exist \(\delta_n > 0 \) such that

\[
\begin{cases}
 \delta_n \to 0 \text{ as } n \to \infty \\
 (1 + \varepsilon_n)^{\sqrt{k^-}} > \sqrt{k^+} \left(1 + \sqrt{(u_0^-)^2 + \delta_n^2} \right) \\
 \sqrt{(u_0^-)^2 + \delta_n^2} > \varepsilon_n .
\end{cases}
\]

These two inequalities imply that for some \(\kappa_n \in (k^+, k^-) \)

\[
(1 + \varepsilon_n)^{\sqrt{k^-}} = \sqrt{\kappa_n (1 + \sqrt{(u_0^-)^2 + \delta_n^2})} .
\]

Then there exists \(x_n \in (-\frac{1}{n}, \frac{1}{n}) \) such that

\[
\kappa_n(x_n) = \kappa_n ,
\]

and we define \(u_{0n} \) in \([-\frac{1}{n}, \frac{1}{n}] \) by the relations

\[
u_{0n}(x) \equiv u_{0n}\left(\frac{1}{n}\right) (= \varepsilon_n) \text{ if } x_n \leq x < \frac{1}{n}\]
and
\[p_{0n}(x) \equiv p_{0n}(x_n) = \frac{1 + \varepsilon_n}{\sqrt{k_n}} \quad \text{if} \quad -\frac{1}{n} < x < x_n. \]

By the definition of \(\kappa_n \) and \(p_{0n} \), the latter relation can be written as
\[u_{0n}(x) = -1 + \sqrt{k_n (x_n)^2 (1 + (u_{0n})^2 + \delta_n^2)} \quad \text{if} \quad -\frac{1}{n} \leq x < x_n. \]

In particular we have
\[\text{(A.6)} \quad u_{0n}' \leq 0 \quad \text{in} \quad \left(-\frac{1}{n}, x_n\right) \quad \text{and} \quad u_{0n}\left(-\frac{1}{n}\right) = \sqrt{(u_{0n})^2 + \delta_n^2} \to u_{0n}^- \quad \text{as} \quad n \to \infty, \]

and
\[\text{(A.7)} \quad TV_{(-\frac{1}{n}, x_n)}(f_{0n}) = TV_{(-\frac{1}{n}, x_n)}(u_{0n}) \to |u_0| \quad \text{as} \quad n \to \infty. \]

Since \(|k_n^-| \leq \frac{\varepsilon_n}{n} \) and \(\varepsilon_n = o\left(\frac{1}{n}\right) \) as \(n \to \infty \), and since
\[f_{0n}(x) = \varepsilon_n + \frac{1}{2} \varepsilon_n (1 + \varepsilon_n) \frac{k_n'(x)}{\sqrt{k_n(x)}} \quad \text{if} \quad x_n < x < \frac{1}{n}, \]

it follows that
\[\text{(A.8)} \quad TV_{(x_n, \frac{1}{n})}(f_{0n}) \to 0 \quad \text{as} \quad n \to \infty. \]

In addition, as \(n \to \infty \),
\[\text{(A.9)} \quad f_{0n}\left(\frac{1}{n}^+\right) - f_{0n}\left(\frac{1}{n}^-\right) \to -\frac{1}{2} \sqrt{k_n^+ (u_{0n})'}(0+) \]

and
\[\text{(A.10)} \quad f_{0n}(x_n^+) - f_{0n}(x_n^-) = \frac{1}{2} \varepsilon_n (1 + \varepsilon_n) \frac{k_n'(x_n)}{\sqrt{k_n}} \to 0. \]

Combining (A.6)-(A.10) gives
\[\text{(A.11)} \quad TV_{(-\frac{1}{n}, \frac{1}{n})}(f_{0n}) \to |u_0| \quad \text{as} \quad n \to \infty. \]

Finally we have to define \(u_{0n}(x) \) for \(x < -\frac{1}{n} \). In view of (A.3) and (A.6) it seems natural to set
\[\text{(A.12)} \quad u_{0n}(x) = \sqrt{u_{0n}^2 \left(x + \frac{1}{n}\right) + \delta_n^2} \quad \text{if} \quad x < -\frac{1}{n}. \]

Arguing as in the interval \((\frac{1}{n}, \infty)\), we obtain as \(n \to \infty \)
\[\text{(A.13)} \quad TV_{(\infty, -\frac{1}{n})}(f_{0n}) \to TV_{\infty} - (f_0) \]

and
\[\text{(A.14)} \quad f_{0n}\left(\left(-\frac{1}{n}\right)^+\right) - f_{0n}\left(\left(-\frac{1}{n}\right)^-\right) \to -\frac{1}{2} \sqrt{k_n^- (u_{0n})'}(0^-). \]
Combining (A.1), (A.13) and (A.14) with, respectively, (A.4), (A.5) or (A.9), (A.11), we find
\[TV_\mathbb{R}(f_{0n}) \to TV_\mathbb{R}(f_0) \quad \text{as} \quad n \to \infty. \]

Now, if \(\delta_n = \varepsilon_n \), \(u_{0n} \) satisfies all properties of Lemma 2.1. In general, however, \(\delta_n \neq \varepsilon_n \) and we have to correct the construction of \(u_{0n} \) in \((-\infty, -\frac{1}{n}) \). Since \(u_{0n}(-\frac{1}{n}) > u_{0n}(\frac{1}{n}) \geq \varepsilon_n \), we can still use definition (A.12) in a neighbourhood of \(x = -\frac{1}{n} \). Since \(k_n \) is constant in \((-\infty, -\frac{1}{n}) \), the expression for the flux is simply
\[f_{0n} = u_{0n} - \frac{1}{2} \sqrt{k_n} (u_{0n}^2)' \quad \text{in} \quad (-\infty, -1/n). \]

Therefore it is not difficult to change slightly the definition of \(u_{0n} \) such that \(u_{0n} \geq \varepsilon_n \) in \(\mathbb{R} \) and \(u_{0n}(x) = \varepsilon_n \) for \(-x \) sufficiently large. We leave the details to the reader.

REFERENCES