Quasi-Chemical Approximation for Nonrandomness in the Hole Theory of Polymeric Fluids. 2. Miscibility Behavior of Binary Systems: Polystyrene in Cyclohexane or Methyl Acetate

Hankun Xie* and Erik Nies*

Center for Polymers and Composites, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

Received October 25, 1991; Revised Manuscript Received October 9, 1992

ABSTRACT: The nonrandom mixing version of the Holey Huggins theory for pure components presented in a previous paper is extended to binary mixtures and is applied to the miscibility behavior of the systems polystyrene/methyl acetate and polystyrene/cyclohexane. Comparison with the experimental data shows that the present theory is successful in predicting the miscibility behavior and its pressure dependence for these two systems. For polystyrene/cyclohexane the results of the random mixing and nonrandom mixing theory are comparable. For this system one indeed does not expect that nonrandomness will be very important. For the system polystyrene/methyl acetate the agreement between theory and experiment improves by applying the nonrandom mixing theory, indicating that nonrandom effects are of importance.

I. Introduction

In a previous paper the effects of nonrandom mixing of polymer segments with holes in the Holey Huggins (HH) theory was accounted for by application of the quasi-chemical approximation of Guggenheim. The purpose of this paper is to report on (1) a generalization of the HH theory to polymer blends and polymer solutions and (2) the application to the miscibility behavior of binary systems. The theory is compared to experimental miscibility data at atmospheric and elevated pressure for solutions of polystyrene in methyl acetate and polystyrene in cyclohexane. The results show that the present theory is as good as, or in some respects, better than the original HH and SS theories.

The present theory is regarded as an intermediate but necessary step toward the establishment of an equation of state theory involving polymer systems with, e.g., strong directional interactions. In these systems, considerable deviation from complete randomness may be expected, and this can be handled in a similar fashion as discussed presently. So far, the present theory has already been extended to random copolymer systems and homopolymer/random copolymer blends, which will be presented in a forthcoming paper. The development of an equation of state theory for self-associated polymer systems in which very strong specific interactions play an important role is in progress.

II. Theory

(a) Model System. Consider a binary mixture of monodisperse components A and B. The following parameters characterize the system: \(N_A, N_B \), the number of molecules of component A (B); \(s_A, s_B \), the number of segments of each molecule A (B); \(3c_A, 3c_B \), the number of external degrees of freedom of a molecule A (B); \(M_{0A}, M_{0B} \), the molar mass of component A (B); \(P, V, \) and \(T, \) the pressure, total volume, and temperature of the system. For the sake of convenience, we introduce some other parameters as given below.

\[
\begin{align*}
N & \quad \text{the number of molecules} \\
n & \quad \text{the total number of moles of the mixture} \\
N_A & \quad \text{the number of holes on the lattice} \\
z & \quad \text{the coordination number of the lattice} \\
y & \quad \text{the occupied site fraction, } y = (N_A\delta_A + N_B\delta_B)/(N_A\delta_A + N_B\delta_B + N_B) \\
\phi_A & \quad \text{the segment fraction of component A (B), } \phi_A = N_A\delta_A/(N_A\delta_A + N_B\delta_B) = 1 - \phi_B \\
c_{iA} & \quad \text{the flexibility parameter per segment, } c_{iA} = c_i/s_i \quad (i = A, B) \\
zq_A & \quad \text{the number of external contact sites of each molecule A (B), } zq_i = s_i(z - 2) + 2 \quad (i = A, B) \\
\langle s \rangle & \quad \text{the average number of segments, } \langle s \rangle = (\phi_A/\delta_A + \phi_B/\delta_B)^{-1} \\
\langle c_i \rangle & \quad \text{the average flexibility parameter, } \langle c_i \rangle = \phi_Ac_{iA} + \phi_Bc_{iB} \\
(M_0) & \quad \text{the average molar mass, } \langle M_0 \rangle = \phi_AM_{0A} + \phi_BM_{0B} \\
u & \quad \text{the contact site fraction of component A, } u = N_Azq_A/(N_Azq_A + N_Bzq_B + zN_B) \\
u & \quad \text{the contact site fraction of component B, } u = N_Bzq_B/(N_Azq_A + N_Bzq_B + zN_B) \\
w & \quad \text{the contact site fraction of holes, } w = zN_B/(N_Azq_A + N_Bzq_B + zN_B) \\
q & \quad \text{the total contact site fraction of components A and B, } q = u + v \\
Q & \quad \text{the total number of external contact pairs, } Q = (N_Azq_A + N_Bzq_B + zN_B)/2
\end{align*}
\]

To take nonrandomness of the system into account, we need extra microscopic parameters to describe the number of contacts between different species. For a binary mixture, there are six different kinds of contacts; thus three extra parameters, denoted by \(X_1, X_2, \) and \(X_3 \), are necessary. Their meanings are self-evident when one looks at the number of different kinds of contacts as cited in Table I.

The derivation of the theory is quite similar to that for pure components and is discussed in detail in the Appendix. Here only the main result of the derivation, i.e., the expression for the Helmholtz free energy of the system is presented.

(b) The Helmholtz Free Energy. According to the present theory, the free energy of the system is given by

\[
\begin{align*}
\Delta F & = \frac{1}{2} N_A N_B \phi_A \phi_B zq_A zq_B \left[\phi_A \phi_B - \phi_B^2 \right] - \frac{1}{2} N_A N_B \phi_A \phi_B zq_A zq_B \left[\phi_A \phi_B - \phi_B^2 \right] \\
& \quad + \frac{1}{2} N_A N_B \phi_A \phi_B zq_A zq_B \left[\phi_A \phi_B - \phi_B^2 \right] \\
& \quad + \frac{1}{2} N_A N_B \phi_A \phi_B zq_A zq_B \left[\phi_A \phi_B - \phi_B^2 \right]
\end{align*}
\]
from the Helmholtz free energy, all other thermodynamic explicit. The parameters of the system. This term is also present in the HH theory, behavior, can be derived in a straightforward way.

The next two terms are contributions from the kinetic part of the partition function, was predicted, at least qualitatively. Here, the same analysis is presented for the nonrandom mixing theory and the HH theory. The pure component parameters and intermolecular parameters according to the present theory and the HH theory are summarized in Tables II and III, respectively.

As pointed out by Prigogine, disparity in segmental volume should be limited to approximately 10% to conform to the basic assumptions adopted in the lattice theory. If the segment of PS is taken equal to its molecular repeating unit, the resulting characteristic volumes of PS and MeOAc differ by more than 40%. To conform to the assumption underlying the lattice theory, the segmental molar mass of PS is chosen smaller than the molar mass of the chemical repeat unit. This somewhat arbitrary adjustment is probably an inherent drawback of all “on-lattice” theories. Fortunately, a change in the segmental molar mass does not alter the quality of the equation of state description. Only a change in all molecular parameters proportional to the change in the segmental molar mass is observed. However, changes in the segmental molar mass result in differences in the location of the predicted LCMT miscibility gap relative to the UCMT miscibility gap. For a given value of M_0 (complying with the 10% rule) a set of cross parameters can be estimated from an exact fit of a given UCMT critical point. The location of the predicted LCMT critical point is different for each selected value of M_0.

The value of M_0 for PS shown in Table II offers a good description of the location of both UCMT and LCMT phase behavior. For example, the LCMT spinodal curves calculated with the molecular parameters listed in Tables II and III are shown in Figure 1, along with the experimental cloud points, which are taken to be equal to the binodal points considering the monodispersity of the polymer samples. It is obvious that the present theory gives a better description than the HH theory does. Furthermore, according to the HH theory, it is not possible to improve the location of the LCMT miscibility gap by changing the value of M_0. However, if one notices that the intermolecular parameters used in calculating the LCMT spinodal curves were obtained from the UCMT critical point data, both the present theory and the HH theory should be regarded as satisfactory in describing the miscibility behavior of the system PS/MeOAc. It should not be surprising that the best value of M_0 for the present theory is slightly different from that for the HH theory.

Methyl Acetate and Its Pressure Dependence. Poly- styrene (PS)/methyl acetate (MeOAc) is an interesting system which shows an upper critical miscibility temperature. The relative location of the LCMT miscibility gap with respect to the UCMT miscibility gap ensures that the LCMT is governed by free volume parameters and therefore can be explained by hole theories. The miscibility behavior of this system according to the HH theory has been studied earlier. In that study, the pure component parameters are obtained from the experimental equation of state data of both components, and the intermolecular parameters are determined from a single experimental UCMT critical point. With these parameters, not only a satisfactory description of both UCMT and LCMT phase behavior is obtained but also the pressure dependences of UCMT and LCMT consolute states are predicted, at least qualitatively. Here, the same analysis is presented for the nonrandom mixing theory and the results are compared to those of the HH theory. The pure

<table>
<thead>
<tr>
<th>Table I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enumeration of Contacts in Mixture</td>
</tr>
<tr>
<td>kind of contact pair</td>
</tr>
<tr>
<td>segments a-b or b-a</td>
</tr>
<tr>
<td>segment b-hole or hole-segment b</td>
</tr>
<tr>
<td>segment a-hole or hole-segment a</td>
</tr>
<tr>
<td>segments s-a-a</td>
</tr>
<tr>
<td>segments b-b</td>
</tr>
</tbody>
</table>

\[A/n(s)RT = \phi_A \ln \phi_A/s_A + \phi_B \ln \phi_B/s_B + \]

\[\frac{1}{y} \ln + \frac{1 - X}{1 - y} \ln (1 - y) - \frac{1 - \langle c \rangle}{y} \ln (1 - \langle c \rangle y) - \]

\[\frac{1}{2q} [2u \ln u + 2v \ln v + 2w \ln w - (u - X)] \ln (w - \langle X \rangle - (u - X_1 - X_3) \ln (w - X_1 - X_3) - (w - X_2 - X_3) \ln (w - X_2 - X_3) - 2X_1 \ln X_1 - 2X_2 \ln X_2 - 2X_3 \ln X_3 - \langle c \rangle_2 \{(u^*)^{1/2} - (u_1 - q) \} + \]

\[\frac{1}{2q} (1 - \langle X \rangle)(A\omega^4 - 2B\omega^{-2}) + k_1 \langle c \rangle \ln (k_2(M_0)T)] \] (1)

In eq 1, the first five terms on the right-hand side account for the combinatorial entropy of mixing randomly holes and segments of both components. The following terms in the square brackets are extra contributions due to nonrandom mixing, where X_1, X_0, and X_3 are the values of X_1, X_0, and X_3 derived by the maximization condition in a similar manner as for pure component systems (see Appendix). The next two terms are contributions from the free volume and internal energy. The last term, derived from the kinetic part of the partition function, was originally introduced by Jain and Simha to account for the influence of mixing on the external degrees of freedom of the system. This term is also present in the HH theory, although in the relevant paper it has not been shown explicitly. The parameters k_1 and k_2 are numerical constants, and (M_0) is the average molar mass. Starting from the Helmholtz free energy, all other thermodynamic properties, e.g., the equation of state and miscibility behavior, can be derived in a straightforward way.

III. Applications

(a) Miscibility Behavior of the System Polystyrene/ Methyl Acetate and Its Pressure Dependence. Polystyrene (PS)/methyl acetate (MeOAc) is an interesting system which shows an upper critical miscibility temper-ature (UCMT) at low temperatures as well as a lower critical miscibility temperature (LCMT) at high temper-atures. The relative location of the LCMT miscibility gap with respect to the UCMT miscibility gap ensures that the LCMT is governed by free volume parameters and therefore can be explained by hole theories. The miscibility behavior of this system according to the HH theory has been studied earlier. In that study, the pure component parameters are obtained from the experimental equation of state data of both components, and the intermolecular parameters are determined from a single experimental UCMT critical point. With these parameters, not only a satisfactory description of both UCMT and LCMT phase behavior is obtained but also the pressure dependences of UCMT and LCMT consolute states are predicted, at least qualitatively. Here, the same analysis is presented for the nonrandom mixing theory and the results are compared to those of the HH theory. The pure

<table>
<thead>
<tr>
<th>Table II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Parameters for PS and MeOAc According to the Present Theory and the HH Theory</td>
</tr>
<tr>
<td>theory</td>
</tr>
<tr>
<td>PS</td>
</tr>
<tr>
<td>HH</td>
</tr>
<tr>
<td>MeOAc</td>
</tr>
<tr>
<td>HH</td>
</tr>
</tbody>
</table>

* Experimental data taken from refs 13 and 14.

<table>
<thead>
<tr>
<th>Table III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermolecular Parameters Determined from the UCMT Critical Point of PS($M=179$ kg/mol)/MeOAc</td>
</tr>
<tr>
<td>theory</td>
</tr>
<tr>
<td>PS</td>
</tr>
<tr>
<td>HH</td>
</tr>
</tbody>
</table>

* Experimental data taken from ref 7. By definition, $c_{a-b} = \delta_{a-b}(\omega_{a-b}^*)^{1/2}$ and $v_{a-b} = \sqrt{\delta_{a-b}(\omega_{a-b}^*)^{1/2}}$. component parameters and intermolecular parameters according to the present theory and the HH theory are summarized in Tables II and III, respectively.
masses. From top to bottom the molar mass increases.

The data are presented as \(M \) (in kg/mol) and the theoretical spinodal curves given by the present theory (---) and the HH theory (---). The data are presented as \(T_\text{c}(P) - T_\text{c}(P=0) \).

Mary interest is the pressure dependence of the critical points, since the HH theory has proven successful in this respect. The predicted and experimental pressure dependence of the LCMT and UCMT critical temperatures is shown in Figures 2 and 3. It may be seen that both theories can predict reasonably the pressure dependence of both LCMT and UCMT critical temperatures. In the case of the LCMT critical temperature, the prediction made by the present theory is almost quantitative. Also for the UCMT critical temperature, the present theory gives a better prediction of the pressure dependence, especially at higher molar masses. For the low molar masses, the pressure dependence is not reproduced exactly. Nevertheless the significant change in pressure dependence observed experimentally is also observed theoretically, although at a much lower molar mass. Thus the molar mass dependence is predicted qualitatively. In comparison, the predictions concerning the molar mass dependence according to the HH theory can be regarded to be less satisfactory.

Table IV

<table>
<thead>
<tr>
<th>(M_0) (10^{-3} kg/mol)</th>
<th>(c_s) (10^{-3} m^3/mol)</th>
<th>(u^*) (J/mol)</th>
<th>(t^*) (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>84.16</td>
<td>0.87663</td>
<td>104</td>
</tr>
<tr>
<td>CH</td>
<td>0.985 657 74</td>
<td>1.007 225 0</td>
<td></td>
</tr>
</tbody>
</table>

Table V

<table>
<thead>
<tr>
<th>(\delta_\text{HH})</th>
<th>(\delta_\text{NRMHH})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.985 657 74</td>
<td>1.007 225 0</td>
</tr>
</tbody>
</table>

(b) Pressure Dependence of the UCMT Critical Temperature of the System Polystyrene/Cyclohexane. As another example of the application of the present theory, we will discuss briefly the system PS/cyclohexane (CH). As mentioned before, the HH theory is very successful in predicting the subtle changes in the UCMT critical temperature with pressure of the system PS/CH. The same is true for the present theory. Here, we follow exactly the same procedure as in ref 3. The molecular parameters for the pure components obtained from equation of state data and the intermolecular parameters obtained from a single UCMT consolute point \(M_\text{PS} = 520 \) kg/mol are summarized in Tables IV and V. In this case, the segmental molar mass of PS can be taken equal to that of the chemical repeat unit, because the characteristic volumes of PS and CH are almost equal. The predicted pressure dependence of the UCMT critical temperature is shown in Figure 4 in comparison with the experimental data of Wolf and Geerissen. At first inspection it appears that the nonrandom mixing HH (NRMHH) theory does not predict the UCMT pressure dependence as good as the random mixing theory. However, it should be noted that for the HH theory some extra adjustment has been done. To obtain spinodal curves in better agreement with experimental data, the number of external degrees of freedom for cyclohexane was increased to \(c_{CH} = 1.8 \). For the NRMHH theory no such adjustment was introduced. Much better agreement between theory and experiment can be expected if some adjustment of the \(c \) parameter is
allowed for in the nonrandom mixing theory. However, this option will not be pursued here. Conversely, only qualitative agreement with experiment is obtained for the HH theory if \(c_{\text{CH}} \) is not adjusted. Therefore, it can be concluded that the overall agreement between theory and experiment is improved including nonrandom mixing effects.

IV. Conclusions

The hole theory for the disordered fluid state including nonrandom mixing has been successfully extended to strictly binary systems including homopolymer solutions and mixtures or blends. The comparison presented here was primarily intended to gauge the effects of quasi-chemical approximation on the description and prediction of thermodynamic properties, in particular phase behavior.

For the system PS/CH, which can be considered as a model system for apolar interactions, the NRMHH and HH theories are practically identical. From the equation of state behavior of the pure constituents nonnegligible nonrandom mixing effects are observed. Considering solutions of polystyrene and cyclohexane, the deviations from nonrandomness are also present but appear to be relatively insensitive to composition, which is reflected in the minor influence of nonrandomness on thermodynamic properties related to compositional derivatives, e.g., spinodals, critical conditions, etc.

For the system PS/MeOAc relatively favorable inter-
actions are suggested by the cross interaction parameters in case of random mixing. The expression for the segmental free length takes almost the same form as

\[
l_f = \left(1 - \frac{X_2 + X_3}{1 + u + v}\right) \langle l_i \rangle + \frac{X_2 + X_3}{u + v} \langle l_i \rangle
\]

Also, the definitions of the solid-like and gas-like free lengths \(\langle l_i \rangle \) are similar to those in the pure component theory, viz.

\[
\langle l_i \rangle = \omega^{1/3} - 2^{-1/6} (v_i)^{1/3} = \langle l_i \rangle (v_i)^{1/3}
\]

\[
\langle l_q \rangle = \omega^{1/3} (v_i)^{1/3} = \langle l_q \rangle (v_i)^{1/3}
\]

Figure 4. Pressure dependence of UCM temperature \(T_m \) of PS-(\(M = 800 \text{ kg/mol} \))/CH according to the present theory (-) and the HH (---) theory. Experimental data (○) presented as \(T_m(P) - T_m(P=0) \) are taken from ref 11.

simulation results. Presently, the hole model has not been the subject of such a study. However, for the simple lattice–fluid model in which cell contributions are neglected a comparison with MC results is in progress. The preliminary results show that the quasi-chemical approach presents a very accurate approximation to the exact partition function at densities relevant for pure polymers and mixtures. This is reflected in a successful prediction of, e.g., equation of state behavior and the number and type of segmental contacts. A more detailed comparison will be the subject of a forthcoming paper.

Finally, we remark once more that the present theory is regarded as a starting point for a theory of associating systems. The ultimate aim there is the establishment of connections between thermodynamic equilibrium constants and the equation of state.

Acknowledgment. H.X. wishes to express his appreciation to the Polymer Blends Foundation (SPB) of the Eindhoven University of Technology for financial support, and his sincere thanks to Prof. P. J. Lemstra for his hospitality.

Appendix: Derivation of the Theory for Binary Mixtures

(1) Partition Function. The partition function of the system is given by

\[
Z(N,\phi,\gamma, V,T) = \sum_{X_1,X_2,X_3} Z_{2N}(N,\phi,\gamma, V,T,X_1,X_2,X_3)
\]

where the summation runs over the three \(X \) parameters. The partition function of the subsystem \(X \) can be factorized:

\[
Z_X = g \times \exp(-E_i/kT)
\]

where the parameters \(c_i \) and \(s \) in the pure component theory have been replaced by their average values \(\langle c_i \rangle \) and \(\langle s \rangle \). According to Guggenheim, the combinatorial factor \(g \) reads

\[
g = \frac{N!}{[\langle Q(u) \rangle]! \langle Q(v) \rangle! \langle Q(w) \rangle!}
\]

where the \(X \) parameters \(\langle X \rangle \) are the corresponding values of \(X \), in case of random mixing. The expression for the segmental free length takes almost the same form as for pure components, if only we define \(X \) to be the sum of \(X_2 \) and \(X_3 \).
E_0 now becomes

$$E_0 = Q(u - X_1 - X_3)\eta_{aa} + Q(u - X_1 - X_2)\epsilon_{bb} + 2QX_1\epsilon_{ab}$$

or

$$E_0 = Q\epsilon_{aa} + Q\epsilon_{bb} + Q(2\epsilon_{ab} - \epsilon_{aa} - \epsilon_{bb})X_1 - Q\epsilon_{bb}X_2 - Q\epsilon_{ab}X_3$$

(A.8)

If we define

$$\epsilon_1 = 2\epsilon_{ab} - \epsilon_{aa} - \epsilon_{bb}$$

(A.9)

$$\epsilon_2 = -\epsilon_{bb}$$

(A.10)

$$\epsilon_3 = -\epsilon_{aa}$$

(A.11)

then the internal energy can be expressed as

$$E_0 = Q\epsilon_{aa} + Q\epsilon_{bb} + Q(\epsilon_1X_1 + \epsilon_2X_2 + \epsilon_3X_3)$$

(A.12)

In the above equations, ϵ_{aa}, ϵ_{bb}, and ϵ_{ab} obey Lennard-Jones 6-12 potentials

$$\epsilon_{aa} = \epsilon_{aa}^*(A\omega_{aa}^{-1} - 2B\omega_{aa}^{-2})$$

(A.13)

$$\epsilon_{bb} = \epsilon_{bb}^*(A\omega_{bb}^{-1} - 2B\omega_{bb}^{-2})$$

(A.14)

$$\epsilon_{ab} = \epsilon_{ab}^*(A\omega_{ab}^{-1} - 2B\omega_{ab}^{-2})$$

(A.15)

The different indices in ω_i (i = a, b, ab) in the above equations indicate that these volumes are reduced with respect to different kinds of hard-core volumes.

(2) Maximization of Z_{X_i} If we denote the values of X_i (i = 1, 2, 3) which make Z_X maximum by X_i, we have

$$Z(N,\phi_A, Y, V, T) = Z_2(N, R, Y, V, T, X_1, X_2, X_3)$$

(A.16)

where X_i (i = 1, 3) are determined by

$$\frac{\partial \ln Z_{X_i}}{\partial \omega_i} = 0$$

(A.17)

The logarithm of Z_X reads

$$\ln Z_X = \ln [Q(u - X_1 - X_3)!] + \ln [Q(u - X_1 - X_2)!] + \ln [Q(w - X_2 - X_3)!] + 2 \ln (QX_1)! + 2 \ln (QX_2)! + 2 \ln (X_3)! - 3(c_j)N/S \ln \left[1 - \beta \frac{1 - X_1}{q} \right] + \frac{Q}{kT} \omega_i X_i + \omega_i X_2 + \omega_i X_3 + \text{terms independent of } X$$

(A.18)

where $\beta = 2^{1/6/\omega_{aa}^{-1/3}}$. Note that β (or, more exactly, $\langle \omega^* \rangle$) is a function of X_1, X_2, and X_3 as may be seen later. Combination of eqs A.17 and A.18 yields the following set of equations which determine the values of X_1, X_2, and X_3:

$$(X_1, X_2, X_3)^2 = (u - X_1 - X_3)(v - X_1 - X_2)\eta_{11}$$

$$(X_2, X_3, X_1)^2 = (v - X_1 - X_3)(w - X_1 - X_2)\eta_{22}$$

$$(X_3, X_1, X_2)^2 = (u - X_1 - X_3)(w - X_2 - X_3)\eta_{33}$$

(A.19)

where η_i (i = 1, 2, 3) are given by $\eta_i = \exp(\epsilon_i/2kT)$ and η_{11} through η_{33} are defined as

$$\eta_{11} = \exp \left[-\frac{2(c_j)q}{\epsilon_1(1 - \langle \omega^* \rangle)} \beta \left(1 - \frac{X}{q} \right) \frac{\partial \ln (\omega^*)}{\partial X_1} \right]$$

(A.20)

$$\eta_{22} = \exp \left[-\frac{2(c_j)q}{\epsilon_2(1 - \langle \omega^* \rangle)} \beta \left(1 - \frac{X}{q} \right) \frac{\partial \ln (\omega^*)}{\partial X_2} \right]$$

(A.21)

$$\eta_{33} = \exp \left[-\frac{2(c_j)q}{\epsilon_3(1 - \langle \omega^* \rangle)} \beta \left(1 - \frac{X}{q} \right) \frac{\partial \ln (\omega^*)}{\partial X_3} \right]$$

(A.22)

where $\langle \omega^\star \rangle = \gamma(1 - (s))$, $\gamma = 2/\omega$, and $\eta_i = \eta_i(\langle \omega^* \rangle)^{1/3}$ is the reduced free length. The partial derivatives $\partial (\omega^* / \partial X_i$ in the above equations may be calculated from the definition of $\langle \omega^* \rangle$ (cf. eq A.35).

(3) Determination of X_{i^*}. Following Guggenheim, X_{1^*}, X_{2^*}, and X_{3^*} are determined from the minimization condition

$$\frac{\partial Z_{X^*(0)}}{\partial X_i} = 0 \quad (i = 1, 2, 3)$$

(A.23)

where

$$\ln Z_{X^*(0)} = \ln [Q(u - X_1 - X_3)!] + \ln [Q(u - X_1 - X_2)!] + \ln [Q(w - X_2 - X_3)!] + 2 \ln (QX_1)! + 2 \ln (QX_2)! + 2 \ln (QX_3)! + \text{constant}$$

(A.24)

The resulting equations for the X_{i^*}'s are

$$X_{1^*} = \frac{(u - X_{1^*} - X_{3^*})(v - X_{1^*} - X_{2^*})}{w - (u + v)}$$

$$X_{2^*} = \frac{(v - X_{1^*} - X_{2^*})(w - X_{2^*} - X_{3^*})}{u - (u + v)}$$

$$X_{3^*} = \frac{(w - X_{1^*} - X_{3^*})(w - X_{2^*} - X_{3^*})}{u - (u + v)}$$

(A.25)

or equivalently

$$\frac{(u - (u + v))X_{1^*}}{u - (u + v)} + \frac{(v + w) - u)X_{2^*}}{u - (u + v)}$$

$$\frac{(u - (u + v))X_{1^*}}{u - (u + v)} + \frac{(u + w) - v)X_{3^*}}{u - (u + v)}$$

(A.26)

From the above set of linear equations we obtain the following expressions for X_{2^*} and X_{3^*} in terms of X_{1^*}

$$X_{2^*} = \frac{(w - u)X_{1^*}}{u - (u + v)}$$

$$X_{3^*} = \frac{(u - v)X_{1^*}}{u - (u + v)}$$

(A.27)

Notice that, since the determinant of the set of linear equations (eq A.26) equals zero, there are an infinite number of solutions for X_{1^*}. However, if we consider the total fraction of segment–hole contacts $X^* (X^* = X_{2^*} + X_{3^*})$ and the total contact fraction of polymer segments q, X_{1^*} may be determined by the requirement that the relationship between X^* and q should be the same as that for the pure component. In other words, when we consider the polymer as a whole entity, we should have $X^* = q(1 - q)$, as in the pure component theory. At present, $q = u$
between A-B segments, and between segments of identical molecules, the expression for the internal energy reads

\[-E_i = \frac{X^*}{kT} \]

where we obtain the mixing rules:

\[-E_i/kT = -N(s) \frac{(c_j)}{2T} \left(1 - \frac{X}{q} \right) (A\omega^4 - 2B\omega^{-2}) \] \hspace{1cm} (A.36)

where \(T = T^*/T \) is the reduced temperature and

\[T^* = z(1 - \lambda)(\epsilon^*)/(\mu c_j)R \] \hspace{1cm} (A.37)

Finally, the logarithm of the partition function of the system is given by

\[\ln Z_{conf} = -\lambda \ln \phi_A/s_A - \lambda \ln \phi_B/s_B - \frac{1}{\gamma} \ln \gamma \]

and, thereafter, \(X_2 = \frac{u\omega}{kT} \) and \(X_3 = \frac{\omega}{kT} \).

(4) Appropriate Partition Function. Combination of eqs A.16 and A.2 gives the configurational partition function of the system

\[Z_{conf} = g(N,\phi_A,Y,V,C) \times \exp[-E_0(N,\phi_A,Y,V,C)/kT] \] \hspace{1cm} (A.29)

The combinatorial factor \(g \) has the form

\[g(N,\phi_A,Y,V,C) = \frac{[Q(u-x_1-x_2)]^3}{[Q(c_1-x_1-x_2)]^{2}} \]

According to HH theory, \(c_i \) have the form

\[\ln N_{hh} = N(s) \frac{-\lambda \ln \phi_A/s_A - \lambda \ln \phi_B/s_B - \frac{1}{\gamma} \ln \gamma}{\mu} \]

and the free length per segment is

\[l_t(\phi_A,Y,V,C) = \frac{\gamma^{1/3}}{2} \left(1 - \beta \left(1 - \frac{X}{q} \right) \right) \]

The expression for the internal energy reads

\[-E_i/kT = -N(s) \frac{z(1 - \lambda)}{2qRT} \]

Comparing eq A.33 with the corresponding formulas for the pure component

\[-E_0(N,\phi_A,Y,V,C)/kT = -N(s) \frac{z(1 - \lambda)}{2qRT} \]

we obtain the mixing rules:

\[(u - X_1 - X_3)\epsilon_{bb}^* \mu_{ss}^* + (u - X_1 - X_2)\epsilon_{bb}^* \mu_{bb}^* + 2X_2\epsilon_{bb}^* \]

\[(u - X_1 - X_3)\epsilon_{bb}^* \mu_{ss}^* + (u - X_1 - X_2)\epsilon_{bb}^* \mu_{bb}^* + 2X_2 \epsilon_{bb}^* \mu_{bb}^* = (q - X)^2(c_j)(\mu^*) \]

(4.35)

where \(\epsilon_{bb}^* \) and \(\mu_{bb}^* \) are related to the interaction between segments of identical molecules, \(\epsilon_{ss}^* \) and \(\epsilon_{bb}^* \) are cross interaction parameters related to the interaction between A-B segments, and \(X = X_2 + X_3 \). Note that if

we let \(X_i = X_i^* \) \((i = 1, 2, 3)\) eq A.35 recovers the mixing rules in the HH theory. Using \((\epsilon^*) \) and \((\mu^*) \) defined by eq A.35, the internal energy of the system may be written simply as

\[-E_i/kT = -N(s) \frac{(c_j)}{2T} \left(1 - \frac{X}{q} \right) (A\omega^4 - 2B\omega^{-2}) \]

(5) Helmholtz Free Energy and Equation of State. The free energy of the system is given by

\[A/n(s)RT = \frac{A/n(s)}{\gamma} \ln (\gamma) + \frac{1 - \lambda}{\lambda} \ln (1 - \lambda) \]

and the equation of state of the binary system is given by

\[\ln Z_{conf} = -n(s) \frac{-\lambda \ln \phi_A/s_A - \lambda \ln \phi_B/s_B - \frac{1}{\gamma} \ln \gamma}{\mu} \]

and, thereafter, \(X_2 = \frac{u\omega}{kT} \) and \(X_3 = \frac{\omega}{kT} \).

Formally, eqs A.40 and A.41 are quite similar to the corresponding equations in the pure component theory. However, in the present case, the partial derivatives are much more complicated. Especially, one must be cautious about the reduced parameters, since now \((\epsilon^*) \) and \((\mu^*) \) are functions of \(X_i \) \((i = 1, 2, 3)\) and \(y \), whereas the \(X_i \)'s themselves are functions of \(y \) and \(v \).
By straightforward algebra, one obtains the equation of state of the system in its reduced form

\[
\frac{P_0}{T} = \frac{1}{1 - \beta \left(1 - \frac{\lambda}{q}\right)} + 2 \left(1 - \frac{\lambda}{q}\right)(\tilde{A}\tilde{w} - B\tilde{w}^{-2}) +
\left(m_{21} + m_{31} + \frac{m_{41}}{T} \right) \frac{\partial X_1}{\partial \theta} +
\left(m_{22} + m_{32} + \frac{m_{42}}{T} \right) \frac{\partial X_2}{\partial \theta} +
\left(m_{23} + m_{33} + \frac{m_{43}}{T} \right) \frac{\partial X_3}{\partial \theta}
\]

where

\[
m_{21} = -\frac{z(1 - \langle\alpha\rangle)}{2q(c_p)} \ln \left[\frac{(X_1)^2}{(u - X_1 - X_2)(u - X_1 - X_3)} \right] \quad (A.43)
\]

\[
m_{22} = -\frac{z(1 - \langle\alpha\rangle)}{2q(c_p)} \ln \left[\frac{(X_2)^2}{(v - X_1 - X_3)(w - X_2 - X_3)} \right] \quad (A.44)
\]

\[
m_{23} = -\frac{z(1 - \langle\alpha\rangle)}{2q(c_p)} \ln \left[\frac{(X_3)^2}{(w - X_1 - X_3)(w - X_2 - X_3)} \right] \quad (A.45)
\]

\[
m_{31} = -\frac{1}{1 - \beta \left(1 - \frac{\lambda}{q}\right)} \left[\beta \left(1 - \frac{\lambda}{q}\right) \frac{\partial \ln (\langle\tilde{w}^*\rangle)}{\partial X_1} \right] \quad (A.46)
\]

\[
m_{32} = -\frac{1}{1 - \beta \left(1 - \frac{\lambda}{q}\right)} \left[3\beta - \beta \left(1 - \frac{\lambda}{q}\right) \frac{\partial \ln (\langle\tilde{w}^*\rangle)}{\partial X_2} \right] \quad (A.47)
\]

\[
m_{33} = -\frac{1}{1 - \beta \left(1 - \frac{\lambda}{q}\right)} \left[3\beta - \beta \left(1 - \frac{\lambda}{q}\right) \frac{\partial \ln (\langle\tilde{w}^*\rangle)}{\partial X_3} \right] \quad (A.48)
\]

\[
m_{41} = -\frac{1}{2} \left(1 - \frac{\lambda}{q}\right) \left(A\tilde{w}^{-4} - 2B\tilde{w}^{-2} \right) \frac{\partial \ln \langle\epsilon^*\rangle}{\partial X_1} +
\frac{4(A\tilde{w}^{-4} - B\tilde{w}^{-2})}{\partial X_1} \frac{\partial \ln \langle\tilde{w}^*\rangle}{\partial X_1} \quad (A.49)
\]

The partial derivatives in the above equations may be obtained either analytically or numerically. The way to proceed analytically has been explained in the previous publication. The derivatives \(\frac{\partial X_i}{\partial \theta}\), \(\frac{\partial \langle\tilde{w}^*\rangle}{\partial X_i}\), and \(\frac{\partial \langle\tilde{w}^*\rangle}{\partial X_i}\) for \(i = 1-3\) are obtained from eqs A.19 and A.35, respectively, keeping the relevant parameters constant.

Notice that although the above theory is derived for a binary mixture of homopolymers, it is also valid for polymer solutions.

References and Notes

(6) Myrat, C. D.; Rowlinson, J. S. Polymer 1965, 6, 645.
(16) E.g.: (a) NAG Routine D04AFL, NAG Fortran Library Manual, Mark 15, NAG Ltd., Oxford, U.K. or (b) IMSL Routine D2ERIV, IMSL Mathematical Library, IMSL, Houston, TX.