Observation of spin wave resonance in Ni thin films after adsorption of oxygen

Citation for published version (APA):

DOI:
10.1063/1.1658354

Document status and date:
Published: 01/01/1970

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Sep. 2023
Observation of Spin Wave Resonance in Ni Thin Films after Adsorption of Oxygen*

M. M. P. JANSSEN†

Center for Surface and Coatings Research, Lehigh University, Bethlehem, Pennsylvania 18015

(Received 22 May 1969)

Ni thin films were deposited in ultrahigh vacuum (UHV) onto soft glass substrates. Film thicknesses ranged from 74 to 837 Å. On films in UHV, only the uniform precession mode was observed during the microwave experiments. Admission of gases such as H₂, H₂O, O₂, N₂O, and air caused a lowering of the resonance field of the uniform precession mode. This effect was interpreted earlier as a relief of compressive stress related to surface tension. After adsorption of gases the films were virtually stress free. In the case of O₂, N₂O, and air admission a standing spin wave resonance (SWR) mode \((p = 1)\) slowly developed in films thicker than 400 Å after the lowering of the resonance field of the uniform precession mode was observed. From the fact that in UHV and in the presence of H₂ and H₂O no SWR was found, while development of the first mode was slow in oxygen-containing atmosphere and was thought to be related to the growth of a NiO layer, it may be concluded that spin wave excitation is made possible in this case as a result of surface spin pinning due to ferromagnetic-uniferromagnetic exchange coupling (Meiklejohn and Bean) rather than surface anisotropy (Néel). The surface spin pinning was found to be weak but the intensity of the first mode increased rapidly with film thicknesses above 400 Å. On the basis of the surface spin pinning model proposed by Kittel the exchange constant \(A\) was assigned an average value of 0.74×10⁻⁶ erg/cm².

INTRODUCTION

The vacuum system in which the films were prepared and measured has been described elsewhere.¹ Ni thin films (area 8×30 mm) were evaporated onto extremely well-degassed soft glass substrates (Corning 0211, alkali borosilicate, thickness 0.3 mm) at 25–35°C. The vacuum during evaporation was in the 10⁻⁹ Torr range, deposition rates varied from 40 to 100 Å/min. The nickel source consisted of a well-degassed W wire coated with Ni (99.995%), mounted approximately 80 mm from the substrate and parallel to it. Using this arrangement, the maximum film thickness reached was 837 Å. After evaporation the vacuum dropped to values below 2×10⁻¹⁰ Torr. It is believed that no appreciable gas adsorption takes place under these conditions. Ferromagnetic resonance spectra of the films in UHV were taken as soon as the films were prepared. During measurements the film plane was perpendicular to the static magnetic field. The effects of gas adsorption on the resonance spectra were studied by admission of gases to the system via a fine control valve. During all experiments the films were at room temperature. H₂ and O₂ (impurities less than 2 ppm) and air were dried via a liquid-nitrogen trap; H₂O and N₂O were cleaned by repeated freezing and pumping.

In a previous study² films prepared and measured in UHV were found to be in a state of compressive intrinsic stress. This was concluded from the fact that the values of the resonance fields \(H_{RL}\) were more than 9200 G. Adsorption of O₂, N₂O, H₂, H₂O, and air caused stress relief. [For a stress-free film the resonance equation of the uniform precession mode is \(\omega = H_{RL} - 4\pi M_s\). Taking \(M_s = 490 \text{ emu/cm}^2\), \(\omega = 2\pi (p = 9.3\times10^9 \text{ sec}^{-1})\) and \(\gamma = 2.80\times10^4 \text{ G cm}^2\) \(\text{erg} \text{/cm}^3\) yields \(H_{RL} = 9200 \text{ G}\).] These observations were explained by means of the surface tension and a simple model was proposed to which the observed resonance fields agreed quantitatively. Clearly separated from the stress relief effect was the appearance of a spin wave resonance mode in the spectra of films thicker than 400 Å in atmospheres containing O₂ and N₂O; the latter effect is reported in detail in this paper.

SWR in Ni thin films was earlier observed by Kimura and Nosé.³ Their films were prepared on unheated glass substrates under vacuum conditions of 4×10⁻⁶ Torr; observations were made in air. A 2000-Å thickness film showed 4 SWR peaks. The average value of the exchange coupling constant \(A\) was calculated to be 0.75×10⁻⁶ erg/cm².

Lykken et al.⁴ found SWR in permalloy thin films in the vacuum in which the films had been prepared (approximately 1×10⁻⁷ Torr) as well as in air. They concluded that spin pinning exists in a modest vacuum.

EXPERIMENTAL RESULTS

The results obtained on 16 films ranging in thickness from 74 to 837 Å are summarized in Table I. Films as prepared and measured in UHV show decreasing resonance fields with increasing film thickness, in accordance with the surface tension model that was mentioned before. In the resonance spectra of these ultraclean films only the uniform precession mode

TABLE I. Experimental results.

<table>
<thead>
<tr>
<th>Film thickness (t) (Å)</th>
<th>$H_{p=0}$ (not observed)</th>
<th>$H_{p=1}$ (not observed)</th>
<th>After exposure to H_2 or H_2O (10-100 Torr)</th>
<th>After exposure to O_2, air, or N_2O (atmospheric pressure, long time)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>10 400</td>
<td></td>
<td>8870</td>
<td>280</td>
</tr>
<tr>
<td>113</td>
<td>10 270</td>
<td></td>
<td>9110</td>
<td>220</td>
</tr>
<tr>
<td>118</td>
<td>10 150</td>
<td></td>
<td>9160</td>
<td>200</td>
</tr>
<tr>
<td>169</td>
<td>9 880</td>
<td></td>
<td>9190</td>
<td>290</td>
</tr>
<tr>
<td>204</td>
<td>9 780</td>
<td></td>
<td>9240</td>
<td>200</td>
</tr>
<tr>
<td>267</td>
<td>9 600</td>
<td></td>
<td>9260</td>
<td>140</td>
</tr>
<tr>
<td>402</td>
<td>9 410</td>
<td></td>
<td>9160 7220 1940 0.019 210 390 0.78</td>
<td></td>
</tr>
<tr>
<td>445</td>
<td>9 440</td>
<td></td>
<td>9180 7860 1320 0.031 200 320 0.65</td>
<td></td>
</tr>
<tr>
<td>462</td>
<td>9 380</td>
<td></td>
<td>9260 7940 1260 0.018 220 240 0.67</td>
<td></td>
</tr>
<tr>
<td>477</td>
<td>9 470</td>
<td>9260 (H_2)</td>
<td>9200 7880 1320 0.020 190 310 0.75</td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>9 510</td>
<td>9270 (H_2)</td>
<td>9260 8140 1120 0.046 150 310 0.77</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>9 510</td>
<td>9290 (H_2O)</td>
<td>9260 8250 1010 0.052 150 240 0.76</td>
<td></td>
</tr>
<tr>
<td>574</td>
<td>9 400</td>
<td></td>
<td>9260 8390 870 0.070 210 230 0.71</td>
<td></td>
</tr>
<tr>
<td>657</td>
<td>9 380</td>
<td></td>
<td>9230 8530 700 0.009 190 170 0.75</td>
<td></td>
</tr>
<tr>
<td>808</td>
<td>9 350</td>
<td></td>
<td>9250 8760 490 0.245 150 160 0.79</td>
<td></td>
</tr>
<tr>
<td>837</td>
<td>9 400</td>
<td>9260 (H_2O)</td>
<td>9240 8780 460 0.230 160 170 0.80</td>
<td></td>
</tr>
</tbody>
</table>

a Resonance field (H_{RA}) in G. tion points of the absorption curve.

b Linewidth, defined as the field separation in gauss between the inflec-

$\rho = 0$ was found. After exposure to H_2 (477 and 524 Å films) and H_2O (550 and 837 Å films) the resonance fields shifted towards lower values (stress relief) but no SWR modes appeared. When O_2 was admitted to these films the resonance fields showed a small additional shift and a SWR mode (labeled $\rho = 1$) slowly developed. Labeling $\rho = 1$ of the appearing SWR mode is justified in view of the fact that the surface spin pinning model is accepted for the interpretation of the results of this study. In this model the $\rho = 1$ mode will be the strongest when spin pinning exists at both interfaces. From earlier work the oxidation takes place at both the film/gas and film/substrate interfaces, while this study shows...
that oxidation leads to surface spin pinning. The resonance fields after exposure to oxygen of all but the 74 and 113 Å thickness films were 9200±60 G, indicating that these films were practically stress free. The two thinnest films exhibited lower resonance fields after exposure to oxygen of all but the 74 and 113 Å thickness films. The relatively large linewidths indicate that these films were practically stress free. The development of a SWR mode in continuity of the films. The relatively large linewidths indicate a slightly inhomogeneous residual stress distribution. The development of a SWR mode in all films thicker than 400 Å. The latter development could be observed at 0.74X 10^-6 erg/cm, which is in excellent agreement with the value reported by Kimura and Nose.5

DISCUSSION AND CONCLUSIONS

For the interpretation of spin wave resonance in magnetic thin films, two different models are being used, the surface spin pinning model and the volume inhomogeneity model.6 As indicated before, the surface spin pinning model proposed by Kittel6 has been adopted to explain the results of his study. The main reason for this is that surface effects, which are believed to play the most important role in this work, are the key to the interpretation via the surface spin pinning model. Using the surface spin pinning model, there is no need for assuming a nonuniform distribution of the magnetization normal to the film plane. Such an assumption is a requirement for the volume inhomogeneity model but is unlikely to be valid for films prepared in UHV onto well-outgassed substrates as used in this study.

As pinning mechanisms for the surface spin pinning model the surface anisotropy7 and exchange anisotropy8 have been proposed. Both mechanisms are based on the anisotropic environment of the surface atoms. Surface anisotropy is present at clean or contaminated surfaces while exchange anisotropy exists as a result of the presence of antiferromagnetic material on the surface of ferromagnetic material (for example, NiO on Ni). It appears that on the basis of this study a distinction between the two mechanisms becomes evident: From the fact that clean films in UHV do not show SWR modes, it may be concluded that the surface anisotropy cannot be responsible for the excitation of SWR and does not lead to surface spin pinning. Changes in the surface anisotropy, as will occur in chemisorption.

TABLE II. Effect of exposure time to oxygen on the relative intensity of the spin wave resonance mode $p=1$.

<table>
<thead>
<tr>
<th>Film thickness (t) (Å)</th>
<th>10 min</th>
<th>20 min</th>
<th>30 min</th>
<th>40 min</th>
<th>50 min</th>
<th>∞ time</th>
</tr>
</thead>
<tbody>
<tr>
<td>445</td>
<td>0°</td>
<td>0.007 a</td>
<td>0.013 a</td>
<td>0.017 a</td>
<td>0.018 b</td>
<td>0.031 c</td>
</tr>
<tr>
<td>524</td>
<td>0.909 a</td>
<td>0.014</td>
<td></td>
<td></td>
<td>0.026</td>
<td>0.046 b</td>
</tr>
<tr>
<td>837</td>
<td>0° a</td>
<td>0.010</td>
<td>0.014</td>
<td></td>
<td></td>
<td>0.230 d</td>
</tr>
</tbody>
</table>

* First exposed to H$_2$, next to air.

\[\text{Fig. 2. Relative intensity of spin wave mode } p = 1 \text{ after very long exposure to air as a function of film thickness.} \]

\[\gamma = H_{K} - 4\pi M_s + (2A/M_s)k^2, \]

where A is the exchange coupling constant, k is the wave vector which is equal to πt in which t is the film thickness and p is the mode number. While the SWR modes were still developing, the spacings of the modes $p=1$ and $p=0$ were observed to be constant. Using Eq. (1) the exchange constant A was calculated for all films; the average value for A was found to be 0.74×10^{-6} erg/cm, which is in excellent agreement with the value reported by Kimura and Nose.

\[\text{REFERENCES} \]

The mechanical properties of thin films have been reviewed and questions of film strength and Young's Modulus as a function of film thickness discussed. This paper presents the results of an experimental investigation of the breaking strength and Young's Modulus of vacuum-evaporated polycrystalline copper films in the 700–5000-Å thickness range. Palatnik et al. found that for copper films 15–150-μ thick the strength was independent of thickness although twice that for cold-worked copper. Lawley and Schuster reported the strength independent of thickness for rolled copper foils 2–53-μ thick. Oding and Aleksanyan, however, found that for vacuum-evaporated copper films greater than 1-μ thick the strength decreased by a factor of two over the 1.5–4.6-μ thickness range. No results on breaking strength and Young's Modulus have been reported on thinner copper films.

Experimental techniques used for measuring mechanical properties of thin films have also been reviewed. In this investigation the bulge test was used whereby the film sample is mounted over a hole such that a differential pressure applied to the film produces a deflection. The experimental data of applied pressure and film deflection must be related to stress and strain. It can be shown that for a film of thickness t, bulged by a pressure p, the stress is given by

\[\sigma = \frac{pR_0}{2t}, \]

where \(S_0 \) and \(R_0 \) are the pole stress and radius, respectively. It is of significance that Eq. (1) is independent of the stress-strain mechanism. If the shape of the bulged film is paraboloid (or approximately spherical) the pole radius is

\[R_0 = \frac{\sigma t}{2D}, \]

*Supported by the United States Office of Naval Research.
†Present address: Lehigh University, Bethlehem, Pa.
6 See Table II (445 Å film); after 10 min at 1×10^4 Torr O_2 at least an adsorbed monolayer will be present on the surface.
7 From this it may be concluded that the ferromagnetic–antiferromagnetic exchange anisotropy only leads to surface spin pinning and excitation of spin wave resonance in this case. The surface spin pinning is relatively weak as may be seen from the fact that in films thinner than 400 Å no SWR was found, while the intensity of the appearing SWR mode for films thicker than 400 Å increases rapidly with film thickness (Fig. 2).

ACKNOWLEDGMENT

The author is indebted to Dr. H. Leidheiser, Jr., Director of the Center for Surface and Coatings Research, for many helpful and encouraging remarks.