Extended X-ray Absorption Fine Structure Determination of the Structure of Cobalt In Carbon-Supported Co and Co–Mo Sulfide Hydrodesulfurization Catalysts

Laboratory for Inorganic Chemistry and Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, and Koninklijk/Shell-Laboratorium, Amsterdam, Badhuisweg 3 (Shell Research B.V.), 1031 CM Amsterdam, The Netherlands (Received: April 18, 1990)

The structure of the cobalt present in carbon-supported Co and Co–Mo sulfide catalysts was studied by means of X-ray absorption spectroscopy at the Co K-edge and by X-ray photoelectron spectroscopy (XPS). Thiophene hydrodesulfurization activities were used to measure the catalytic properties of these catalysts. By comparison of the EXAFS and XANES spectra of the catalysts with those of CoS_2 and CoS_3 model compounds, it was concluded that all Co atoms in a catalyst prepared with nitrilotriacetic acid as complexing agent were in the "Co-Mo-S" state, while the Co atoms in a conventionally prepared catalyst were partly present in a CoS_2-like structure and partly in a "Co-Mo-S" structure. The Co atoms in the "Co-Mo-S" state have a distorted 5- to 6-fold sulfur coordination, and on the average, every Co atom is in contact with two Mo atoms at a distance of 2.80 Å. On the basis of these data, the most likely position for the Co atoms is in front of the square sulfur atoms (per Co atom present as Co-Mo-S") is much higher for type I than for type II "Co-Mo-S". Type I "Co-Mo-S" is supposed to have an interaction with the alumina support, while type II is almost free of interactions with the alumina support. In the case of carbon as support, Tøpsøe observed that the "Co-Mo-S" state is the one which resembles the carbon-supported "Co-Mo-S" structures most.

Introduction

Cobalt- or nickel-promoted molybdenum sulfide catalysts supported on alumina are extensively used in the hydrotreatment of petroleum feedstocks. The increasing need for efficient removal of sulfur, nitrogen, and metal contaminants has led to a continuous introduction of in situ carbon-supported Co and Co-Mo sulfide hydrodesulfurization catalysts was studied by means of X-ray absorption spectroscopy at the Co K-edge and by X-ray photoelectron spectroscopy (XPS). Thiophene hydrodesulfurization activities were used to measure the catalytic properties of these catalysts. By comparison of the EXAFS and XANES spectra of the catalysts with those of CoS_2 and CoS_3 model compounds, it was concluded that all Co atoms in a catalyst prepared with nitrilotriacetic acid as complexing agent were in the "Co-Mo-S" state, while the Co atoms in a conventionally prepared catalyst were partly present in a CoS_2-like structure and partly in a "Co-Mo-S" structure. The Co atoms in the "Co-Mo-S" state have a distorted 5- to 6-fold sulfur coordination, and on the average, every Co atom is in contact with two Mo atoms at a distance of 2.80 Å. On the basis of these data, the most likely position for the Co atoms is in front of the square sulfur atoms (per Co atom present as Co-Mo-S") is much higher for type I than for type II "Co-Mo-S". Type I "Co-Mo-S" is supposed to have an interaction with the alumina support, while type II is almost free of interactions with the alumina support. In the case of carbon as support, Tøpsøe observed that the "Co-Mo-S" state is the one which resembles the carbon-supported "Co-Mo-S" structures most.

0022-3654/91/2095-0123$02.50/0 © 1991 American Chemical Society
In the present study, therefore, a detailed data analysis is presented of the EXAFS data of a sulfided Co/C and two Co-Mo/C catalysts, prepared in different ways. One Co-Mo/C catalyst was prepared in the conventional way (two-step impregnation method, Mo phase introduced first); the other one was prepared in a special way to ensure a maximum amount of the “Co-Mo-S” type II structure.14 The X-ray absorption spectra of the catalyst samples are compared with those of pure CoS2 and CoS2 model compounds. A comparison will also be made between the structural characteristics and the thiophene HDS activity of these catalysts.

Experimental Section

Catalyst Preparation. The carbon support was a Norit activated carbon (RX3 extra) having a surface area of 1190 m2g-1 and a pore volume of 1.0 cm3g-1. A Co/C catalyst (41.1 wt % Co) was prepared by pore volume impregnation with an aqueous solution of Co(NO3)2·6H2O (Merck p.a.), followed by drying in air at 383 K (16 h). A series of Co-Mo/C catalysts with Co loading between 0 and 5.5 wt % and Mo loading of 7.5 wt % were prepared via a two-step pore volume impregnation procedure in which the molybdenum phase was introduced first, using an aqueous solution of (NH4)6Mo7O24·4H2O (Merck p.a.), followed by drying in air at 383 K (16 h). Next, the cobalt phase was introduced as described above for the Co/C catalyst. Due to the additional presence of Co, the final Mo content was slightly lower than 7.5%. Precursor catalyst compositions were determined by means of atomic absorption spectroscopy using a Perkin-Elmer 3030 AAS spectrometer.

The carbon-supported “Co-Mo-S” precursor catalyst was prepared by pore volume impregnation using an aqueous solution containing the required amounts of 1.5 wt % Co and 7.7 wt % Mo (Co/Mo = 0.32 mol/mol) and nitrilotriacetic acid (NTA) (NTA/Mo = 1.2 mol/mol).14 In this way a maximum amount of the “Co-Mo-S” structure is ensured. MES analysis showed that this preparation method results in a promoted catalyst in which, after sulfidation, cobalt is exclusively present in the form of CoS2. Furthermore, this “Co-Mo-S” is most probably a “Co-Mo-S” type II structure, which has a minor interaction with the support. The catalyst was denoted as Co-Mo-S/C, to differentiate it from the other promoted catalysts, which will simply be denoted as Co-Mo/C.

Catalytic Activity Measurements. Catalyst samples (0.2 g) were sulfided in a flow of 10% H2S in H2 (flow rate 60 cm3min-1 at atmospheric pressure) for 1 h while increasing the temperature linearly from 293 to 673 K, followed by an extended sulfidation at 673 K for 2 h. In case of the Co-Mo/S/C catalyst, the temperature was increased with one step to 673 K in 2 h and kept constant at 673 K for 1 h, in order to obtain a maximum amount of the Co-Mo-S structure. After sulfidation, the reaction mixture consisting of 6.2 mol % thiophene in hydrogen was introduced at a flow rate of 50 cm3min-1. The temperature and pressure were kept constant at 673 K and 1 atm, respectively. The reaction products were analyzed by on-line gas chromatography. The thiophene conversion measured after 2-h run time was taken to calculate the first-order reaction constant for HDS (kHDS).

EXAFS Measurements. EXAFS spectra were recorded of the following freshly sulfided catalysts: Co(4.1)/C, Co-Mo/C (Co/Mo = 0.73), and Co-Mo-S/C. The oxidative precursor samples were pressed into self-supporting wafers, the thickness x of which was chosen to give an absorbance (μx) of about 2.5, assuring an optimum signal-to-noise ratio. Since activated carbon is difficult to press, a special carbon binder had to be used for the catalyst samples. The presence of this binder did not significantly change the thiophene HDS properties of the catalysts. The wafers were mounted in an EXAFS cell, enabling in situ sulfiding and measurements in different gas atmospheres.15

The sulfidation was carried out in a 10% H2S in H2 flow at a flow rate of 60 cm3min-1 under atmospheric pressure. The temperature was increased linearly from 293 to 673 K (8 Kmin-1 for Co/C and Co-Mo/C and 2 Kmin-1 for Co-Mo-S/C) and kept constant at 673 K for 2 h (Co/C, Co-Mo/C) or 1 h (Co-Mo-S/C). After sulfiding, the samples were cooled to room temperature under flowing helium. Prior to cooling down, only the Co-Mo-S/C catalyst was flushed with helium at 673 K for 15 min. The cell was evacuated at room temperature in order to remove all H2S gas; next it was flushed again with helium. The EXAFS spectra of the cobalt K-edge were recorded in a static helium atmosphere with the sample at liquid nitrogen temperature. CoS2 was used as a model compound. Its preparation has been described in ref 11, and its purity was checked by X-ray diffraction. Phase shifts and backscattering amplitudes from reference compounds were used to analyze the EXAFS contributions. For the Co-S EXAFS signals the Co2+-S coordination in CoS2 was used, for the Co–Co contributions the Ni2+-S coordination in NiO was chosen, and for the Co–Mo contributions in the promoted catalysts we took the Ni2+-Mo6+ coordination in (Co(NH3)6)2Ni(MoS6)2, obtained from Dr. F. W. Baumann, University of Bielefeld, West Germany. The use of a Ni absorber and backscatterer instead of Co is justified since it has been shown16,17 that the phases and backscattering amplitudes of neighboring elements such as Co and Ni hardly differ. The preparation of the reference compound CoS2 has been described in ref 18, and its purity was checked by X-ray diffraction. Supporting wafers of the model and reference compounds were prepared by mixing each compound with the appropriate amount of boron nitride such that the step size μx ~ 1. EXAFS spectra of these compounds were also recorded at liquid nitrogen temperature while keeping the samples in a helium atmosphere.

The EXAFS data were recorded on an EXAFS station 9.0 of the wiggler line of the Synchrotron Radiation Source at Daresbury, UK (2 GeV, 100-250 mA), using a flat Si (220) double-crystal monochromator. The monochromator was detuned to 50% intensity in order to eliminate the presence of higher harmonics in the X-ray beam. The EXAFS spectrum of the CoS2 model compound was recorded at the EXAFS station of beam line X-11 A of the NSLS at Brookhaven (ring energy 2.5 GeV, ring currents 50-100 mA). This EXAFS beam line is equipped with a Si(111) monochromator, which was detuned to 50% of the primary intensity. Of each sample typically two scans were recorded, which were averaged in the data analysis procedure.

X-ray Photoelectron Spectroscopy (XPS). XPS spectra of the sulfided catalysts were recorded on an AEI ES 200 spectrometer equipped with an Al anode (1486.6 eV) and a spherical analyzer operating at a pass energy of 60 eV. In order to avoid contact of the sulfided catalysts with air, a special sulfiding reactor was used19 which allowed transfer of the samples to a N2-flushed glovebox attached to the XPS apparatus without exposure to air. After sulfidation, under exactly the same conditions as described above, the catalyst samples were flushed with purified He for 30 min at 673 K and subsequently cooled to room temperature. The samples were mounted on the specimen holder by means of double-sided adhesive tape. Spectra were recorded at 293 K in steps of 0.1 eV; the pressure was lower than 1.3 × 10-8 Pa.

The C 1s peak (284.6 eV) was used as an internal standard for binding energy calibration. Curves were integrated by using a linear baseline. The Mo3d to C(1s) photoelectron intensity ratios were used to measure the degree of dispersion of the molybdenum sulfide phase on the support. Theoretical intensity ratios were calculated according to the quantitative XPS model described by Kuipers,20 electron mean free paths according to Seah,21 and

(21) Seah, M. P.; Densh, W. A. Surf. Interface Anal. 1979, 1, 2.
TABLE I: XPS Results of the Sulfided Co-Mo/C and Co-Mo-S/C Catalysts

<table>
<thead>
<tr>
<th></th>
<th>Co-Mo/C</th>
<th>Co-Mo-S/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPS binding energies, eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co 2p_{3/2}</td>
<td>779.4</td>
<td>778.6</td>
</tr>
<tr>
<td>S 2p</td>
<td>162.4</td>
<td>162.5</td>
</tr>
<tr>
<td>ΔE(Co 2p_{3/2} - S 2p)</td>
<td>617.0</td>
<td>616.1</td>
</tr>
<tr>
<td>Mo 3d_{5/2}</td>
<td>229.3</td>
<td>229.1</td>
</tr>
<tr>
<td>quantitative results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{Mo} / I_{Co}</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>MoS_2 particle thickness, nm</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>I_{Co} / I_{Mo}</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>S/(Co + Mo), mol-mol^{-1}</td>
<td>1.4</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Experimental Mo 3d to C 1s intensity ratio. Experimental Co 2p to C 1s intensity ratio. The total sulfur amount was corrected for the sulfur uptake of the carbon support itself (I_{Co} / I_{Mo} = 0.003).

RESULTS

Catalytic Properties. The thiophene HDS reaction rate constants (k_{HDS}) of the promoted catalysts are represented in Figure 1 as a function of their Co/Mo atomic ratios. Since the Co-Mo-S/C catalyst (7.7 wt % Mo) contains about the same Mo content as the Co-Mo/C catalysts (7.5 wt % Mo), a direct comparison can be made. From Figure 1 it is apparent that the HDS activity of the Co-Mo-S/C catalyst is almost twice that of the conventionally prepared Co-Mo/C catalyst at Co/Mo = 0.7, which, fortuitously or not, is about the same factor as between the thiophene HDS activities of the Al,O,-supported "Co-Mo-S" type I and II structures reported by Candia et al. The maximum in HDS activity of the Co-Mo-S/C catalysts is situated at a Co/Mo atomic ratio of about 0.7. At higher Co contents the HDS activity decreases fast, resembling that of the Co(4.1)/C catalyst which has the highest sulfur concentration, as was to be expected on the basis of its lower Co/Mo ratio. But the observed S/(Co + Mo) ratios of respectively 1.4 and 2.1 for the Co-Mo/S/C catalysts are different from the ratios of respectively 1.58 and 1.76, calculated on the basis of a CoS + MoS_2 stoichiometry. Why this is the case is not clear. The experimental S/(Co + Mo) ratio for Co-Mo/S/C is lower than the calculated one, which might point to a relatively high amount of cobalt sulfide at the outer part of the catalyst support grains. Such a maldistribution has been observed before in Co/C catalysts. The Co-Mo/C catalyst, with its relatively high Co loading, might contain separate cobalt sulfide (as substantiated by the EXAFS results, see below), which is preferentially present at the outer part of the support grains. Why the S/(Co + Mo) ratio for the Co-Mo-S/C catalyst is higher than expected is not clear. MES analysis had shown that this catalyst exclusively contains the "Co-Mo-S" structure, so that a S/(Co + Mo) = 2.1 ratio can only be explained if the cobalt atoms are present in a CoS_2 type stoichiometry. Surprisingly, the XPS results show that the Co/S intensity ratio is the same for both samples. Since it

(22) Scofield, J. H. J. Electron Spectrosc. 1976, 8, 129.
TABLE II: Crystallographic Data and Fourier Transform Ranges for the Reference Compounds and the CoS₄ Model Compound

<table>
<thead>
<tr>
<th>compound</th>
<th>crystallographic data</th>
<th>Fourier transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coordination</td>
<td>Rₑ Å</td>
</tr>
<tr>
<td>CoS₄</td>
<td>Co-S</td>
<td>2.315</td>
</tr>
<tr>
<td>NiO</td>
<td>Ni-Ni</td>
<td>2.966</td>
</tr>
<tr>
<td>((C₆H₅)₄P)₂Ni(MoS₄)₂</td>
<td>Ni-Mo</td>
<td>2.228</td>
</tr>
<tr>
<td>CoS₄</td>
<td>Co(o)-S</td>
<td>2.127</td>
</tr>
<tr>
<td></td>
<td>Co(t)-Co(t)</td>
<td>2.227</td>
</tr>
<tr>
<td></td>
<td>Co(t)-Co(t)</td>
<td>2.359</td>
</tr>
<tr>
<td></td>
<td>Co(t)-Co(t)</td>
<td>2.505</td>
</tr>
<tr>
<td></td>
<td>Co(t)-Co(t)</td>
<td>3.474</td>
</tr>
<tr>
<td></td>
<td>Ni-S</td>
<td>3.543</td>
</tr>
</tbody>
</table>

*Coordination distance. *Coordination number. *Weight factor in the Fourier transformation. *No direct inverse transformation has been applied on these data. See text for further comment. *(t) and (o) denote a tetrahedral and an octahedral cobalt atom, respectively. The ratio of tetrahedral to octahedral Co atoms is 8 to 1.

Figure 3. Raw EXAFS data and Fourier transforms of the reference compounds: (a, b) CoS₄ and (c, d) NiO.

is especially the Co/C ratio for the Co–Mo–S/C catalyst which is abnormally high, this result might indicate that during preparation of the Co–Mo–S/C catalyst Mo–Co–NTA complexes are preferentially deposited at the outside of the carbon support grains. Additional investigations are clearly needed.

EXAFS Spectral Characteristics. The EXAFS functions (χ(k)) were obtained from the X-ray absorption spectra by standard procedures. Cubic spline routines were used to remove the background. Normalization was performed by division of the edge height. In Figure 2 the original EXAFS functions of the three catalysts together with that of the CoS₄ model compound are shown. The spectra of the reference compounds were processed in the same way as the catalyst samples, resulting in the EXAFS functions as displayed in the Figures 3a,c and 4a. Since the Co K-edge EXAFS spectra contained a Ni impurity (probably present in the beryllium windows of the EXAFS cell), the EXAFS data could only be used up to k = 12 Å⁻¹.

To obtain phase shifts and backscattering amplitudes, the EXAFS spectra of the reference compounds were Fourier-transformed over the largest possible range in k space. To avoid cutoff effects, kₘᵢₓ and kₘᵦ were chosen in nodes of the EXAFS function. In Figures 3b,d and 4b the Fourier transforms of the reference compounds are shown. An inverse transformation over a limited range in r space produced the EXAFS functions for the phase shift and backscattering amplitude of the desired absorber-scatterer pair. Table II presents the crystallographic data and the Fourier transform ranges of the reference compounds. For the ((C₆H₅)₄P)₂Ni(MoS₄)₂ compound no direct inverse transformation on the Ni–Mo peak could be applied since this peak was overlapped by the nearby Ni–S contribution; see Figure 4b. Hence, a different procedure was followed. The Ni–S first-shell contribution to the experimental data was calculated by using the phase shift and backscattering amplitude of the Co–S

EXAFS of Co/C and Co–Mo/C HDS Catalysts

Figure 5. Absolute Fourier transforms (k^2-weighted, $\Delta k = 3.0-10.9 \, \text{Å}^{-1}$) of the Co$_8S_8$ model compound and the sulfided Co/C, Co–Mo/C, and Co–Mo–S/C catalysts.

Figure 6. Fourier transform (k^2, $k = 3.0-10.9 \, \text{Å}^{-1}$) of the Co$_8S_8$ model compound and the sulfided Co/C, Co–Mo/C, and Co–Mo–S/C catalysts, showing in detail the first and second peaks: (a) absolute FT, (b) imaginary FT.

both the absolute (Figure 6a) and the imaginary part (Figure 6b) of the data characterizing Co$_8$S$_8$, Co/C, Co–Mo/C, and Co–Mo–S/C are plotted over a smaller range of r values. The imaginary part of the Fourier transform (Figure 6b) shows the separate Co–S and Co–Co(1) coordinations which cannot be discerned in the absolute part of the FT (Figure 6a). It appears that the Co–S peak amplitude increases in the order Co$_8$S$_8$ < Co/C < Co–Mo/C < Co–Mo–S/C, while the Co–Co(1) peak amplitude decreases in the same order. It is striking in Figure 6b that the peak positions of the imaginary parts of the FT's of the Co–S and the Co–Co(1) coordinations are nearly equal in the Co$_8$S$_8$, Co/C, and Co–Mo/C samples. Since these two contributions together compose the first peak in the absolute part of the FT, the observed shift of the latter peak to lower r values for the catalyst samples, therefore, can be fully explained by the increase in the Co–S peak amplitudes and the simultaneous decrease in the Co–Co(1) peak amplitudes. Hence, these results stress the importance of studying both the imaginary part and the absolute part of the Fourier transform. From Figure 6 it is furthermore clear that the Co–Co(2) coordination is not present in the Co–Mo–S/C catalyst, in contrast to the Co/C and the Co–Mo/C samples. On the other hand, the Co–Mo–S/C catalyst shows an additional peak at about 2.8 Å which is not present in the other three samples and, consequently, might be ascribed to additional Mo backscatterers.

EXAFS Data Analysis. The data analysis was carried out in two stages. The first stage comprised of isolating the first peak (Co–S and Co–Co(1)) in the FT (k^2-weighted, the range was taken from about 3 to 11 Å$^{-1}$, depending on the nodes of the EXAFS function). The inverse Fourier transformation was taken over the r range between 0 and about 2.7 Å, depending on the nodes in the Fourier transforms (imaginary as well as absolute part). The Co–S and Co–Co(1) contributions in the resulting EXAFS functions were subsequently fitted by using the Co–S and Ni–Ni
EXAFS functions derived from the reference compounds. In the second stage, an inverse Fourier transformation was taken over the space was done with application of both weighting leads to an underestimation of dependence of the backscattering amplitude of low-Z elements (like S) is different from high-Z elements (like Co and Mo). The backscattering amplitude of the low-Z elements becomes very small at \(k > 7 \AA^{-1} \), certainly in comparison with the amplitude of high-Z scatterers, which is still significant at higher \(k \) values.\(^\text{16}\) Application of only \(k^3 \) weighting leads to an underestimation of the contribution of low-Z elements. Moreover, optimizing \(k^1 \) and \(k^3 \) fits both in \(k \) and \(r \) space results in a better decoupling of \(N \) (coordinated number) and \(\Delta E_0 \) (Debye-Waller factor) as well as \(R \) (coordinating distance) and \(\Delta E_0 \) (inner potential correction) and therefore leads to a more reliable set of parameters.\(^\text{34}\)

In some cases the EXAFS coordination numbers \(N \) obtained in the data analysis had to be corrected for the difference in distance between the absorber-backscattering pair of the reference shell and the shell to be analyzed. This is due to the factor \(\exp(-2R/\lambda) \) in the EXAFS formula with \(\lambda \) the photoelectron mean free path.\(^\text{35}\) The real coordination number \(N \) therefore is \(N = N_0 \exp(2(R - R_{\text{cal}})/\lambda) \). \(\lambda \) was taken to be equal to 5 \(\AA \), which is a reasonable approximation above \(k = 3 \AA^{-1} \).

The final results of the multiple-shell fitting procedures are shown in Figure 7. (The results are only shown with \(k^2 \) weighting; the data with \(k^1 \) weighting are omitted for sake of superfluity.)

The agreement between the primary EXAFS and the fits both in \(k \) and \(r \) space is entirely satisfactory. The structural parameters obtained with these EXAFS data analysis procedures are presented in Table III. This table shows a decrease of the Co-Co(1) and Co-Co(2) coordinations in the order of CoS\(_8\), Co/C, and Co-Mo/C and a complete absence for Co-Mo-S/C; in the latter sample a Co-Mo coordination could be analyzed. This is further illustrated in detail in Figure 8a, where the curves represent EXAFS data obtained after subtraction of the Co-S contribution (calculated for each sample with the coordination parameters as given in Table III) from the isolated EXAFS functions. Therefore, the two peaks in the Fourier transform are due to the Co-Co(1) and the Co-Co(2) coordinations. Details for the Co-Mo coordination in the Co-Mo-S sample are given in Figure 8b, in both \(k \) space and \(r \) space. The solid line in these figures represents the difference data between the isolated EXAFS and the Co-S contribution calculated with the coordination parameters given in Table III. The analyzed Co-Mo contribution is given in Figure 8b,c with dotted lines. No clear indication of a Co-Mo coordination could be observed in the Co-Mo/C catalyst, possibly because it is strongly overlapped by the Co-Co(2) peak, as well as the Co-S plus Co-Co(1) peak.

It is now possible to estimate the statistical significance of the Co-Mo contribution in the Co-Mo-S/C sample. The noise amplitude in the raw EXAFS data of this sample (see Figure 2d) can be determined to be \(5 \times 10^{-3} \) at \(k = 11 \AA^{-1} \). The signal amplitude of the Co-Mo EXAFS presented in Figure 8b amounts to \(10^{-2} \) at \(k = 6 \AA^{-1} \), leading to a \(S/N = 2 \) which is above the detection limit.

Discussion

To answer the question about the role of Co in Co-Mo catalysts, we must first discuss the structure of the catalytic phases present on the support. To that end we will discuss our EXAFS results shell by shell in the order as presented in Table III, starting with the Co-S shell and ending with the Co-Mo shell. The catalysts will be compared among themselves and with the CoS\(_8\) model compound. Having analyzed the EXAFS and XPS data, we will use the resulting information to construct a geometric model of the location of the Co promoter atoms at the edges of the MoS\(_2\) crystallites. All the structural results will finally be used to explain the catalytic activities of the Co-promoted carbon-supported MoS\(_2\) catalysts.

Co-S Coordination

The three nearest Co-S coordinations in the CoS\(_8\) model compound were fitted by using one overall Co-S coordination, and the results should be compared with the average Co-S coordination distance and coordination number obtained from the crystallographic data (Table II). The theoretical average Co-S coordination number is \(N = 8/9 \times 4 + 1/9 \times 6 = 4.22 \), while the theoretical average Co-S distance as determined by EXAFS is \(R = [8/9 \times (2.127 + 3 \times 2.227) + 1/9 \times 6 \times 2.359]/4.22 = 2.228 \AA \). Comparing these data with the EXAFS results \(N = 4.8 \) and \(R = 2.21 \AA \) (Table III), the agreement is good. Hence, the use of one overall Co-S coordination is justified.

The EXAFS data analysis revealed that the Co-S coordination number increases in the order CoS\(_8\) < Co/C < Co-Mo/C < Co-Mo-S/C. Apparently, the cobalt atoms in the freshly sulfided catalysts have a higher sulfur coordination than those in CoS\(_8\). Taking into account a 20% absolute inaccuracy of the coordination number, the Co-S coordination numbers of 6.2 and 6.3 of the sulfided Co-Mo/C and Co-Mo-S/C catalysts, respectively, point to a 5-, 6-, or 7-fold sulfur surrounding of the cobalt atoms. A seven coordination of first-row transition metal ions has only been observed in very special cases, however. For instance, Lewis and Fay published the structure of monochlorotitanium tris(N,N-dimethylthiocarbamate), in which the titanium atom is surrounded by a chlorine atom at 2.31 \(\AA \) and six sulfur atoms at an average distance of 2.51 \(\AA \).\(^\text{24}\) As to be expected for such a high coordination these M-S distances are much larger than our Co-S distance of 2.22 \(\AA \). The coordination numbers observed for the Co-Mo/C and Co-Mo-S/C catalysts thus point to a 6-fold (may be 5-fold) sulfur coordination by the Co atoms. It is remarkable that the Co-S coordination number of the sulfided Co/C catalyst is higher than that of CoS\(_8\). For, if small CoS\(_8\) crystallites with a relatively large surface area were present in this catalyst, one

Figure 7. k^2-weighted fits in k and r space. Solid lines represent isolated EXAFS functions, while the sum of the calculated Co-S, Co-Co(1), Co-Co(2), and Co-Mo shells is given by dotted lines. The Fourier transform ranges in k space are shown in brackets. (a, b) Co$_2$S$_4$ (4.0–10.2 Å$^{-1}$), (c, d) Co/C (4.0–9.1 Å$^{-1}$), (e, f) Co-Mo/C (3.9–10.2 Å$^{-1}$), and (g, h) Co-Mo-S/C (3.9–9.3 Å$^{-1}$).

would expect a lower average coordination number than in bulk Co$_2$S$_4$. This is illustrated by our EXAFS study of a sulfided Mo/C catalyst, in which we obtained a Mo–S coordination number clearly below 6, the value for bulk MoS$_2$.\(^{(37)}\)\(^{(38)}\) XPS measurements on sulfided Co/C catalysts by Vissers et al.\(^7\) showed atomic S-to-Co ratios of 1.3 to 1.5, much higher than the theoretical value of 0.89 for Co$_2$S$_4$. Having only XPS data available, these authors explained this excess of sulfur as resulting from the deposition

of sulfur in the micropores of the carbon support, but it is certainly possible that all sulfur is associated with the cobalt atoms. It might well be that the Co atoms at the surface of the CoS₈ crystallites have adsorbed H₂S to fill the vacancies. In this way the XPS results would be in line with the EXAFS findings.

Concerning the Co–S coordination distance in the samples studied, it is noteworthy that this distance remained the same (2.22 ± 0.01 Å), regardless of the Co–S coordination number. Almost the same value (2.23 Å) has been measured for a sulfided Co-Mo/Al₂O₃ catalyst by Topsoe et al.39 For the Co-Mo/C and Co-Mo-S/C catalysts, in which the Co atoms seem to be coordinated by six sulfur atoms, the Co–S distance of 2.22 Å is even more remarkable since 6-fold octahedrally coordinated Co in cobalt sulfides has significantly longer Co–S distances. For instance, 2.33 Å in CoS₂, 2.32 Å in CoS₃, 2.40 Å in Co₉S₈ and CoS₄, and 2.36 Å in Co₉S₈ (Table IV). In fact, a Co–S distance of 2.22 Å is typical for a 4- or 5-fold Co–S coordination. Thus, the tetrahedral Co atoms in Co₉S₈ have Co–S distances of 2.13 and 2.23 Å and square-planar Co coordination complexes have Co–S distances of 2.15–2.17 Å,44 while for 5-fold sulfur coordinated square-pyramidal Co complexes four short Co–S distances in the range of 2.14–2.21 Å and one long Co–S distance of about 2.4 Å have been measured.45 Evidently, there is a conflict between the Co–S coordination distances and coordination numbers of the Co₉S₈/C and Co-Mo/S/C catalysts. Since the reliability of distances measured by EXAFS is much higher than that of coordination numbers, and also since the reliability of the measured distances is good enough to be able to distinguish between 4- and 5-fold S coordination on the one hand and 6-fold S coordination on the other hand, we feel that the only way to resolve this discrepancy is to assume that the cobalt atoms have a distorted 6-fold coordination. Probably there are four short Co–S distances in a square-planar or square-pyramidal coordination, and two additional sulfur atoms at somewhat longer distance. To check this suggestion, we reanalyzed the EXAFS spectrum under the assumption that there are two kinds of Co–S distances. The results of this analysis are presented under Model B in Table V. For comparison, the results of the analysis with equal Co–S distances are also presented in Table V under model A. The reanalysis

![Fourier Transform](image)

Figure 8. (a) Magnitude of Fourier transform (k³, Δk = 4.3–9 Å⁻¹) of EXAFS difference data, obtained after subtracting the best fit Co–S contribution from the isolated EXAFS functions of CoS₈ (---), Co/C (--), Co-Mo/C (--), and Co-Mo-S (-----). (b) Difference EXAFS data (k³x(k)) for the Co-Mo-S/C sample obtained after subtracting the best fit Co–S from the isolated EXAFS data (solid line) and best fit Co–Mo contribution (dotted line) and (c) the corresponding Fourier transforms (k³, Δk = 4–9.2 Å⁻¹, Ni–Mo phase corrected).

TABLE IV: Crystallographic Co–S and Co–Co Distances in Cobalt Sulfides

<table>
<thead>
<tr>
<th>compound</th>
<th>distances, Å</th>
<th>Co–S*</th>
<th>Co–Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoS₈</td>
<td>2.13</td>
<td>2.36</td>
<td>2.50</td>
</tr>
<tr>
<td>CoS₉</td>
<td>2.23</td>
<td>3.47</td>
<td>3.54</td>
</tr>
<tr>
<td>β-CoS₈</td>
<td>2.33</td>
<td>2.55</td>
<td>40</td>
</tr>
<tr>
<td>γ-NiS₄</td>
<td>2.26</td>
<td>2.53</td>
<td>41</td>
</tr>
<tr>
<td>CoS₉, CoS₃</td>
<td>2.19</td>
<td>2.40</td>
<td>3.33</td>
</tr>
<tr>
<td>CoS₂</td>
<td>2.32</td>
<td>3.91</td>
<td>49</td>
</tr>
</tbody>
</table>

*With NiS millerite structure. The corresponding distances for γ-CoS should be close to those of NiS millerite.

TABLE V: Structural Parameters for Co–Mo–S/C

<table>
<thead>
<tr>
<th></th>
<th>Co–S</th>
<th>Co–Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>R, Å</td>
</tr>
<tr>
<td>model A</td>
<td>6.2</td>
<td>2.21</td>
</tr>
<tr>
<td>model B</td>
<td>4.4</td>
<td>2.18</td>
</tr>
</tbody>
</table>

Concerning the Co–S coordination distance in the samples studied, it is noteworthy that this distance remained the same (2.22 ± 0.01 Å), regardless of the Co–S coordination number. Almost the same value (2.23 Å) has been measured for a sulfided Co-Mo/Al₂O₃ catalyst by Topsoe et al.39 For the Co-Mo/C and Co-Mo-S/C catalysts, in which the Co atoms seem to be coordinated by six sulfur atoms, the Co–S distance of 2.22 Å is even more remarkable since 6-fold octahedrally coordinated Co in cobalt sulfides has significantly longer Co–S distances. For instance, 2.33 Å in CoS₂, 2.32 Å in CoS₃, 2.40 Å in Co₉S₈ and CoS₄, and 2.36 Å in Co₉S₈ (Table IV). In fact, a Co–S distance of 2.22 Å is typical for a 4- or 5-fold Co–S coordination. Thus, the tetrahedral Co atoms in Co₉S₈ have Co–S distances of 2.13 and 2.23 Å and square-planar Co coordination complexes have Co–S distances of 2.15–2.17 Å,44 while for 5-fold sulfur coordinated square-pyramidal Co complexes four short Co–S distances in the range of 2.14–2.21 Å and one long Co–S distance of about 2.4 Å have been measured.45 Evidently, there is a conflict between the Co–S coordination distances and coordination numbers of the Co₉S₈/C and Co–Mo–S/C catalysts. Since the reliability of distances measured by EXAFS is much higher than that of coordination numbers, and also since the reliability of the measured distances is good enough to be able to distinguish between 4- and 5-fold S coordination on the one hand and 6-fold S coordination on the other hand, we feel that the only way to resolve this discrepancy is to assume that the cobalt atoms have a distorted 6-fold coordination. Probably there are four short Co–S distances in a square-planar or square-pyramidal coordination, and two additional sulfur atoms at somewhat longer distance. To check this suggestion, we reanalyzed the EXAFS spectrum under the assumption that there are two kinds of Co–S distances. The results of this analysis are presented under Model B in Table V. For comparison, the results of the analysis with equal Co–S distances are also presented in Table V under model A. The reanalysis

showed that the EXAFS spectrum of the Co–Mo–S/C catalyst could very well be fitted with about four sulfur neighbors at 2.18 Å, two sulfur neighbors at 2.24 Å, and two molybdenum neighbors at 2.87 Å. The improvement of the fit by adding an additional shell of neighbors in comparison to model A was, however, not significant enough to be able to state unequivocally that model B is to be preferred over model A.

It is instructive to compare the EXAFS results on the sulfur surrounding with the presence of 1s → 3d transition present in the XANES spectra. As indicated in Figure 9, group theory predicts that no 1s → 3d transition is allowed for sites containing a center of symmetry (octahedral and square-planar sites, O_h and D_{4h}). For trigonal-prismatic sites such a transition is possible only for the xy and $x^2 - y^2$ orbitals, meaning that transition-metal ions (like Co and Ni) with four or more d electrons in D_{3h} sites will have a low preedge intensity. For square-pyramidal coordinated transition-metal ions $1s → 3d$ transitions are possible not only to the xz and yz orbitals but also to the z^2 orbital. As a consequence, a transition-metal ion in a C_{6v} site with seven or fewer d electrons might have a considerable preedge intensity, whereas an ion with eight or more d electrons will have a very small preedge intensity.

For a transition-metal ion that is tetrahedrally coordinated, the $1s → 3d$ transition is always allowed unless the d orbitals are completely filled. In the XANES spectra of Co/C, Co–Mo/C, Co–Mo–S/C, Co$_2$S$_8$, and CoS$_2$ a weak preedge absorption peak is present. This peak is most intense in Co$_2$S$_8$, in which $8/9$ of the Co ions are in tetrahedral positions, whereas it is very low for CoS$_2$, in which all Co ions are in octahedral positions.

The sulfided Co/C catalyst shows a similar intensity as Co$_2$S$_8$, Co–Mo/C has a slightly lower intensity, but the Co–Mo–S/C catalyst had a comparably low intensity as Co$_2$S$_8$. The low $1s → 3d$ peak intensity of the Co–Mo–S catalyst thus indicates that its cobalt sites have a center of symmetry or that the cobalt sites are in trigonal-prismatic sites. Since the Co–S coordination numbers are all clearly above 4, the presence of square-planar sites can be excluded.

The observation that the $1s → 3d$ transition of the Co–Mo–S/C catalyst is comparable in intensity to that of Co$_2$S$_8$ even suggests a pure octahedral or trigonal-prismatic coordination in the Co–Mo–S/C catalyst.

Co–Co Coordination. The first Co–Co coordination (Co–Co(1)) in bulk Co$_2$S$_8$ could be fitted with $R = 2.50$ Å, a value which agrees very well with the crystallographic data (Tables II and IV). The Co–Co(1) coordination number of 2.7 is close to the theoretical value of $3 \times 8/9 = 2.67$. In the Co/C and Co–Mo/C catalysts a Co–Co(1) coordination is present with an interatomic distance of 2.55 and 2.53 Å, respectively, slightly longer than in bulk Co$_2$S$_8$ (2.505 Å). The shortest Co–Co distance in bulk β-CoS, which has the NiAs structure with Co in octahedral holes, is 2.55 Å, whereas that in γ-CoS40 should be close to that in NiS millerite, which is 2.53 Å. These values correspond closely to our findings and might suggest that a CoS$_2$-like structure is present in the catalysts. However, the observed Co–S distances (Table III) are too short for CoS (cf. Table IV), while also the Co–Co(2) distances do not fit (vide infra). Other cobalt sulfide structures can be excluded too, since their shortest Co–Co coordination distance is much longer than 2.55 Å (cf. Table IV). The EXAFS spectrum of the Co–Mo–S/C catalyst could be fitted without any Co–Co contribution.

The Co–Co(2) coordination in Co$_2$S$_8$ ($R = 3.54$ Å) appeared to have a coordination number of 2.1, which is much smaller than the theoretical value of $6 \times 8/9 = 5.33$. The explanation for this is not clear, but it might be that higher shells interfere with the Co–Co(2) shell, since not fewer than seven different coordination shells are situated between 4 and 4.5 Å. The occurrence of interference effects is also suggested by the absolute FT spectrum of Co$_2$S$_8$ between 4 and 5 Å (Figure 5): a small peak is present at about 4 Å, flanked by a much larger peak at about 5 Å. Since the number of coordinations in both regions is approximately the same, the $1/R^4$ dependence in the EXAFS amplitude equation38,33 would predict that the peak at 4 Å is larger than that at 5 Å. It is clear that the higher shells in the Co$_2$S$_8$ compound are difficult to analyze due to the complexity of the crystal structure.

A Co–Co(2) contribution was present in the Co/C and Co–Mo/C catalysts but not in the Co–Mo–S/C sample. The Co–Co(2) coordination distances of 3.55 Å for Co/C and 3.52 Å for Co–Mo/C are characteristic for Co$_2$S$_8$ and not for other types of cobalt sulfides. Thus, in bulk β-CoS the second Co–Co distance is 3.38 Å and in millerite (NiS) which should be close to γ-CoS it is 3.15 Å, while in Co$_2$S$_8$ it is 3.90 Å42 and in Co$_3$S$_2$ 3.92 Å43 (cf. Table IV). Furthermore, the spectral features of the higher shells in the Co/C and Co–Mo/C catalysts resemble those of bulk Co$_2$S$_8$ (see Figure 5). Hence, both the Co–Co(1) and Co–Co(2) findings suggest that a CoS$_2$ type phase is present in the Co/C and Co–Mo/C catalysts.

Co–Mo Coordination. The EXAFS data analysis of the Co–Mo–S/C catalyst revealed the presence of a Co–Mo contribution. The Co–Mo coordination distance was found to be 2.80 Å (model A) or 2.87 Å (model B) (cf. Table V), which is in agreement with our EXAFS study of a Co–Mo/C catalyst at the Mo K-edge,37,38 in which we reported a Mo–Co distance of 2.8 ± 0.1 Å. The
calculated Co–Mo coordination number of 2.3 (Table III) suggests that in the Co–Mo–S/C catalyst every cobalt atom is in contact with two molybdenum atoms. No clear indication of a Co–Mo coordination could be observed in the Co–Mo/C (Co/Mo = 0.73) catalyst. This might be due to the fact that for this catalyst the Co–Mo coordination number N(Co–Mo) is lower than in the Co–Mo–S/C catalyst. Namely, since EXAFS is a bulk technique and measures every atom of the element under study, the relation \(N(\text{Co–Mo}) = N(\text{Mo–Co}) \times N(\text{Mo}) / N(\text{Co}) \) must hold if all Co atoms are present in the Co–Mo–S structure. \(N(\text{Mo}) \) and \(N(\text{Co}) \) are the total number of Mo and Co atoms in the sample, respectively.) With \(N(\text{Mo–Co}) = 0.338 \) and \(N(\text{Mo}) / N(\text{Co}) = 0.73 \), one obtains \(N(\text{Co–Mo}) = 0.4 \). Since it is obvious from the observed Co–Co(1) and Co–Co(2) distances that the Co–Mo/C sample contains a substantial amount of a CoS₄-like cobalt sulfide phase, the real \(N(\text{Co–Mo}) \) will be even smaller than 0.4. Such a small Co–Mo coordination number originating from the Co–Mo/S structure will be difficult to analyze in the midst of the Co–Co contributions of the cobalt sulfide phase.

Structure of the "Co–Mo–S" State. From the Mo K-edge EXAFS spectrum of a sulfided Co(2.7)–Mo(6.0)/C catalyst it was concluded that the Mo phase has a MoS₂ structure. Furthermore, in our EXAFS study of alumina-supported "Co–Mo–S" type I and type II structures, we concluded that the Mo sulfide particles in the type II "Co–Mo–S" structure consisted of fully sulfided Mo atoms. Hence, it can be assumed that in the Co–Mo–S/C catalyst the Mo sulfide phase is also present in the form of fully sulfided MoS₂ particles. According to the Co K-edge EXAFS the Co atoms must be located at the surface of these fully sulfided MoS₂ particles. In analogy, the same edge-intercalated octahedral position should be occupied by the Co atoms in Co–MoS₂. But the Co atoms cannot occupy such positions, because our short EXAFS Co–S coordination distances exclude the possibility of Co being in octahedral holes. Furthermore, the minimum Co–Mo distance in a MoS₂ lattice would be \(c/4 = 3.08 \) Å, which is much larger than the observed value of 2.80 Å. Also, the Co atom would have to be directly above a Mo atom (along the c axis) in contrast to the position proposed.

In their review on the structural chemistry of Co–Mo/Al₂O₃ catalysts, Ratnasamy and Sivasanker suggested that the Co atoms are not intercalated between MoS₂ sandwich layers but are situated along the MoS₂ edges in the plane of the Mo atoms. The IR study of "NO adsorption on Co–Mo/Al₂O₃ catalysts by Topsoe and Topsøe proved that the Co atoms are indeed located at the MoS₂ edges in the plane of the Mo atoms. Ledoux et al. proposed that half of these Co atoms are in octahedral sulfur coordination and attached to the MoS₂ edge via two Mo atoms. The other half of the Co atoms are in tetrahedral sites which are bridged to the octahedral Co sites. This structure would yield an average Co–Mo as well as Co–Co coordination number of one and an average Co–S coordination number of five. These coordination numbers (and also the coordination distances) do not agree with our results. In addition, it should be remarked that the proposal of Ledoux et al. is based on the wrong idea that the ideal, nonreconstructed edge surface of MoS₂ contains triangular groups of S atoms which can form the basis for an octahedral Co site.

Another model for the Co–Mo site was used by Harris and Chianelli in molecular orbital calculations of the promoter effect. Also this model, in which it is assumed that the Co as well as the Mo atom is octahedrally surrounded by six sulfur atoms and that the two octahedra share a face of three sulfur atoms, can be rejected.

Our EXAFS results are in full agreement with a model in which the Co atoms are located at the MoS₂ edges in the plane of the Mo atoms. The (1010) and (1010) edges are the most dominant edges in pure MoS₂ crystals. When no reconstruction takes place, several different Mo sites exist on these edges, the most stable of which are indicated in Figure 10A. If it is assumed that the Co atoms replace the edge Mo atoms, the Co atoms will occupy P₄ or P₅ sites with a 4-fold or a 5-fold sulfur coordination, respectively. Because of the lower sulfur-to-metal stoichiometry for cobalt sulfide than for MoS₂, the coordination number of Co may even be lower. On the other hand, additional adsorption of H₂S may increase it again. In three of the four positions indicated in Figure 10A part of the local structure around Co consists of a square of S atoms to which the Co atom is attached. In the P₅ sites there is an additional S atom which completes a square-pyramidal coordination. A slight reconstruction of the "most stable" MoS₂ edges gives an edge surface in which all Mo (and thus Co) surface atoms have the same square-pyramidal structure (Figure 10B). The observed Co–S distances of 2.21–2.22 Å are in perfect agreement with such a square coordination. To attain these distances, which are shorter than the Mo–S distance of 2.41 Å, a small contraction of the S₄ square along its edges and a slight inward displacement of the Co atoms from the ideal Mo positions are necessary. Such a displacement also brings the Co–Mo distance in better agreement with the experimental value (2.80 Å, instead of the Mo–Mo distance of 3.16 Å). It is conceivable that the coordination of the Co atoms is essentially

EXAFS of Co/C and Co–Mo/C HDS Catalysts

At the end of this discussion of the EXAFS data in terms of models for the local Co structure, it is appropriate to reiterate on the one hand that EXAFS is a bulk technique, which can only give average coordination parameters, and on the other hand that the ability to fit a structural model to the EXAFS data is a necessary but not sufficient condition for the uniqueness of the model. Even if one can fit a model very well with the EXAFS data, one is never completely sure that there is no other model which is in accordance with the data. But this unidirectionality is of course not unique to EXAFS.

Catalytic Properties. The final question to be addressed is whether one can understand the thiopeptide HDS activities of the Co and Co–Mo sulfide catalysts from their structures. The EXAFS results indicate that the Co atoms in Co–Mo/S/C have a distorted 6-fold S coordination, with four short and two long Co–S distances. One (or both) of the long Co–S distances might belong to a H$_2$S molecule adsorbed on the Co. In accordance with this suggestion, in Al$_2$O$_3$ and SiO$_2$-supported Co–Mo/S catalysts the sixth Co–S coordination was not observed. All this suggests that the Co sites in freshly sulfided (and lightly) purged carbon-supported catalysts have a square-pyramidal CoS$_5$ or square-planar CoS$_4$ basic structure. If the sixth and fifth ligands are indeed H$_2$S molecules, they can desorb at the elevated temperature of the catalytic reaction and make place for a thiophene molecule.

A five-coordinated catalytically active site can still absorb a thiophene molecule via a bonding, while a four-coordinated site can adsorb the thiophene molecule via a bonding as well as via a bonding. If one furthermore realizes that some of the remaining ligands are actually SH ligands (because of charge neutrality, when replacing a Mo$^{4+}$ by a Co$^{2+}$ cation), one has all the ingredients needed for hydrosulfurization: the adsorbate, the protons, and the electrons, which come from the Mo$_2$(S) lattice and are transmitted by the Co atom.

Although a Co atom attached to a square of sulfur atoms, or without an additional fifth S atom, is needed for the hydrosulfurization. In the unpromoted Mo$_2$(S) many of the Mo edge atoms assume similar positions, and it thus looks as if the function of the Mo$_2$(S) is to induce the Co atoms to assume the same or similar positions as the edge Mo atoms do. Of course, the Co atoms will only do so and stay in these positions if these positions are not too unfavorable. In this respect it is worthwhile to repeat that among the Co and Ni sulfides there is one structure, the millerite structure, in which the Co and Ni atoms are exactly in such square-pyramidal sites, CoS$_4$ and NiS$_4$.

More or less implicit in the foregoing discussion has been that the catalytically active site in Co–Mo/S/C is a Co site and not a Mo or a mixed Mo-Co site. Support for this assumption comes from our Mo K-edge EXAFS results, which demonstrated that the Mo–S coordination number in the same Co–Mo/S/C catalyst is 6.0. Obviously, in this cautiously prepared catalyst all Mo atoms are fully surrounded by sulfur atoms, as confirmed by the high S to Co + Mo stoichiometry observed with XPS (Table I). Also, the IR study of the adsorption of NO on Co–Mo catalysts by Topsoe and Topsoe indicated that the edge Mo atoms in Co–Mo/S catalysts are covered. But if the Mo atoms are fully surrounded, they have no room left for the thiophene to adsorb and they cannot be directly responsible for the catalysis.

The idea that the cobalt in sulfided Co–Mo catalysts is the actual catalyst rather than the promoter originates from the observations that sulfided Co/C catalysts have a very high activity for the HDS of thiophene and that the estimated turn over frequency of the catalyst in sulfided Co–Mo/C catalysts is about equal to that of cobalt in sulfided Co/C. From our EXAFS data it is important whether the structure of the cobalt atoms in Co/C is equal to that in Co–Mo/S/C, as one might expect if Co/C is a good model system for Co in Co–Mo/S/C. As discussed in the
foregoing, the Co–S and Co–Co coordinations point to the presence of Co₅S₃ in Co/C. The Co–S coordination number of 5.4 is too large for Co₅S₃; however, since there are eight Co atoms with a tetrahedral sulfur coordination and one with an octahedral coordination in Co₅S₃. One possibility is that the Co₅S₃ surface contains relatively more octahedral sites, but the octahedral-to-tetrahedral surface site ratio should be substantially higher than one to explain the observed (overall) Co–S coordination number of 5.4. Other possible explanations are adsorption of H₂S on the surface of the Co₅S₃ particles and the occurrence of millerite type of sites at the surface. The latter type of sites would explain the catalytic similarity between Co/C and Co–Mo–S/C. At present, however, the reason for the high Co–S coordination number of Co/C remains unexplained, and consequently also the structure of the surface of the cobalt sulfide phase in this catalyst remains unknown.

Burch and Collins have suggested that the differences in the HDS properties of nickel sulfide on Al₂O₃, SiO₂, or carbon are due to a different morphology, because of a different interaction of the metal sulfide with the support. If that is true, the structure of cobalt sulfide might also depend upon the preparation conditions, and this would explain why Mössbauer studies indicated that the cobalt sulfide structure changed when increasing the sulfidation temperature. After low-temperature sulfidation of Co/C a Co signal was observed equal to that of Co in Co–Mo–S/C, while after high-temperature sulfidation a different signal was observed. This suggests that the structure of Co in Co/C sulfided at low temperature is equal to that in Co–Mo–S/C. Probably a cobalt sulfide like γ-CoS had been formed, while during high-temperature sulfidation Co₅S₃ was formed.

Conclusions
Detailed information on the structure of the cobalt in carbon-supported Co and Co–Mo sulfide catalysts has been obtained by comparing the EXAFS and XANES Co K-edge spectra of the catalysts with those of Co₅S₃ and Co₅S₇ model compounds. For a freshly sulfided carbon-supported Co–Mo sulfide catalyst, consisting of Co exclusively in the form of "Co–Mo–S", the Co atoms are found to be present in a distorted 6-fold sulfur coordination. There are four short Co–S distances of 2.18 Å, which is significantly shorter than in bulk octahedrally coordinated Co sulfides, but in accordance with four- or five-coordinated Co. Furthermore, there are two Co–S distances of 2.24 Å, and every Co atom is in contact with two Mo atoms at a distance of 2.87 Å. On the basis of this information, the most likely position for the Co atoms is slightly above the square faces of the MoS₂ trigonal prisms along the edges of the MoS₂ crystallites, with two additional sulfur atoms or H₂S molecules in apical positions. The sixth and probably also the fifth ligand of these Co sites can be removed at elevated temperature, to make room for thiophene and start the hydrodesulfurization reaction. The structure of Co with one ligand removed is square pyramidal, and this is the structure of Co in the metastable γ-CoS with the NiS millerite structure. Apparently, the function of MoS₂ is to stabilize the Co atoms in this square-pyramidal structure.

The sulfided Co/C catalyst appeared to contain Co₅S₃ particles, although the high Co–S coordination number indicated that these particles must have a higher fraction of 6-fold sulfur-coordinated Co atoms than bulk Co₅S₃. It is not clear whether this high fraction of 6-fold sulfur coordination was due to different surface conditions or to adsorbed H₂S. In view of the sensitivity of the Co structure in sulfided Co/C catalysts, it is not clear whether this high fraction of 6-fold sulfur coordination was due to different surface sites or to adsorbed H₂S. In view of the sensitivity of the Co structure in sulfided Co/C catalysts, it is not clear whether this high fraction of 6-fold sulfur coordination was due to different surface sites or to adsorbed H₂S. In view of the sensitivity of the Co structure in sulfided Co/C catalysts, it is not clear whether this high fraction of 6-fold sulfur coordination was due to different surface sites or to adsorbed H₂S. In view of the sensitivity of the Co structure in sulfided Co/C catalysts, it is not clear whether this high fraction of 6-fold sulfur coordination was due to different surface sites or to adsorbed H₂S.

Acknowledgment. The authors thank Dr. F.-W. Baumann of the University of Bielefeld (West Germany) for providing the model compound ((C₆H₅)₄P)ZNi(M₆S₄)₂. The information in this paper is partly derived from a contract (EN3V-0009/ NL) concluded with the European Economic Community. This work was supported by the Netherlands Organization for Scientific Research (NWO).

Registry No. Co, 7440-48-4; MoS₂, 1317-33-5; C, 7440-44-0.

Raman Study of a New Solid Phase in Cyclopentene: Evidence of Planar Ring Configuration

Dominique Cavagnat,* Malcolm P. Roberts,† R. M. Cavagnat, and S. Vahedie-Banisea

Université de Bordeaux I, Laboratoire de Spectroscopie Moléculaire et Cristalline, URA 124 CNRS,
33405 Talence Cedex, France (Received: April 19, 1990)

The Raman spectra of solid monohydrogenated cyclopentenes C₅D₇-3H and C₅D₇-4H and of solid perdeuterated cyclopentene C₅D₇ have been analyzed between 130 and 80 K and reveal a new ordered solid phase. In this new phase, very distinct lattice and internal mode spectra suggest that the cyclopentene ring takes a planar configuration.

I. Introduction
Most investigations devoted to cyclopentene are related to its nonrigid nature. In the gas phase, numerous studies using IR and Raman, electron diffraction, and microwave spectroscopies have established that the equilibrium conformation of cyclopentene is bent with an angle of about 22 to 26°, the molecule puckering between two conformations separated by a barrier of 232 cm⁻¹.

In condensed states, the intermolecular repulsive forces together with denser packing considerations could lead to the flattening of the ring. However, IR and Raman neutron scattering, thermodynamic, and NMR results conclude that a bent equilibrium conformation also exists in the liquid state.

Registry No. Co, 7440-48-4; MoS₂, 1317-33-5; C, 7440-44-0.