29Si N.M.R longitudinal relaxation times in ZSM-5 zeolites

Citation for published version (APA):

DOI:
10.1039/c39850000214

Document status and date:
Published: 01/01/1985

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
The presence of Pr₄N⁺ templates causes an increase of T_1 for 29Si nuclei in ZSM-5 zeolites of more than one order of magnitude, and relatively small changes in zeolite structure are important; due care is required in extracting quantitative data from 29Si magic angle spinning n.m.r. spectra of zeolites.

In many cases relative numbers of differently positioned Si atoms in zeolites, e.g. the series of Si(nAl), $n = 0–4$, have been analysed by 29Si n.m.r. spectroscopy. In order to be quantitatively reliable, these measurements must be carried out by pulse excitation with sufficiently long interval times. Some,¹ but not all, papers report precautions against taking too short interval times. Usually, pulse delays of 1–10 s are used, and ca. 5 s seems to be the rule for ZSM-5 type zeolites.² Cross-polarization (c.p.) spectra may be obtained in cases where organic material (templates or other) are occluded in
the zeolite channels. Little or nothing is known about the possibly different c.p. characteristics caused by different sorbates and/or by crystallographically distinct sites. Nevertheless, in some cases even c.p. magic angle spinning (m.a.s.) n.m.r. data are used, along with pulsed spectra, in order to obtain quantitative results. As yet, no systematic study of 29Si n.m.r. T_1 values for zeolites has been presented to our knowledge. Some values for ZSM-39 were reported recently. The necessity to produce systematic results was also indicated earlier for kaolinites. It is conceivable via dipolar interactions between 29Si nuclei and protons of water and/or lattice changes, e.g. relocations of residual sodium within the framework. Lattice modifications have also been mentioned as a background of sorbate-induced chemical shift changes. Some similar sorbates, as well as Me$_4$N$^+$ (with Cl$^-$ as counter ion) and NH$_3$, were also included in the present study. With the single exception of NH$_3$ on ZSM-5, all sorbates lowered the T_1 values of 29Si (Table 1).

This apparent contrast with conclusions reached by West could well be connected with the differences in 29Si n.m.r. chemical shift dispersions (vide supra) and suggest that relatively small changes in structural parameters (e.g. orthorhombic versus monoclinic symmetry) among the zeolite atoms can have large effects on 29Si n.m.r. parameters: shifts as well as T_1 values.

Further research on this point, including different calcination temperatures, is in progress. The mode of adsorption is probably of importance as indicated by the different effects of cyclohexene and benzene on silicalite or benzene on silicalite and on ZSM-5. The sorption mode can be followed by means of 13C c.p. m.a.s. n.m.r. (linewidths) and 29Si c.p. m.a.s. n.m.r. (optimal c.p. times; Table 1) measurements.

For the H$^+$-ZSM-5 samples the T_1 (29Si) values do not depend systematically on Si/Al ratios. We tentatively assign the very large differences in T_1 values between zeolites as-synthesized (with Pr$_4$N$^+$) and the corresponding calcined samples to a combination of noticeable steric interaction of the templates on the zeolite framework and the possibility of thermally induced dislocations upon high temperature treatment as described before by Wu and co-workers. Framework distortion by NH$_4^+$ of zeolite-p has been found recently, based on X-ray diffraction. Structural constraints imposed by the zeolites on the Pr$_4$N$^+$ moieties have been mentioned or stated before and we now surmise that the opposite effect is partially responsible for the T_1 variation in 29Si n.m.r. spectra. Further work on the elucidation of the relaxation mechanism(s) is obviously required. Our present results and those of others indicate with certainty, however, that due care should be taken in all cases where cross-polarized and/or pulse-excited 29Si m.a.s. n.m.r. spectra of zeolites are compared for quantitative purposes. The same is true for studies where changes in the zeolite framework, e.g. as a consequence of reacting sorbates, are analysed by 29Si n.m.r. spectroscopy.

Table 1. Relaxation times (T_1/s) and optimal cross-polarization times ($t_{c.p}$/ms) for the 29Si(OSi)$_4$ resonance of ZSM-5 zeolites.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Si/Al</th>
<th>T_1</th>
<th>$t_{c.p.}$</th>
<th>T_1</th>
<th>$t_{c.p.}$</th>
<th>T_1</th>
<th>$t_{c.p.}$</th>
<th>T_1</th>
<th>$t_{c.p.}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HzO$^+$</td>
<td>1</td>
<td>5000</td>
<td>145.1</td>
<td>8</td>
<td>6.5a</td>
<td>2.0</td>
<td>3.1c</td>
<td>30</td>
<td>4.9b</td>
</tr>
<tr>
<td>Cyclohexene</td>
<td>2</td>
<td>170</td>
<td>57.6a</td>
<td>7</td>
<td></td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>3</td>
<td>75</td>
<td></td>
<td>5.2</td>
<td></td>
<td>5.6</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>NH$_3$</td>
<td>4</td>
<td>34</td>
<td>45.7c</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me$_4$N$^+$</td>
<td>5</td>
<td>33</td>
<td>2.6d</td>
<td>3.6c</td>
<td>5.5f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HzO$^+$</td>
<td>6</td>
<td>25</td>
<td></td>
<td>5.6</td>
<td></td>
<td>3.6c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH$_3$</td>
<td>7</td>
<td>16</td>
<td>119.9</td>
<td>5.3w</td>
<td>5.5f</td>
<td>7.2e</td>
<td></td>
<td>3.1s</td>
<td></td>
</tr>
</tbody>
</table>

a Template is Pr$_4$N$^+$. b Template is hexane-1,6-diol. c Non-single-exponential behaviour. d By exposure to air. e After drying at 400 °C. f No cross-polarization observed.
We thank C. W. R. Engelen for the preparation of some samples. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

Received, 17th September 1984; Com. 1310

References