Extension to higher dimensions of the Jaeschke-Eicker result on the standardized empirical process

Citation for published version (APA):

Document status and date:
Published: 01/01/1994

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Document Version:

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2020
Memorandum COSOR 94-31
Extension to higher dimensions of the Jaeschke-Eicker result on the standardized empirical process
John H.J. Einmahl

Eindhoven, September 1994
The Netherlands
EXTENSION TO HIGHER DIMENSIONS OF THE JAESCHKE-EICKER RESULT ON THE STANDARDIZED EMPIRICAL PROCESS

John H.J. Einmahl
Eindhoven University of Technology

The asymptotic distribution of the sup-norm of the heavily weighted empirical process is established in the multidimensional case. This theorem extends in particular the famous result in Jaeschke (1975, 1979) to higher dimensions. There is a striking difference between the behaviour for higher dimensions and that for dimension one, especially the limiting distribution is now a simple transformation of a standard exponential random variable.

AMS 1991 subject classifications. Primary 62E20, 62G30; secondary 60F05.
Key words and phrases. Asymptotic distribution, empirical process, heavy weights.
Running head: Standardized multivariate empiricals.
1. INTRODUCTION AND MAIN RESULTS

Let X_1, \ldots, X_n be independent random vectors, each uniformly distributed on $[0, 1]^d$, $d \in \mathbb{N}$, and define the multivariate empirical distribution function by

$$F_n(t) = \frac{1}{n} \# \{1 \leq i \leq n : X_i \leq t\}, \quad t \in [0, 1]^d,$$

where \leq denotes the componentwise ordering. Note that $F(t) = P(X_i \leq t) = \prod_{j=1}^d t_j$, $t = (t_1, \ldots, t_d) \in [0, 1]^d$. The multivariate empirical process is written as

$$\alpha_n(t) = n^{\frac{1}{2}}(F_n(t) - F(t)), \quad t \in [0, 1]^d.$$

Observe that $\text{Var}(\alpha_n(t)) = F(t)(1 - F(t))$ and hence it is natural to consider the standardized empirical process

$$\alpha_n(t) = \frac{\alpha_n(t)}{(F(t)(1 - F(t)))^{\frac{1}{2}}}, \quad t \in [0, 1]^d,$$

a process having constant variance equal to 1, or, more generally,

$$\alpha_{n, \nu}(t) = \frac{\alpha_n(t)}{(F(t)(1 - F(t)))^{\nu}}, \quad t \in [0, 1]^d, \quad \nu \in [0, 1].$$

(We will not consider the case $\nu > 1$, since then $\sup_{t \in [0, 1]^d} |\alpha_{n, \nu}(t)| = \infty$ a.s.) It is well-known that for $\nu \in [0, \frac{1}{2})$, and not for $\nu \in [\frac{1}{2}, 1]$, $\alpha_{n, \nu}$ converges weakly to $B/(F(1 - F))^{\nu}$, where B is a continuous mean zero Gaussian process with $EB(s)B(t) = F(s \wedge t) - F(s)F(t)$, where $s \wedge t$ has to be understood componentwise. Here, however, we are interested in the values of $\nu \in [\frac{1}{2}, 1]$, leading to so-called heavily weighted empirical processes, with special interest in the case $\nu = \frac{1}{2}$. To be more precise, we will consider the weak limiting behaviour of

$$\sup_{t \in [0, 1]^d} |\alpha_{n, \nu}(t)|, \quad \nu \in [\frac{1}{2}, 1].$$

Of course, for $\nu \in [0, \frac{1}{2})$, we immediately have from the weak convergence of $\alpha_{n, \nu}$ as a process that

$$\sup_{t \in [0, 1]^d} |\alpha_{n, \nu}(t)| \to_d \sup_{t \in [0, 1]^d} \frac{|B(t)|}{(F(t)(1 - F(t)))^{\nu}}, \quad \text{as } n \to \infty.$$
where Γ is a standard Gumbel random variable, i.e. $P(\Gamma \leq x) = \exp(-\exp(-x))$, $x \in \mathbb{R}$. This famous result in empirical process theory is established in Jaeschke (1975, 1979); closely related results (with F in the denominator in (1.1) replaced by F_n) can be found in Eicker (1979). Now we consider $\nu \in (\frac{1}{2}, 1]$. Let N and \tilde{N} be two independent homogeneous unit intensity Poisson processes on $[0, \infty)$, then it is shown in Mason (1983) that, as $n \to \infty$,

$$
\sup_{t \in [0,1]} |\alpha_n,\nu(t)| - b_n \to_d \Gamma,
$$

(1.4)

Without making this more precise, we mention that the behaviour of the left hand side of (1.5) is determined by the extreme tails of the (uniform) distribution, whereas in (1.4) the moderate tails are responsible for the behaviour of its left hand side.

Now we turn to our main result, i.e. the proper extensions of (1.4) and (1.5) to dimension $d \geq 2$. For this purpose let Y be a mean one exponential random variable ($P(Y \leq x) = 1 - e^{-x}$, $x \geq 0$) and set $L = ((d - 1)!Y)^{-\nu}$.

THEOREM 1. Let $d \geq 2$ and $\nu \in [\frac{1}{2}, 1]$, then, as $n \to \infty$,

$$
\sup_{t \in [0,1]^d} |\alpha_{n,\nu}(t)| \to_d \sup_{t > 0} \frac{|N(t) - t| \vee |\tilde{N}(t) - t|}{t^\nu}.
$$

(1.5)

Remark 1. It is striking that in the multivariate case the behaviour differs substantially from that in the one dimensional situation. Observe also that in (1.6) the cases $\nu = \frac{1}{2}$ and $\nu \in (\frac{1}{2}, 1]$ are treated 'simultaneously', in contrast to the behaviour in dimension one. It will become clear from the proof that the behaviour of the left hand side of (1.6) is determined by the left tail ({ $t : F(t)$ 'small' }) of the distribution, to be more precise, we will show that the 'multivariate minimum' (the X_i with $F(X_i) = \min_{1 \leq j \leq n} F(X_j)$) plays the dominant role.

Remark 2. There is already a related result for $d = 2$ and $\nu \in (\frac{1}{2}, 1)$ in the literature (Csörgő and Horváth (1990)). This result yields

$$
\frac{\sup_{t \in [0,1]^d} |\alpha_{n}(t)|}{(F(t))^\nu} \to_d \sup_{t_1, t_2 > 0} \frac{|N(t_1, t_2) - t_1 t_2|}{(t_1 t_2)^\nu} (n \to \infty),
$$

(1.7)

where N is a homogeneous unit intensity Poisson process on $[0, \infty)^2$. However, it can be readily verified that the right hand side of (1.7) is equal to infinity with probability one. This means that the normalization ($n^{\frac{1}{2} - \nu}$) is not appropriate, which is also confirmed by Theorem 1.

Remark 3. It is standard to generalize the one dimensional results (1.4) and (1.5) to random variables X_i having a continuous distribution function, instead of being uniformly $[0,1]$ distributed. However, when $d \geq 2$ some serious restriction on the distribution of the X_i is needed,
since it can be readily shown that when, e.g., \(d = 2 \) and the \(X_i \) are uniformly distributed on the line segment from \((1,0)\) to \((0,1)\), then \(\sup_{t \in [0,1]} |\alpha_{n,\nu}(t)| = \infty \) a.s. for all \(\nu \in (0,1) \).

On the other hand the restriction to the uniform \([-0,1]^d\) distribution is too severe. Here is a generalization with respect to the distribution function of Theorem 1.

THEOREM 2. Let the \(X_i \) have a distribution on \([0,1]^d\), with a continuous density \(f \) with respect to Lebesgue measure on \([0,1]^d\), \(d \geq 2 \), satisfying for some \(m \) and \(M : 0 < m \leq f(t) \leq M < \infty \), \(t \in [0,1]^d \). Then, as \(n \to \infty \), (1.6) remains true for \(\nu \in \left[\frac{1}{2}, 1 \right] \).

2. PROOFS

For the proof of Theorem 1 the following three results on probabilities concerning the empirical distribution function, which all can be found in Einmahl (1987, pages 19, 38 and 26 respectively), will be required.

FACT 1. Let \(d \in \mathbb{N} \) and \(\nu \in \left[\frac{1}{2}, 1 \right] \). Then for any \(\delta \in (0,1) \), \(0 < \alpha \leq \beta \leq \frac{1}{2} (1 - \delta) \) and \(\lambda > 0 \)

\[
P \left(\sup_{\alpha \leq F(t) \leq \beta} \frac{n^{\frac{1}{2} - \nu} |\alpha_{n}(t)|}{(F(t))^{\nu}} \geq \lambda \right)
\leq C \int_{(1-\delta)\alpha}^{\beta/(1-\delta)} \frac{(\log(1/z))^{d-1}}{z} \exp \left(-\frac{1}{2}(1-\delta)\lambda^2 (n\nu)^{2\nu-1} \psi\left(\frac{\lambda}{(n\alpha)^{1-\nu}}\right)\right) dx,
\]

where \(C = C(d, \delta) \in (0, \infty) \) and \(\psi(y) = 2y^{-2}\{(1+y) \log (1+y) - y\}, \ y > 0 \).

FACT 2. Let \(d \in \mathbb{N}, m \in \{1, \cdots, n\} \) and \(0 < \alpha \leq 1/e \). Then

\[
P \left(\sup_{F(t) \leq \alpha} n F_n(t) \geq m \right) \leq c_1 \left(\frac{m}{n} \right) (c_2 \alpha)^{m} (\log (1/\alpha))^{d-1},
\]

where \(c_1 = c_1(d), c_2 = c_2(d) \) and \(c_1, c_2 \geq 1 \). Of course \(c_1(1) \) and \(c_2(1) \) can both be taken equal to 1.

FACT 3. Let \(d \in \mathbb{N} \) and \(\gamma \in (0, \infty) \). Then, as \(n \to \infty \),

\[
P \left(\sup_{F(t) \leq \alpha} n F_n(t) = 0 \right) \to e^{-1/\gamma}.
\]

PROOF OF THEOREM 1. From the weak convergence of \(\alpha_n \) it is immediate that for all \(0 < a < b < 1 \)

\[
(2.1) \quad \frac{1}{n^{\nu-\frac{1}{2}(\log n)^{\nu(d-1)}}} \sup_{a \leq F(t) \leq b} |\alpha_{n,\nu}(t)| \to P 0 \ (n \to \infty).
\]

This shows that in the 'middle' no contribution to the limit is made. Hence it suffices to consider the left tail and the right tail separately. However, it can be shown as in Theorem
3.2 in Einmahl (1987), that 'large d-dimensional points' behave (modulo multiplicative constants) as 'small (or large) 1-dimensional points'. By using (1.4) and (1.5), this statement leads to the fact that (2.1) remains true with \(b = 1 \). So, taking \(a = \frac{1}{4} \), it suffices to show, that as \(n \to \infty \),

\[
\frac{1}{n^{\nu - \frac{1}{2}}(\log n)^{\nu(d-1)}} \sup_{F(t) \leq \frac{1}{4}} |\alpha_{n, \nu}(t)| \to_d L.
\]

Write \(a_n = 1/(n(\log n)^{\frac{1}{2}(d-1)}) \) and note that

\[
\sup_{a_n \leq F(t) \leq \frac{1}{4}} |\alpha_{n, \nu}(t)| \leq \frac{3}{4} \sup_{a_n \leq F(t) \leq \frac{1}{4}} |\alpha_n(t)|/(F(t)\nu).
\]

We hence have for arbitrary \(\delta > 0 \) by Fact 1, with \(\delta = \frac{1}{5} \),

\[
P(\sup_{a_n \leq F(t) \leq \frac{1}{4}} n^{\frac{1}{2} - \nu}|\alpha_{n, \nu}(t)| \geq \varepsilon(\log n)^{\nu(d-1)})
\leq C \int_{\frac{1}{5}a_n}^{\frac{1}{2}a_n} \frac{(\log(1/x))^{d-1}}{x} dx
\cdot \exp\left(-\frac{1}{5}(\frac{1}{2})^{\delta} \varepsilon^2(\log n)^{2\nu(d-1)}(\frac{1}{2}na_n)^{2\nu-1}\psi(\frac{3}{4}\varepsilon(\log n)^{\nu(d-1)}(na_n)^{\nu-1})\right).\]

Using \(x\psi(x) \to \infty \ (x \to \infty) \), the right hand side of (2.3) is for large \(n \) bounded from above by

\[
C(\log n)^d \exp(-(\log n)^{\frac{1}{4}\nu(d-1))},
\]

which tends to 0, as \(n \to \infty \). Since \(\varepsilon > 0 \) is arbitrary, it is now sufficient to prove (2.2) with \(\frac{1}{4} \) replaced by \(a_n \). But since on \(\{t \in [0,1]^d : F(t) \leq a_n\} \) we have \((1-a_n)^\nu \leq (1-F(t))^\nu \leq 1 \) and \(\lim_{n \to \infty} (1-a_n)^\nu = 1 \), it finally remains to show that

\[
L_n = \frac{1}{n^{\nu - \frac{1}{2}}(\log n)^{\nu(d-1)}} \sup_{F(t) \leq a_n} \frac{|\alpha_n(t)|}{(F(t))^\nu} \to_d L \ (n \to \infty).
\]

Now Fact 2 yields

\[
P(\sup_{F(t) \leq a_n} nF_n(t) \geq 2) \leq c_1 \left(\frac{n}{2}\right) (c_2 a_n)^2(\log(1/a_n))^{d-1}
= O((\log n)^{-\frac{1}{2}(d-1)}) \to 0 \ (n \to \infty),
\]

and Fact 3 yields

\[
P(\sup_{F(t) \leq a_n} nF_n(t) = 0) \to 0 \ (n \to \infty).
\]
Statements (2.5) and (2.6) play the crucial role in the proof of (2.4). They imply, that, with arbitrarily high probability (n large), there are observations in the region \(\{t \in [0,1]^d : F(t) \leq a_n\} \), but in that region \(nF_n(t) \) is at most one. Set \(M_n = \sup_{F(t) \leq a_n} nF_n(t) \). We have by (2.5) and (2.6)

\[(2.7) \quad \mathbb{1}_{\{1\}}(M_n) \to_p 1 \quad (n \to \infty). \]

Write

\[L'_n = \frac{n^{1-\nu}}{(\log n)^{d-1}} \frac{\int_0^1 F(X)_{1:n} \, dF(X)_{1:n}}{(F(X)_{1:n})^{\nu}}, \]

where \(F(X)_{1:n} = \min_{1 \leq i \leq n} F(X_i) \). Then it follows that for \(n \geq 3 \)

\[(2.8) \quad L_n = L'_n \mathbb{1}_{\{1\}}(M_n) + L_n \mathbb{1}_{\{0,2,3,...,n\}}(M_n). \]

Also, using (2.7),

\[(2.9) \quad L'_n \mathbb{1}_{\{1\}}(M_n)/\left(\frac{1}{(\log n)^{d-1}}n^{\nu}(F(X)_{1:n})^{\nu}\right) \to_p 1 \quad (n \to \infty). \]

From (2.7) - (2.9) and

\[P\left(\frac{1}{(\log n)^{d-1}}n^{\nu}(F(X)_{1:n})^{\nu} \leq x\right) = \{P(F(X_1) \geq \frac{1}{x^{1/\nu}n(\log n)^{d-1}})\}^n, \]

it follows that for a proof of (2.4), it remains to show that for \(x > 0 \), as \(n \to \infty \),

\[(2.10) \quad \{P(F(X_1) \geq \frac{1}{x^{1/\nu}n(\log n)^{d-1}})\}^n \to P(L \leq x). \]

Using, e.g., that \(-\log F(X_1)\) has a gamma distribution with density \(((d-1))^{-1}x^{d-1}e^{-x1_{(0,\infty)}(x)}\), a straightforward but tedious calculation shows that the left hand side of (2.10) converges to

\[(2.11) \quad \exp\left(-\frac{1}{(d-1)!x^{1/\nu}}\right), \quad \text{as} \ n \to \infty. \]

Observing that

\[P(L \leq x) = P\left(\frac{1}{((d-1)!y)^{\nu}} \leq x\right) = P(Y \geq \frac{1}{(d-1)!x^{1/\nu}}) \]

\[= \exp\left(-\frac{1}{(d-1)!x^{1/\nu}}\right), \]

5
now completes the proof of (2.4) and hence that of Theorem 1. \[Q.E.D.\]

For the proof of Theorem 2 we will need the following ‘local’ generalization of the one dimensional probability integral transform, which may be of independent interest.

PROPOSITION 1. Under the condition on \(f \) in Theorem 2 we have

\[
(2.12) \quad \lim_{s \downarrow 0} \frac{(d-1)!P(F(X_1) \leq s)}{s(\log(1/s))^{d-1}} = 1.
\]

PROOF. The proof is essentially easy, but the details are somewhat technical. Therefore we will only give a sketch of the proof. When \(F(t) = \Pi_{j=1}^d t_j \), i.e. the uniform distribution on \([0,1]^d\), then (2.12) easily follows, e.g., by using that \(-\log F(X_1)\) has a gamma density (see the end of the proof of Theorem 1). If \(F(t) = c\Pi_{j=1}^d t_j \), \(c \in (0,\infty) \), for small \(F(t) \), then (2.12) also easily follows by using the fact that it holds for \(c = 1 \), which we just observed.

Now we turn to the general case. Let \(\delta > 0 \) be arbitrary. Then, because of continuity of \(f \), we can find an \(\eta \in (0,1) \) such that on \(t \in [0,\eta]^d, |f(t) - f(\bar{t})| \leq \epsilon f(\bar{t}) \) (\(\bar{t} = (0,\cdots,0) \)). Hence we have for small \(\eta > 0 \)

\[
(2.13) \quad P(F(X_1) \leq s) = P(F(X_1) \leq s, X_1 \in [0,\eta]^d) + P(F(X_1) \leq s, X_1 \not\in [0,\eta]^d)
\]

\[
\leq P(F'(X'') \leq s) + P(F(X_1) \leq s, X_1 \not\in [0,\eta]^d),
\]

where \(F' \) is a distribution function on \([0,1]^d\), such that for \(F' \) small, \(F'(t) = (1 - \epsilon)f(\bar{t})\Pi_{j=1}^d t_j \) and \(X'' \) is for small values of its distribution function, distributed according to \(F''(t) = (1 + \epsilon)f(\bar{t})\Pi_{j=1}^d t_j \). Write \(h(s) = ((d-1)!)^{-1}s(\log(1/s))^{d-1} \), then it easily follows by applying the just treated case with \(c = (1 + \epsilon)f(\bar{t}) \), that, as \(s \downarrow 0 \),

\[
(2.14) \quad P(F'(X'') \leq s) \leq (1 + o(1))\frac{1 + \epsilon}{1 - \epsilon} h(s).
\]

Also, by using that \(m \leq f \leq M \), as \(s \downarrow 0 \),

\[
(2.15) \quad P(F(X_1) \leq s, X_1 \not\in [0,\eta]^d) = o(h(s)).
\]

Hence by combining (2.13) - (2.15) we see that since \(\epsilon > 0 \) is arbitrary that

\[
\limsup_{s \downarrow 0} P(F(X_1) \leq s)/h(s) \leq 1.
\]

It similarly follows that the ‘\(\liminf \)’ is not smaller than 1. \(\Box \)

PROOF OF THEOREM 2. The proof follows along the same lines as that of Theorem 1, using obvious modifications of Facts 1 - 3 (see section 6.2 in Einmahl (1987) for details). The
only problem arises in the very last part of the proof, i.e. proving that the left hand side of (2.10) converges to (2.11). This, however, follows immediately from Proposition 1.

REFERENCES

