A new convenient method for the synthesis of chiral C3-synthons

Published in:
Tetrahedron: Asymmetry

DOI:
10.1016/S0957-4166%2800%2982119-9
10.1016/S0957-4166(00)82119-9

Published: 01/01/1991

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 07. Dec. 2018
A New Convenient Method for the Synthesis of Chiral C₃-Synthons

Carry H.H. Emons, Ben F.M. Kuster, Jozef A.J.M. Vekemans, Roger A. Sheldon

Laboratory of Chemical Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 9 April 1991)

Abstract: Routes are described for the facile preparation of protected optically pure D- and L-glyceric acid (1a,b; 2a,b) starting from D-mannitol, D-isoascorbic acid and L-ascorbic acid. The key step is a ruthenium catalyzed oxidative cleavage of the vicinal diols 4a,b or the α-hydroxy acids 7a,b; 10a,b.

During the last decades there has been increasing interest in the synthesis of small chiral fragments which can be incorporated into optically active natural products and compounds of biological and synthetic importance. Examples of such small versatile building blocks are optically pure D- and L-glyceric acid derivatives, which are applied in the synthesis of chiral natural and synthetic products. Both enantiomers can be prepared starting from D- or L-serine or by oxidation of the corresponding glycerol or glyceraldehyde derivatives by KMnO₄. More recently also a selective enzymatic oxidation of protected racemic glycerol and an electrochemical oxidation of D-mannitol and D-isoascorbic acid were reported to yield the 2,3-O-isopropylidene-D-glyceric acid (1a). In this paper we report a new facile method for the synthesis of enantiomerically pure 2,3-O-isopropylideneglyceric acid (1a,b) by the ruthenium catalyzed oxidative cleavage of protected D-mannitol (4a,b), D-erythronic (7a,b) and L-threonic acid (10a,b) (Scheme I). By using this economically attractive method, both enantiomers of protected glyceric acid now become readily available starting from inexpensive carbohydrates and using inexpensive oxidizing agents.

Several oxidants are capable of cleaving the carbon-carbon bond in α-glycols. For the cleavage of carbohydrates the most commonly used reagents are lead tetraacetate and sodium periodate, which can be used under mild reaction conditions. However, for industrial applications they are too expensive and environmentally unacceptable. Since its introduction in organic chemistry in 1953, ruthenium tetroxide has been recognized as a powerful and versatile oxidizing agent. Although numerous catalytic procedures have been developed because of the high costs of ruthenium metal, only a few examples of ruthenium catalyzed oxidative cleavage reactions are known. In 1970 Wolfe reported a RuCl₃-catalyzed hypochlorite oxidation of different organic compounds. Thus, cyclohexane-1,2-diol was cleaved to adipic acid using catalytic amounts of RuCl₃ and 6.2 equivalents of sodium hypochlorite. Under these reaction
conditions our substrates are fully deprotected and degraded. We have found however that under modified reaction conditions (see later) the cleavage of 1,2:5,6-di-O-isopropylidene- and 1,2:5,6-di-O-cyclohexyldene-D-mannitol (4a,b), 3,4-O-isopropylidene- and 3,4-O-cyclohexyldene-D-erythronic acid (7a,b) and 3,4-O-isopropylidene- and 3,4-O-cyclohexyldene-L-threonic acid (10a,b) affords 2,3-O-isopropylidene- and 2,3-O-cyclohexyldene-D- and L-glyceric acid (1a,b; 2a,b) in high yields (Scheme 1, Table 1).

Scheme 1

In a typical procedure sodium hypochlorite (13 wt% in water, 0.4 mole) was added dropwise over a period of 0.5 h to a well stirred solution of 1,2:5,6-di-O-isopropylidene-D-mannitol (4a, 0.087 mole) and RuCl₃·xH₂O (0.002 mole) in water (400 ml, pH = 8, room temperature). The pH was maintained at 8 by adding a 5 M NaOH-solution. The reaction mixture was then concentrated in vacuo at 60 °C to a solid
residue, which was taken up in hot ethanol. Concentration of the filtrate gave sodium 2,3-O-isopropylidene-D-glycerate (1a, 0.165 mole, 95%) \(\{[\alpha]_D = +32.6 \ (c = 0.98, \text{H}_2\text{O})\}\), lit\(^{15}\) \(\{[\alpha]_D = 30.1 \ (c = 1.03, \text{H}_2\text{O})\}\).

Table 1. \(\alpha\)-Glycol cleavage catalyzed by ruthenium(III) chloride\(^a\).

<table>
<thead>
<tr>
<th>substrate</th>
<th>time (min)</th>
<th>([\text{sub}]_{\text{aq}}) (mole/l)</th>
<th>NaOCl (eq./mole)</th>
<th>product</th>
<th>yield(^b) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>30</td>
<td>0.2</td>
<td>4.5</td>
<td>1a</td>
<td>95</td>
</tr>
<tr>
<td>4b(^c)</td>
<td>240</td>
<td>0.3</td>
<td>6</td>
<td>1b</td>
<td>64</td>
</tr>
<tr>
<td>7a</td>
<td>30</td>
<td>0.7</td>
<td>2</td>
<td>1a</td>
<td>99</td>
</tr>
<tr>
<td>7b</td>
<td>60(^d)</td>
<td>0.35</td>
<td>2</td>
<td>1b</td>
<td>93</td>
</tr>
<tr>
<td>10a</td>
<td>30</td>
<td>0.7</td>
<td>2</td>
<td>2a</td>
<td>95</td>
</tr>
<tr>
<td>10b</td>
<td>60(^d)</td>
<td>0.35</td>
<td>2</td>
<td>2b</td>
<td>99</td>
</tr>
</tbody>
</table>

\(^a\) Reactions carried out at room temperature and pH = 8 in \(\text{H}_2\text{O}\) using 0.025 equivalents \(\text{RuCl}_3\cdot\text{H}_2\text{O}\) per mole substrate. \(^b\) Isolated as the sodium salt. \(^c\) Two phase system (\(\text{H}_2\text{O}/\text{dichloroethane/acetonitrile}\)). \(^d\) Reaction temperature 35 °C.

In contrast to Wolfe's experiments\(^{114}\), the pH was controlled throughout the process, which is essential in order to obtain a high selectivity. Reactions at too low or too high pH are attended by deprotection, degradation or racemisation.

Preliminary results indicate that other ruthenium catalysts, homogeneous as well as heterogeneous, are also able to cleave \(\alpha\)-glycols. The yields in solution (not isolated) of 2,3-O-isopropylidene-D-glyceric acid (1a) in the cleavage of 1,2:5,6-di-O-isopropylidene-D-mannitol (4a) vary from moderate to very good (Table 2).

Table 2. Cleavage of 1,2:5,6-di-O-isopropylidene-D-mannitol (4a) catalyzed by various ruthenium catalysts\(^a\).

<table>
<thead>
<tr>
<th>oxidant (eq./mole)</th>
<th>time (min)</th>
<th>catalyst</th>
<th>yield(^b) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NaOCl} (4.5))</td>
<td>30</td>
<td>(\text{RuCl}_3\cdot\text{H}_2\text{O})</td>
<td>97</td>
</tr>
<tr>
<td>(\text{NaOCl} (8))</td>
<td>45</td>
<td>(\text{Pb}3[\text{Ru}{13}\text{Pb}{67}]_\text{O}{46})</td>
<td>90</td>
</tr>
<tr>
<td>(\text{NaOCl} (4.5))</td>
<td>120</td>
<td>(\text{Ru-Dowex W50-X8})</td>
<td>70</td>
</tr>
<tr>
<td>(\text{NaOCl} (6.5))</td>
<td>45(^e)</td>
<td>5 % (\text{Ru/C})</td>
<td>98</td>
</tr>
<tr>
<td>(\text{NaOCl} (4))</td>
<td>30</td>
<td>(\text{TPAP})</td>
<td>93</td>
</tr>
<tr>
<td>(\text{NaOCl}(8))</td>
<td>100(^f)</td>
<td>-</td>
<td>39(^e)</td>
</tr>
</tbody>
</table>

\(^a\) Reactions carried out at room temperature and pH = 8 (0.2 M 4a in \(\text{H}_2\text{O}\)) using 0.025 equivalents of catalyst per mole 4a. \(^b\) Yield in solution determined by HPLC (as described by Dijkgraaf\(^{18}\)). \(^c\) Prepared as described by Horowitz\(^{26}\). \(^d\) Prepared by stirring a mixture of \(\text{RuCl}_3\cdot\text{H}_2\text{O}\) and Dowex 50W-X8 during 16 h. \(^e\) Reaction temperature 60 °C. \(^f\) Tetrapropylammonium perruthenate (TPAP). \(^g\) Conversion is 54 %.
In conclusion our procedure constitutes a very mild and efficient method for the cleavage of protected α-glycols and could find broad use in carbohydrate chemistry. The use of a cheap oxidizing agent such as sodium hypochlorite, a heterogeneous catalyst (easily separated from the reaction mixture) and inexpensive carbohydrates as substrates, make this method also interesting for industrial applications.

Acknowledgement. We thank I. Dullens, N. Moers and M. van Duren for the experimental assistance and the Dutch Foundation of Applied Research (STW) and Andeno-DSM for the financial support.

References