Coherent acoustic phonons in strain engineered InAs/GaAs quantum dot clusters

Citation for published version (APA):

DOI:
10.1063/1.2193460

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 30. Mar. 2019
Coherent acoustic phonons in strain engineered InAs/GaAs quantum dot clusters

E. W. Bogaart,† T. van Lippen, J. E. M. Haverkort, R. Nötzel, and J. H. Wolter
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 4 November 2005; accepted 13 March 2006; published online 6 April 2006)

Coherent excitation of the quasilongitudinal and quasitransverse acoustic phonon mode in strain engineered InAs/GaAs quantum dot (QD) clusters grown on (311)B GaAs is monitored by means of time-resolved differential reflection spectroscopy. Carrier capture within the ordered QD clusters initiate coherent acoustic phonon excitation, which induces a transient modulation of the local strain-induced piezoelectric field within the QD clusters. The excited acoustic phonons then modulate the optical properties of the QDs through the quantum-confined Stark effect, causing distinct oscillations of the differential reflection signal. © 2006 American Institute of Physics. [DOI: 10.1063/1.2193460]

In recent years, the formation of well-defined and ordered semiconductor quantum dot (QD) nanostructures by epitaxial growth has attracted considerable attention. Much interest involves the formation and investigation of vertically coupled QD pairs, see, e.g., Refs. 1 and 2, which can serve as the basic ingredients of quantum computation. On the other hand, the formation of nanosized structures in which QDs are laterally coupled provides a challenge in epitaxial crystal growth. High quality QDs in well-defined arrangements, such as QD arrays and ordered QD groups, have been realized by self-organized strain engineering. The number of QDs within a single group or QD cluster, formed by using strained-layer superlattice (SL) templates, is controlled by varying the growth temperature of the SL template and the thickness of the GaAs separation layer between the SL template and the QD layer. A consequence of strained nanostructure growth is the strongly enhanced piezoelectric (PZE) field, which in turn affects the electro-optical properties of the structure.

In this letter, we report on the differential reflectivity of QDs arranged in a small ordered group of four QDs per cluster on average, grown by strain engineering. Using pump-probe time-resolved differential reflection spectroscopy (TRDR), we are able to measure the carrier capture and carrier relaxation process, and the carrier recombination process within the QDs. For structures with a random QD distribution, the decay of the TRDR signal is described by a single exponential function. In the case of the QD clusters, pronounced oscillations in the transient TRDR signals are observed due to coherent acoustic phonon excitation within the QD clusters induced by the screening of the local PZE field governed by carrier capture. The phonons are identified as the quasilongitudinal (QL) and quasitransverse (QT) acoustic phonon modes. In turn, the acoustic phonons modulate the local strain, and hence the strain-induced PZE field in the QD clusters. Hereby, the optical properties of the QDs, e.g., the QD reflectivity, is periodically changed through the quantum-confined Stark effect causing oscillations in the TRDR signal.

The ordered QD structure is grown by molecular beam epitaxy on a (311)B GaAs substrate. After deposition of a 250 nm GaAs buffer layer at 580 °C, a (In,Ga)As/GaAs SL template (10 periods) is grown at 520 °C. A 15 nm GaAs separation layer is deposited at 580 °C before the growth of the QDs: between 0.5 and 0.6 nm of InAs at 470 °C. The QDs are capped with 200 nm GaAs. Atomic force microscopy (AFM) images of uncapped QDs reveal the formation of QD clusters with an average density of four QDs per cluster (see Fig. 1). For a detailed description of the sample growth, we refer to Refs. 7 and 8. The inset of Fig. 1 depicts the photoluminescence (PL) spectrum of the QD clusters, at 4.2 and 293 K, with QD ground state peak energies of 1.133 and 1.046 eV, respectively. The peak at 1.327 eV (4.2 K) originates from the SL template.

In order to determine the optical time response of the QDs in the clusters, the sample is investigated by two-color pump-probe TRDR (Ref. 15) at 5 and 293 K. In this configuration, a 76.6 MHz mode-locked Ti:sapphire laser is used as the pump source with a photon energy tuned above the GaAs band gap energy, and is mechanically chopped with a frequency of 4 kHz. Hereby, free carriers are generated within the GaAs barrier layers in which they diffuse toward the SL

FIG. 1. (Color online) TRDR signal of the QD clusters measured at 5 K (upper panel) and the residue of the experimental fit (lower panel). The inset on the left-hand side depicts the PL spectra at 4.2 and 293 K. The inset on the right-hand side shows an AFM image of uncapped QD clusters. The scan field is 1 × 1 μm².
template and the QD clusters. The capture of the carriers into the QDs results in a change of the QD reflection, and is monitored by 2 ps probe pulses generated from an optical parametric oscillator, synchronously pumped by the Ti:sapphire laser. The probe energy is tuned in resonance with the peak energy of the QD ground state transition of the ensemble of QD clusters. The probe pulses propagate perpendicular to the QD plane and parallel to the [311] crystal direction. For more experimental details, we refer to Ref. 15.

Figure 1 depicts the transient differential reflection signal, $\Delta R(R_0)(t)$, measured at 5 K for an excitation density of 1.7 kW/cm2. From the rise time of the transient signal, the carrier capture and relaxation time are deduced, which have a value of 19.6±0.2 ps. After the signal has reached its maximum value, the transient signal decays exponentially due to carrier recombination with a characteristic time, i.e., a carrier lifetime, of 724±4 ps. Pronounced oscillations in the TRDR signal are observed, emphasized by the residue obtained by the subtraction of the experimental fit from the original data, as depicted in Fig. 1. In order to determine the frequency of the oscillation, we use fast Fourier transform (FFT) analysis of the oscillating part. From the FFT spectrum we deduce a frequency of 9.09 GHz, which corresponds to an oscillation period $\tau_{osc}=110$ ps. We emphasize that only for high excitation density, oscillations in the TRDR signal are observed. In addition, we remark that at a temperature of 77 K, similar oscillations are observed as obtained at 5 K.

Oscillations in differential reflection signals have been reported for semiconductor quantum well structures and heterostructures based on high piezoelectric materials. These oscillations have been identified to originate from coherent acoustic phonons generated by photoexcited carriers within strained epilayers. The carriers screen the PZE field and subsequently induce a modulation of the refractive index.

Bulk InAs and GaAs have a low piezoelectric constant, however, it has been shown by many groups that self-assembled QDs do induce pronounced piezoelectric fields as a result of the high strain and composition gradients. From excitation density dependent PL measurements, we clearly observe a blueshift of the spectrum with increasing density. Hence, the blueshift reveals the strong PZE field within the QD clusters. Although coherent acoustic phonon excitation in QDs has not been reported before, the strain-engineered QD clusters are good candidates to generate acoustic phonons coherently due to enhanced local strain, related to the high QD density within the clusters as compared to random QD layers. At 5 K the carrier capture time of 19.6 ps is relatively long, such that carrier-induced coherent acoustic phonon generation is largely smeared out. To overcome this problem, we increase the measurement temperature to room temperature where the carrier capture time is significantly reduced.

Figure 2 depicts TRDR signals for various pump excitation densities obtained at 293 K. Pronounced oscillations are observed independent of the excitation density. The residue of the fit for a pump excitation of 28 W/cm2 clearly reveals the oscillations as depicted in the lower panel of Fig. 2. Using FFT on the oscillating part of the TRDR signals for different excitation densities, the oscillation frequency is determined, as summarized in Fig. 3(a). From the FFT spectra we deduce two frequencies with values of 16.5 GHz ($\tau_{osc}=60.5$ ps) and 28.3 GHz ($\tau_{osc}=35.3$ ps) independent of the pump excitation power. For high pump excitation densities a third frequency with a value of 8.95 GHz ($\tau_{osc}=112$ ps) is observed, similar to that observed in the high excitation TRDR signal measured at 5 K.

As is reported by Wang et al., the period of reflection oscillations in TRDR signals due to coherent acoustic phonons in the structure depends on the probe wavelength, and can be expressed by

$$\tau_{osc} = \frac{\lambda}{2V_n(\lambda)}.$$ (1)

Here, V_n is the velocity of the acoustic mode and $n(\lambda)$ is the index of refraction at the probe wavelength, λ. Using Eq. (1), the sound velocities belonging to the three oscillation frequencies, as deduced from Fig. 2, are calculated. We obtain 5.02, 2.93, and 1.59×10^5 cm/s for frequencies of 28.3, 16.5, and 8.95 GHz, respectively. The first two velocities are in good agreement with the QL and the QT acoustic phonon phase velocity in GaAs propagating along the [311] crystal direction, with velocities of 5.1 and 2.91×10^5 cm/s, respec-

$$\tau_{osc} = \frac{\lambda}{2V_n(\lambda)}.$$ (1)

Here, V_n is the velocity of the acoustic mode and $n(\lambda)$ is the index of refraction at the probe wavelength, λ. Using Eq. (1), the sound velocities belonging to the three oscillation frequencies, as deduced from Fig. 2, are calculated. We obtain 5.02, 2.93, and 1.59×10^5 cm/s for frequencies of 28.3, 16.5, and 8.95 GHz, respectively. The first two velocities are in good agreement with the QL and the QT acoustic phonon phase velocity in GaAs propagating along the [311] crystal direction, with velocities of 5.1 and 2.91×10^5 cm/s, respec-
tively, as derived from the Christoffel equation.19,26 The third frequency has no direct analogy with acoustic phonons propagating in the [111] crystal direction. Also, this mode is only observed for the high excitation density. The third phonon mode, which is the pure transverse mode, has a phase velocity of $3.2 \times 10^5 \text{ cm/s}$ and is twice the velocity as determined from our measurements. However, the pure transverse mode is polarized along the, [011],19 and is not detectable in the used experimental configuration.

The initial and dominant changes of the QD reflectivity are due to the carrier capture in the QD ground state.15 However, the refractive index can also be changed by a modulated local strain field. That is, the QD reflectivity changes with the PZE field modulation in the QD as a linear response to the modulated strain,18 which is enhanced in the clusters due to a locally higher QD density compared to random QD layers. Hence, the amplitude of the oscillation in the differential reflection signal scales linearly with the periodical layers. Hence, the amplitude of the oscillation in the differential reflection signal scales linearly with the periodical layers.

This work is financially supported by the Dutch Foundation for Fundamental Research on Matter (FOM).