An efficient solution of a class of integrals arising in antenna theory
Savov, S.V.

Published in:
IEEE Antennas and Propagation Magazine

DOI:
10.1109/MAP.2002.1077781

Published: 01/01/2002

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Foreword by the Editors

Although our column usually concentrates on numerical algorithms and the programming aspects of computational electromagnetics, from time to time we receive useful contributions emphasizing analytical techniques. These methods have their place, both in their own right, and also since such integrals sometimes appear in computational methods, requiring efficient evaluation. The topic of this month’s column is a method for efficiently computing a class of integrals that arises, in particular, for circular antennas. We thank the author for his contribution.

An Efficient Solution of a Class of Integrals Arising in Antenna Theory

Sava V. Savov

Department of Electrical Engineering, Eindhoven University of Technology
5600 MB Eindhoven, The Netherlands
E-mail: S.V.Savov@tue.nl

Abstract

A novel analytical solution for a class of power-radiation integrals, arising in antenna theory, is presented. These integrals are then applied to the analysis of circular-loop and circular-microstrip antennas, and the results are compared to published results obtained using numerical integration. The analytical solution is shown to be sufficiently accurate and efficient for the calculation of the radiation characteristics of these types of antennas. Possible applications to other types of antennas are discussed.

Keywords: Analytical methods; antenna theory; power radiation integrals; directivity; radiation resistance; circular loop antenna; circular microstrip antenna; loop antennas; cylindrical antennas; microstrip antennas; Bessel functions

1. Introduction

A novel analytical method for the calculation of a class of power radiation integrals that arise in antenna theory is considered in this paper. These integrals are over a finite range, and involve a product of Bessel functions. Such integrals often appear when cylindrical coordinates are used in the analysis of the radiated power (particularly, in the case of a circular loop and a circular microstrip antenna).

In this paper, the general case is explored first, and an analytical solution, represented by a single power series, is obtained. Then, this analysis is applied to the special case of a loop antenna, for two different excitations: first, a constant current distribution, and second, a co-sinusoidal current distribution.
Because of duality, the last result is also valid for the microstrip antenna. After the solution of the power radiation integrals is found, it is applied to obtain the radiation resistance and the directivity of the antenna. The results thus obtained are compared with available numerical results. The new analytical method is simple and accurate, and provides a stable and efficient solution for the power radiation integral. The numerical evaluation of this is a difficult task in the case of large antenna dimensions, due to the rapid oscillation of the integrand.

2. Introduction of New Auxiliary Functions Q

A class of new auxiliary functions, which arise in the expressions for the radiated power of some antennas, are introduced as follows:

\[Q_{mn}(\xi) = \int_0^{\pi/2} J_m(\xi \sin \theta) J_n(\xi \sin \theta) \sin \theta \, d\theta, \quad (1) \]

where \(J_m(\cdot) \) is the Bessel function of the first kind, \(m \)th order. A closed-form solution of this integral is not available in standard handbooks on integrals and special functions [1-2]. The numerical solution of these integrals becomes a difficult numerical task with increasing value of the parameter \(\xi \). The crucial point in the analytical method, proposed here, is the fact that the product of the Bessel functions can be represented by a single power series [3]:

\[J_m(z)J_n(z) = \sum_{l=0}^{\infty} (-1)^l \left(\frac{z}{2} \right)^{m+n+2l} B_{mn,l}, \quad (2) \]

\(z = \xi \sin \theta \), where the coefficients are given by the following expression:

\[B_{mn,l} = \frac{\Gamma(m+n+2l+1)}{\Gamma(l+1)\Gamma(m+1)\Gamma(n+1)\Gamma(m+n+l+1)}, \quad (3) \]

and \(\Gamma(\cdot) \) is the gamma function [1]. After a substitution of Equation (2) into Equation (1), the following power-series expression is obtained:

\[Q_{mn}(\xi) = \sum_{l=0}^{\infty} (-1)^l B_{mn,l} W_{m+n+2l+1} \left(\frac{\xi}{2} \right)^{m+n+2l}, \quad (4) \]

where Wallis’s integrals are introduced [2].

\[W_p = \int_0^{\pi/2} \sin^p \theta \, d\theta = \frac{\pi^{p+1}}{2^{p+1} \Gamma \left(\frac{p+1}{2} \right)^2}, \quad (5) \]

Now, the solution of these new auxiliary functions, \(Q_{mn}(\xi) \), defined by Equation (1), is given by the series expression in Equation (4), where the coefficients \(\{ B_l \} \) are obtained by Equation (3), and the coefficients \(\{ W_p \} \) are obtained by Equation (5). Below, we will show a few important applications of these new functions.

3. Application of the New Functions to the Circular Loop and to Microstrip Antennas

The thin circular-loop antenna is a simple antenna, used for many years because of the convenience that it offers: it is small, light, and easy to fabricate [4]. The problem of the current excitation of a loop antenna is very well treated in the general case in [5]. However, the problem of finding a closed-form expression for the radiated power and related characteristics (such as the radiation resistance and directivity) is treated only approximately or numerically [6]. Interest in this classical type of antenna was demonstrated recently in [7], where a new analytical approach, applied to the electromagnetic field (but not to the radiated power), was proposed.

In the next sections, a rigorous analytical method for the calculation of the radiated-power characteristics of the circular loop is proposed for the case of two different excitations: a constant current distribution, and a co-sinusoidal current distribution. A comparison of the results obtained by this efficient analytical method with available numerical results will be presented, to verify the accuracy of the method.

3.1 Constant Current

It is known that the radiation resistance, \(R_o \), of a circular loop with a radius \(a \), excited by a uniform axial current \(I_0 = I_0 \), can be expressed by the following equation \((\xi = ka, \ k = 2\pi/\lambda, \ \eta = 377 \Omega) \) [6]:

\[R_0(\xi) = \frac{\pi}{2} \xi^2 Q_{11}(\xi). \quad (6) \]

We have used the new auxiliary integral of Equation (1) (in the special case when \(m = n = s = 1 \)), which can be also expressed in the form [6]

\[Q_{11}(\xi) = \frac{\pi}{2} \xi^2 J_{11}(\xi) \int_0^{\pi/2} \sin \theta \sin \theta d\theta = \frac{\pi}{\xi^2} \int_0^{\pi/2} J_2(\xi \sin \theta) \sin \theta d\theta. \quad (7) \]

Only for this special case can another series solution be found, different from the power series of Equation (4). In [6, p. 221], the author states: “Even though (5-59) [our Equation (7)] still cannot be integrated, approximations can be made.” The last integration, however, can be performed analytically in terms of a series of Bessel functions [2]:

\[Q_{11}(\xi) = \frac{\pi}{\xi^2} \sum_{l=0}^{\infty} J_{2m+1}(\xi \sin \theta). \quad (8) \]

In Figure 1, the results of simulations of the radiation resistance, \(R_0 \), versus the normalized radius \(\xi = ka \) are shown. Because of the fast convergence of the series, the method is very efficient. At the same time, the results are very close to those in Figure 5.8.a in [6], obtained by numerical integration. Now, an analytical expression for the directivity, \(D_0 \), is also available [6]:
3.2 Co-Sinusoidal Current

Let us assume now that the thin loop has a co-sinusoidal axial current distribution, $I_{p}(\phi) = I_{0} \cos \phi$. The far field of the loop can then be expressed in terms of Bessel functions [7]:

$$E_{\phi} = -j\frac{\pi I_{0}}{4} e^{-jkr} \cos \phi \left[J_{0}(\xi \sin \theta) - J_{2}(\xi \sin \theta) \right],$$

$$E_{\theta} = -j\frac{\pi}{2} \frac{I_{0}}{r} e^{-jkr} \sin \phi \cos \theta \frac{J_{1}(\xi \sin \theta)}{\sin \theta},$$

where r is the distance ($kr \gg 1$). The radiated-power integral is

$$P_{r}(\xi) = \int_{0}^{2\pi} \int_{0}^{\infty} E_{\phi}^{2} \sin \theta d\theta d\phi,$$

which, after simple integration over ϕ, can be expressed in terms of five Q integrals:

$$P_{r}(\xi) = C \left\{ \left(\frac{\xi}{2} \right)^{2} \left[Q_{00}^{(1)}(\xi) - 2Q_{02}^{(1)}(\xi) + Q_{22}^{(1)}(\xi) \right] \right\},$$

where $C = \pi \eta I_{0}^{2} / 4$. Then, the radiated power can be written in the following series expansion:

$$P_{r}(\xi) = 4C \left(\frac{\xi}{2} \right)^{2} T(\xi).$$

After a substitution of the five auxiliary integrals from Equation (4) into Equation (13), and performing analytical manipulations, we arrive at the following final power-series expression for the new auxiliary function:

$$T(\xi) = \frac{1}{4} \sum_{i=0}^{\infty} (-1)^{i} \left(\frac{\xi}{2} \right)^{2i} \left\{ B_{00,i} W_{2i+1} + B_{1,i} (W_{2i+1} - W_{2i+3}) \right\}$$

$$-2 \left(\frac{\xi}{2} \right)^{4} B_{02,i} W_{2i+3} + \left(\frac{\xi}{2} \right)^{4} B_{22,i} W_{2i+5}.\quad (15)$$

Following the definition of the radiation resistance, we have [6]

$$R_{r1}(\xi) = \eta \frac{\pi}{2} \xi^{2} T(\xi),$$

which is reminiscent of Equation (6) with $Q_{11}^{(1)}(\xi)$ replaced by $T(\xi)$.

The dashed line in Figure 1 shows the results of the simulations for the radiation resistance, R_{r1}, of a loop antenna with a co-sinusoidal current distribution. The series expression exhibits rapid convergence, confirming the efficiency of the proposed method. To find the solution with good accuracy for even the worst-case scenario ($\xi = 20$), only $N = 30$ terms in the series representation of Equation (4) are necessary.
It is easily seen that this new current distribution decreases the radiation resistance (this is not true only for values of $\xi < 1$). The present author found that the predictions for the radiation resistance of a circular-loop antenna, based on triple numerical integration, made in [8], are incorrect, probably because of accumulated numerical error. Application of the definition of the directivity, for a reference direction $\theta = 0$, yields the following expression [6]:

$$D_1(\xi) = \frac{1}{T(\xi)},$$ \hspace{1cm} (17)

again reminiscent of Equation (9) when $F_{xx}(\xi) = 1$ is assumed.

In Figure 2, the results for the directivity, D_1, are shown. One can easily observe that the new current distribution leads to higher values for the directivity. This plot corresponds very well to Figure 14.25 in [6]. There, the directivity of a *circular microstrip antenna* is obtained by numerical integration. This is because a thin magnetic-current distribution in the slot is used, which is a dual case of the previous situation with an electric-current distribution.

4. Conclusion

In this paper, a novel analytical solution for a class of power-radiation integrals, arising in antenna theory, has been obtained. These integrals were then applied to the analysis of circular-loop and circular-microstrip antennas, for which results obtained using numerical integration were available [6]. The analytical result, obtained in this paper, has been shown to be sufficiently accurate and efficient for the calculation of the *radiation characteristics* of these antennas. The auxiliary power-radiation integrals, $\{Q_{\alpha}\}$, might be also useful in the analysis of other types of antennas, when the far field is expressed in terms of cylindrical harmonics.

5. References

Editor’s Comments Continued from page 86

advertising on the interpolated resolution. That can be very misleading. Some scanners also have different resolutions along the two scanning axes. In such cases and for most applications, it is the lower of the two numbers that is relevant. Thus, a scanner that has a hardware resolution specified as 1200 x 600 dpi is only going to provide a useful resolution of 600 dpi for most applications.

For scanning photos and graphics, you basically want at least 300-600 dpi hardware resolution (for a discussion of the resolution necessary to produce adequate-quality publication graphics, see the comments in my Editor’s Comments in the June, 2000, issue of the *Magazine*, 42, 3, pp. 30ff). However, in certain circumstances, a resolution of up to 2400 dpi can be valuable for publication purposes.

For black and white scanning, eight bits of gray-scale information is sufficient. However, some scanners now provide 12- or 16-bit gray-scale scanning. The additional dynamic range can be useful for situations in which you are trying to get information out of shadow regions in an image, or where the image you are scanning itself has a larger-than-usual dynamic range. Similarly, eight bits of information per color channel is all that is usually needed (typically, scanners have three color channels: red, green, and blue, or RGB). Eight bits per channel translates into “24-bit color” in scanner-specification terminology. However, again, additional dynamic range can be very useful for difficult images, and modern scanners are available with 36- and 48-bit color, although you usually pay a premium for the extra dynamic range.

Until recently, scanners with more than 1200 dpi resolution and/or more than 36-bit color cost well over $1000 (or even several thousands of dollars). Attachments could add many hundreds of dollars to the price, as well. There are attachments several that can be useful. A sheet feeder ("automatic document feeder" or ADF, in scanner terminology) is useful if you have a substantial number of pages to OCR. Flatbed scanners are designed to work by shining a light upwards against the face of the document to be scanned, and having the moving sensor read the reflected light. That’s fine for opaque objects. However, slides and vugraphs have to be transilluminated in order to be properly scanned. This requires a slide adapter and a transparency adapter, respectively. Until recently, ADFs used to cost several hundred dollars, and slide or transparency adapters were anywhere from one to several hundred dollars.

Finally, there are the issues of interface and scanning speed. Scanning an 8.5 in x 11 in (or an A4) sheet of paper at 600 dpi and eight bits results in a ~34 MB data file. Similar sizes result for 300 dpi “true color” scans. A 2400 dpi “true color” scan of a full page is over 2 GB of data (although I can think of few situations in which that would ever be done: you usually want to scan something much smaller at a resolution that high)! Low-end scanners typically use parallel-port or USB interfaces. If you’re going to generate large amounts of data, you need a faster interface. Higher-end scanners use SCSI interfaces.

With regard to scanning speed, low-end scanners can take 30 seconds to a minute to scan a single sheet of paper at 300 dpi, with

Continued on page 104