A fast multiplier over GF (2^n)

Potgieter, M.J.; Dyk, van, B.J.; Tjalkens, T.J.

Published in:
23rd symposium on information theory in the Benelux

Published: 01/01/2002

Citation for published version (APA):
A Fast Multiplier over $GF(2^n)$

M.J. Potgieter1, B.J. van Dyk1 and Tj.J. Tjalkens2

1 University of Pretoria, Pretoria, South Africa
2 Eindhoven University of Technology, Eindhoven, the Netherlands
e-mail: t.j.tjalkens@tue.nl

Abstract. In this paper we will present a hardware implementation of a $GF(2^n)$ polynomial basis multiplier that is twice as fast as the classical multiplier while requiring about 50% more chip area. We implement a flexible scalar (or point) multiplier for elliptic curve cryptosystems using this multiplier and find that the flexible system performs almost twice as fast as compared with the classical multiplier.

1 Introduction

An elliptic curve cryptosystem (ECC) can be used to exchange keys over an insecure channel. ECC belongs to the class of public key cryptosystems. The famous Diffie-Hellman system [1] relies on the prohibitive complexity of solving s from

$$g^s \equiv k \mod p,$$

(1)

where g, k, and p (a large prime) are known. The RSA system [2] is a widely used variant on this theme.

In an ECC another complex operation is used, namely the point addition, see [3,4] or the more recent [5]. Here solving m from mP, where P is a known point on a known elliptic curve in $GF(2^n)$ is the intractable operation. The operation mP is known as the elliptic curve scalar multiplication.

For the Diffie-Hellman and RSA systems that use a multiplicative group, a sub-exponential, w.r.t. log p, running time algorithm, the index-calculus method, exists, while all known algorithms for solving the EC scalar multiplication problem are still exponential in n. Thus, much smaller keys can be used in an ECC (about 160 bit keys) than in RSA systems (about 1000 bit keys). Even though the basic operation in an ECC, point addition, might be more complex than the multiplication in RSA, the difference in field sizes needed, make the ECC system an attractive choice for low power/low complexity applications.

While implementing a flexible, programmable, hardware EC scalar multiplier we found a novel field multiplier that is twice as fast as the standard multiplier, while requiring 50% more chip area.
2 Field multipliers

Because we are interested in a flexible system a polynomial basis for
\(GF(2^n)\) seems more appropriate than a normal basis. Multiplication in
a normal basis representation is only efficient if an optimal normal basis
exists, and in the range of \(n\) that we were interested in, \(160 \ldots 200\), only
a few optimal bases exist.

So, the field elements are expressed as binary vectors \((a_0, a_1, \ldots, a_{n-1})\)
of dimension \(n\), relative to the base \(\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}\), where \(\alpha\) is a root
of the irreducible polynomial \(f(x)\) of degree \(n\) over \(\mathbb{F}_2\).

The classical multiplier implements the multiplication operation to­
gether with the modular reduction. The following pseudo-code describes
this multiplier and figure 1 gives a hardware implementation hereof. It
is clear that the running time, or number of clock cycles, is equal to
\(n\).

Note that the multiplication by \(x\) in the code is a simple left shift of the
register \(r\).

Inputs: \(a, b\) and the polynomial \(f(x)\).
Output: \(r\), where \(r \equiv a \cdot b \mod f(x)\).

\[
\begin{align*}
 r &\leftarrow 0 \\
 \text{for } i \text{ from } n \text{ downto } 0 \text{ do} \\
 &\quad msb \leftarrow r_{n-1} \\
 &\quad r \leftarrow (msb \text{ and } f(x)) \oplus (r \cdot x) \\
 &\quad r \leftarrow r \oplus (a_i \text{ and } b) \\
 \text{endfor} \\
 \text{return } r
\end{align*}
\]

Listing 1: Pseudo code for the classical multiplier

For odd characteristic fields, a more efficient multiplier exists, the
Montgomery multiplier [6]. Applying this idea to \(GF(2^n)\) we end up with
a multiplier that is very similar to the classical multiplier, see Listing 2.
The main difference is that it operates on the least significant bits of \(a\).

Inputs: \(a, b\) and the polynomial \(f(x)\).
Output: \(r\), where \(r \equiv a \cdot b \cdot x^n \mod f(x)\).

\[
\begin{align*}
 r &\leftarrow 0 \\
 \text{for } i \text{ from } 0 \text{ to } n-1 \text{ do} \\
 &\quad r \leftarrow r \oplus (a_i \text{ and } b) \\
 &\quad r \leftarrow (r \oplus f(x)) \oplus r \\
 &\quad r \leftarrow r / x \\
 \text{endfor} \\
 \text{return } r
\end{align*}
\]

Listing 2: Pseudo code for the Montgomery multiplier

The running time is again equal to \(n\) clock cycles. Note also that the
division by \(x\) in the code is a simple right shift of the register \(r\).

Instead of computing \(r \equiv a \cdot b \mod f(x)\) the Montgomery multiplier
\((MM)\) computes \(MM[a, b] \equiv r \equiv a \cdot b \cdot x^n \mod f(x)\). Therefor we
represent every element \(a \in GF(2^n)\) by \(M(a) \equiv a \cdot x^n \mod f(x)\). So,
if we wish to compute \(a \cdot b \mod f(x) \) we compute \(MM[M(a), M(b)] = a \cdot b \cdot x^n \mod f(x) \). We observe that \(MM[M(a), M(b)] = M(ab) \). Converting a value \(a \) to its Montgomery representation \(M(a) \) is easily obtained using the Montgomery multiplier as \(M(a) = MM[a, x^{2n}] \). The conversion from \(M(a) \) to \(a \) is similarly performed by \(a = MM[M(a), 1] \).

3 A modified field multiplier

If we briefly ignore the modular reduction we see that the classical multiplier and the Montgomery multiplier actually compute the same product. Say \(a(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 \) and \(b(x) = b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0 \). Then the classical multiplier results in

\[
(a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0)(b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0) =
\]

\[
c_8 x^8 + c_7 x^7 + c_6 x^6 + c_5 x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0
\] (2)

It is easy to see that the result for the Montgomery multiplier is \(c(x) \cdot x^{-n} \) because the intermediate results are shifted to the right.

\[
\begin{array}{cccccccc}
a_4 b_4 & a_4 b_3 & a_4 b_2 & a_4 b_1 & a_4 b_0 \\
a_3 b_4 & a_3 b_3 & a_3 b_2 & a_3 b_1 & a_3 b_0 \\
a_2 b_4 & a_2 b_3 & a_2 b_2 & a_2 b_1 & a_2 b_0 \\
a_1 b_4 & a_1 b_3 & a_1 b_2 & a_1 b_1 & a_1 b_0 \\
a_0 b_4 & a_0 b_3 & a_0 b_2 & a_0 b_1 & a_0 b_0 \\
c_8 & c_7 & c_6 & c_5 & c_4 & c_3 & c_2 & c_1 & c_0
\end{array}
\]

Assume that \(n \) is even, then multiplying \(c(x) \) by \(x^{n/2} \) can be seen as a combination of left and right shifts on the partial results. However these results can be performed in parallel and the two partial end results can then be added together. It is still possible to perform the modular reduction using the original algorithms from listing 1 and listing 2.

Inputs: \(a, b \) and the polynomial \(f(x) \).

Output: \(r \), where \(r \equiv a \cdot b \cdot x^{-n/2} \mod f(x) \).

\[
rc \leftarrow 0 \\
rm \leftarrow 0
\]

for \(i \) from 0 to \(n/2 - 1 \) do

\[
msb \leftarrow rc_{n-1}
\]

\[
rc \leftarrow (msb \text{ and } f(x)) \oplus (rc \times x)
\]

\[
rc \leftarrow rc \oplus (a_{i+1-1} \text{ and } b)
\]

\[
rm \leftarrow rm \oplus (a_i \text{ and } b)
\]

\[
rm \leftarrow (rm_0 \text{ and } f(x)) \oplus rm
\]

\[
rm \leftarrow rm/x
\]

endfor

return \(rc \oplus rm \)

Listing 3: Pseudo code for the modified multiplier

The main increase in chip area is caused by the extra (temporary) result register, \(rm \) and \(rc \) in stead of \(r \) in the original multipliers.

It is easy to extend this method to the case where \(n \) is odd. In that case the Montgomery part works on the \((n - 1) / 2\) least significant coordinates of \(a \) and the representation is \(M(a) = a \cdot x^{(n-1)/2} \mod f(x) \). The number of clock cycles needed is \((n + 1) / 2\). Odd, or preferably prime, values for \(n \) are often used in cryptographic systems.

4 Comparing the classical and modified multipliers

The multipliers were implemented in a field programmable gate array FPGA. The following two tables give an indication of the speed-up and chip area cost of the modified multiplier relative to the classical multiplier. We show the timing and chip area for the complete ECC scalar multiplier unit in table 1 and table 2 respectively.

5 Conclusion

The results of the ECC scalar multiplier comparison indicate that the field multiplier is the predominant factor in the speed-up of the design.
<table>
<thead>
<tr>
<th>Field size n</th>
<th>$t_{\text{classical}}$</th>
<th>t_{modified}</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>6.619</td>
<td>3.776</td>
</tr>
<tr>
<td>233</td>
<td>13.316</td>
<td>7.158</td>
</tr>
<tr>
<td>283</td>
<td>19.518</td>
<td>10.299</td>
</tr>
</tbody>
</table>

Table 1. Timing comparison in milliseconds

<table>
<thead>
<tr>
<th>Field size n</th>
<th>% slices (modified)</th>
<th>% slices (classical)</th>
<th>% modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>35</td>
<td>26</td>
<td>1.346</td>
</tr>
<tr>
<td>192</td>
<td>56</td>
<td>40</td>
<td>1.400</td>
</tr>
<tr>
<td>304</td>
<td>81</td>
<td>56</td>
<td>1.446</td>
</tr>
<tr>
<td>384</td>
<td>99</td>
<td>67</td>
<td>1.478</td>
</tr>
</tbody>
</table>

Table 2. Chip area in FPGA slices

The increase in chip area is caused by the field multiplier only. This and a more detailed comparison of the designs show that the modified multiplier costs about 50% more chip area. Because we designed a flexible and programmable ECC unit, many optimizations that are possible with fixed and clever choice of parameters were not possible in this implementation. This might influence the speed and chip area cost of a design enormously. Still the speed-up factor will be more or less the same because in many designs the field multiplier will determine the speed of the overall circuit.

References