A curious implication of Spitzers identity

Citation for published version (APA):

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
A curious implication of Spitzers identity

F.W. Steutel, T.U. Eindhoven

Abstract. Spitzer’s identity can be read as follows: Let \(W_n \) denote the waiting time of the \(n \)-th customer in a \(G|G|1 \)-queue, and let \(N \) be geometrically distributed on \((0,1,...)\) and independent of \(W_n \). Then \(W_{N+1} \) is infinitely divisible.

0. Introduction and summary

It is well known that random sums of the form

\[S_n = X_1 + ... + X_N \]

are infinitely divisible (inf div) if \(X_1, X_2, ... \) are i.i.d. and \(N \) is geometrically distributed on \(\{0,1,...\} \) and independent of \((X_n)^\infty \).

In this note it will appear that from Spitzer’s identity it follows that

\[W_{N+1} = W_1 + W_2 - W_1 + ... + W_{N+1} - W_N \]

is inf div, where \(W_n \) denotes the waiting time of the \(n \)-th customer in a \(G|G|1 \)-queue, and \(N \) is independent of \((W_n) \); here, however the \(W_{n+1} - W_n \) are dependent, and do not have the same distribution.

In Section 1, Spitzer’s identity is given with some necessary context, Section 2 contains basic facts on inf div distributions, and in Section 3 the two ingredients are combined. Section 4 gives some additional remarks.

In what follows \(F \), with or without suffix, will denote a distribution function, and \(\hat{F} \) its Laplace-Stieltjes transform (LSt).

1. Spitzer’s identity

In the well-known \(G|G|1 \)-queueing system customers arrive at times \(0, A_1, A_1 + A_2, ... \) and are served during periods \(B_1, B_2, ... \); all \(A \)'s and \(B \)'s are independent. We write \(S_0 = 0 \),

\[S_n = \sum_{k=1}^{n} (B_k - A_k), \quad n = 1, 2, ... \]

and \(S_k^+ = \max (0, S_k), \quad k = 1, 2, ... \). If it is assumed that the first customer finds the server free, then the waiting time \(W_n \) of the \(n \)-th customer is given by \(W_1 = 0 \), and

\[W_{n+1} \overset{d}{=} \max(S_0, S_1, ..., S_n), \quad n = 1, 2, ... \quad (1.1) \]

Now Spitzer’s identity (Loève (1977)) reads, for \(|z| < 1 \) and \(Re \ s \geq 0 \),
\[
\sum_{n=0}^{\infty} E e^{-sW_{n+1}} z^n = \exp \left\{ \sum_{k=1}^{\infty} \frac{1}{k} E e^{-sS_k^+} z^k \right\}.
\] (1.2)

2. Infinite divisibility

A random variable \(X \) is called inf div if for every \(n \in \mathbb{N} \) one has

\[
X \overset{d}{=} X_{1,n} + \ldots + X_{n,n},
\]

where the \(X_{j,n} \) are iid. We only need the following results (Feller (1971), Steutel (1970)).

Lemma 1. A nonnegative random variable is inf div if and only if it has a LST of the form

\[
\hat{F}(s) = E e^{-sx} = \exp \left\{ \int_{0}^{\infty} \frac{e^{-sx} - 1}{x} dK(x) \right\},
\] (2.1)

where \(K \) is a nondecreasing function, which, necessarily, has the property \(\int \frac{1}{x} dK(x) < \infty \).

Lemma 2. A nonnegative, integer-valued random variable \(M \) with \(P(M = n) = p_n, \) and \(p_0 > 0 \) is inf div if and only if its probability generating function has the form,

\[
P(z) := \sum_{n=0}^{\infty} p_n z^n = \exp \left\{ \sum_{n=0}^{\infty} \frac{r_n}{n+1} (z^{n+1} - 1) \right\},
\] (2.2)

with \(r_n \geq 0, n = 0, 1, 2,..., \) and, necessarily, \(\sum_{0}^{\infty} r_n /(n + 1) < \infty \).

3. \(W_{N+1} \) is infinitely divisible

We rewrite (1.2) as follows. Put \(z = p \in (0, 1) \) and multiply by \((1 - p) \); this yields (use \(- \sum_{1}^{\infty} p^k / k = \log(1 - p))\),

\[
\sum_{n=0}^{\infty} (1 - p) p^n E e^{-sW_{n+1}} = \exp \left\{ \sum_{k=1}^{\infty} \frac{p_k}{k} (E e^{-sS_k^+} - 1) \right\}.
\] (3.1)

The left-hand side of the equation above is equal to the LST of \(W_{N+1} \), where \(N \) is independent of \((W_n)_{n=0}^{\infty} \), and

\[
P(N = n) = (1 - p)p^n \quad (n = 0, 1, \ldots, n).
\] (3.2)

The right-hand side can be rewritten as

\[
\exp \left\{ \int_{0}^{\infty} \frac{e^{-sx} - 1}{x} dK(x) \right\},
\]
with K given by

$$K(x) = \sum_{k=1}^{\infty} \frac{p_k}{x} \int_{0}^{x} y \, dF_{S_k^+}(y)$$ \hspace{1cm} (3.3)$$

Combining the results above we obtain the main result of this note.

Theorem. If W_n is the waiting time of the n-th customer in a $G|G|1$-queue, started empty, and N is a rv independent of $(W_n)_{n=1}^{\infty}$ satisfying (3.2), then the rv W_{N+1} is infinitely divisible.

It should be pointed out that for fixed n the W_n are in general not inf div, since they are bounded if the B's are bounded; if $W_n \overset{q}{\to} W$ as $n \to \infty$, then W is inf div (see end of Section 4).

4. **Further remarks**

Spitzer's identity (1.2) can also be related to Lemma 2. Apart from a multiplicative constant in the right-hand side, (1.2) is of the form (2.2) with

$$p_n = p_n(s) = E e^{-s W_{n+1}}; \quad r_n = E e^{-S^+_{n+1}}.$$

So we see that, for every s, the sequence $(E e^{-s W_{n+1}})_{n=1}^{\infty}$ is an infinitely divisible sequence (not necessarily summing to 1).

Another result follows if we take logarithms in (1.2) and (2.2), and differentiate. Equation (2.2) then yields

$$n p_n = \sum_{k=0}^{n-1} p_k r_{n-k-1} \quad (n = 1, 2, ...).$$

Similarly, (1.2) leads to

$$n E e^{-s W_{n+1}} = \sum_{k=0}^{n-1} E e^{-s W_{k+1}} \cdot E e^{-s S^+_{n-k}},$$

or in terms of distribution functions

$$F_{W_{n+1}}(w) = \frac{1}{n} \sum_{k=1}^{n-1} (F_{W_{k+1}} \ast F_{S^+_{n-k}}) \quad (n = 1, 2, ...),$$ \hspace{1cm} (4.1)$$

which is not easily verified directly for $n > 1$. In fact, one can derive (4.1) from (1.1) and obtain a proof of Spitzer’s identity. This was done by Heinrich (1985), who proves (4.1) by induction; in Kotz et al. (1985), where I found the reference to Heinrich, the identity is misquoted: the factor $1/k$ in the right-hand side of (1.2) is missing. Finally, letting $p \nmid 1$ in (3.1) we obtain the Lst \hat{F}_W of the limiting waiting time (assume $ES_1 < 0$):
\[\hat{F}_W(s) = \exp \left\{ \int_0^\infty (e^{-ix} - 1) d \sum_{k=1}^\infty \frac{1}{k} F_{S_k^+}(x) \right\}, \]

which shows that \(W \) is inf div, as is well known.

References

Loève, M. (1977), Probability theory 1, Springer-Verlag, New York, etc.