89Y NMR line splitting in the high Tc superconductor YBa2Cu3O7

Citation for published version (APA):

DOI:
10.1016/0038-1098(87)90683-1

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
The 89Y nuclear resonance line in the superconducting compound YBa$_2$Cu$_3$O$_7$ has been measured as a function of temperature at a frequency of 10 MHz. The room temperature single line is found to be split in two lines at 100K. The implications of this result are discussed.

The present high T_c superconducting oxides are either based on doped La$_2$CuO$_4$ or on YBa$_2$Cu$_3$O$_7$ (YBCUO). In the first group with superconducting transition temperatures of around 40 K, quadrupole resonance on the rare earth (RE) nucleus has revealed the antiferromagnetic order in these materials [1,2]. In performing a resonance study on the RE-nucleus in the orthorhombic or tetragonal phases of YBCUO the following should be kept in mind: the crystal structure implies a cancellation of the fields produced by oriented copper moments at the RE-site; furthermore the electron density at the RE-site is expected [3] and observed [4] to be low. From these considerations Cu as resonance probe would seem more favourable, but the resonance line was found to be extremely broad, apparently due to the quadrupolar momentum of the \(I=3/2\) Cu nucleus. Doping of the copper site by a \(I=1/2\) nucleus is limited to iron, and, because of its low nuclear moment and low natural abundance of 57Fe not feasible. Oxygen replacement by fluorine has so far not produced stable compounds with reproducible transition temperatures. Hence, to get microscopic information via NMR one is limited to 89Y.

In this Communication we report the experimental results of a line width study on 89Y in YBCUO. The onset of diamagnetism in our sample, as determined by magnetic susceptibility was found to be at 90.2 K with a reflection point at 70 K [5]. The NMR measurements were performed in a magnetic field of 4.7 T (9.798 MHz) in the normal state of the material.

Figure 1 shows the Fourier transform of the NMR-FID as obtained at 298 K and 100 K. All data were taken using a pulse sequence consisting of a comb of 90° pulses (20 µs) followed by a 90° probing pulse with a dead time of 120 µs. At both temperatures checks were made on spurious signals by the application of a saturating pulse sequence. Also, the intensity was as expected from a calibration of the set-up, showing that no traces of other phases were the origin of the signal. At room temperature the single line has a width of 2kHz (about 1 mT), an order of magnitude more than the magnetic field inhomogeneity and a small positive shift of ~2 kHz. The relaxation time T_{1n} is found to be ~12 s. At 100 K the line is split (\(\Delta v = 2 \text{kHz}\)). The relaxation time is roughly 20 s.

The room temperature relaxation time of 12 s and the relative line shift of 0.02 % can be related by the Korringa relation:

$$T_{1n}(\Delta H/H)^2 = (h/4\pi kT)(\gamma_e^2/\gamma_n^2),$$

with γ_e and γ_n being the electronic and nuclear gyromagnetic ratio's. This shows that although the line shift is small and the relaxation time quite long, the conduction electron density at the Y-site is still responsible for the NMR properties. We like to mention at this point...
that we were not able to observe 169Tm and 171Yb resonances in the corresponding (Tm/Yb)BaCuO compounds under the same experimental conditions (despite the higher NMR sensitivity of these nuclei), possibly due to a lower electron density at the nucleus for these heavier atoms.

From the analysis of the room temperature data in terms of a Korringa relation, we think it to be most likely that the line splitting at 100 K finds its origin in a modulated charge density at the Yttrium site, which would reflect charge modulation in the nearby copper-oxygen planes. This modulation is possibly associated with the development of a charge density wave due to 1D or 2D-nesting of the Fermi surface [3]. From the present experiment we cannot discriminate between just a doubling of the unit cell or an incommensurate modulation, since both give rise to a split spectrum.

Acknowledgements - This work is supported by the Stichting voor Fundamenteel Onderzoek der Materie (Foundation for Fundamental Research on Matter) and was made possible by financial support from the "Nederlandse Organisatie voor Zuiver-Wetenschappelijk Onderzoek" (Netherlands Organization for the Advancement of Pure Research). The investigations are part of the research program of the Werkgroep voor Fundamenteel Materialen Onderzoek of the University of Leiden.

References