On the minimum distance of combinatorial codes

Citation for published version (APA):

DOI:
10.1109/18.53759

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
just the following four possible weight distributions for D exist by Table I). The MacWilliams' identities, which imply that A_1 is even-weight. The dual code of D is a codeword of weight 0, so D contains the all-one vector C is even-weight. The dual code of D is just C and so has minimum weight 6. Let A_i be the number of codewords of weight i in D. Then $A_i = A_{w-i}$, for each i (since $1 \leq i \leq D$) and $A_{w} = A_{0} = 0$ (by Lemma 2.14, the residual of D with respect to a codeword of weight 21 is an $(18,10,5)$-code, which does not exist by Table I).

The MacWilliams' identities (2.1) with $t = 0, 2, 4,$ and 6 now give

$$A_{15} + A_{16} + A_{17} + A_{19} = 1023,$$

$$21A_{15} + 5A_{16} - 7A_{17} - 9A_{19} = -741,$$

$$-309A_{15} - 12A_{16} - 29A_{17} + 174A_{19} = -84251,$$

$$159A_{15} + 1407A_{16} + 595A_{17} - 969A_{19} = -3262623 + 1024B_6,$$

which lead to

a) $A_{15} = \frac{(5388 - 9A_{19})}{14}$,

b) $A_{19} = \frac{(-726 + 5A_{19})}{2}$,

c) $A_{17} = \frac{(7008 - 20A_{19})}{7}$,

d) $A_{19} = \frac{30720 - 8B_6}{6}$.

From a), b), d) and c), we get respectively

$$A_{19} = 6 \pmod{7}, A_{15} = 0 \pmod{8}, A_{19} \leq 146,$$ and $A_{19} \leq 350$, which imply that A_{19} is one of 160, 216, 272, or 328. There are just the following four possible weight distributions for D.

<table>
<thead>
<tr>
<th>A_0</th>
<th>A_{12}</th>
<th>A_{16}</th>
<th>A_{17}</th>
<th>A_{19}</th>
<th>A_{20}</th>
<th>A_{22}</th>
<th>A_{24}</th>
<th>A_{39}</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1:</td>
<td>1</td>
<td>282</td>
<td>544</td>
<td>160</td>
<td>160</td>
<td>544</td>
<td>37</td>
<td>282</td>
</tr>
<tr>
<td>W_2:</td>
<td>1</td>
<td>246</td>
<td>384</td>
<td>216</td>
<td>216</td>
<td>384</td>
<td>177</td>
<td>246</td>
</tr>
<tr>
<td>W_3:</td>
<td>1</td>
<td>210</td>
<td>317</td>
<td>224</td>
<td>224</td>
<td>317</td>
<td>210</td>
<td>1</td>
</tr>
<tr>
<td>W_4:</td>
<td>1</td>
<td>174</td>
<td>457</td>
<td>328</td>
<td>328</td>
<td>457</td>
<td>174</td>
<td>1</td>
</tr>
</tbody>
</table>

For each of the four cases, the B_i's were calculated (with the aid of a computer program) from the MacWilliams' identities (2.1) in order to check whether they were all integer-valued. Indeed they were, but in each case exactly one B_i was negative. It is easily confirmed by hand calculation that

for W_1, $B_{39} = -5$,

for W_2, $B_{38} = -3$,

for W_3, $B_{39} = -1$,

for W_4, $B_{38} = -6$.

So we have a contradiction in each case.

Corollary 3.15: $d(39 + i,28 + i) \leq 5$ and $d(38 + i,28 + i) \leq 4$, for $0 \leq i \leq 4$.

ACKNOWLEDGMENT

We are grateful to P. P. Greenough for computer verification of calculations involved in this work.

We thank the referees for their very helpful comments and in particular for observations which considerably shortened the proofs of Theorems 3.6 and 3.8.

REFERENCES

On the Minimum Distance of Combinatorial Codes

L. TOLHUZIEN and J. H. VAN LINT

Abstract—A conjecture of Da Rocha concerning the minimum distance of a class of combinatorial codes is proven.

I. INTRODUCTION

The generator matrix of the first-order Reed-Muller code $R(1,m)$ of length $n = 2^m$ consists of all possible column-vectors from $\{0,1\}^m$. The combinatorial code $C(m,s)$ has as generator matrix the matrix $A(m,s)$ of length $\binom{n}{s}$, that has all possible column-vectors of weight s as columns.

These codes were introduced by V. C. Da Rocha [2]. It is an easy exercise to show that the weight of the sum of any j rows of $A(m,s)$ only depends on j, m and s. If we denote this weight by $F(m,j,s)$, then we have for $1 \leq j \leq m$

$$F(m,j,s) = \frac{1}{2} \binom{m}{s} - P(x;m),$$

where $P(x;m)$ is a Kravchouk polynomial (cf. [1], p. 130, [2], Th. 2). Note that $F(m,1,s) = \frac{1}{m} \binom{m-1}{s-1}$.

In [2], Da Rocha conjectures that the minimum weight of $C(m,s)$ is $\binom{n-1}{s-1}$ for $s < m/2$. We shall prove this conjecture and, in fact, we shall prove the following theorem.

Theorem 1: For $m \geq 1$, $2 < m$ and $1 \leq j \leq m - 1$ we have

$$\binom{m-1}{s-1} \leq F(m,j,s) \leq \binom{m-1}{s}.$$

II. RELATIONS FOR $F(m,j,s)$

By adding all the rows of $A(m,s)$, or by replacing all 0’s by 1’s and vice versa, one obtains the following two trivial relations (2.1, Theorems 3, 4)

$$F(m,m-j,s) = \begin{cases} F(m,j,s), & \text{if } s \text{ is even,} \\
\frac{m}{j} - F(m,j,s), & \text{if } s \text{ is odd,} \end{cases}$$

$$F(m,j,m-s) = \begin{cases} F(m,j,s), & \text{if } j \text{ is even,} \\
\frac{m}{j} - F(m,j,s), & \text{if } j \text{ is odd.} \end{cases}$$

Manuscript received May 17, 1989.

The authors are with Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands.

IEEE Log Number 8033797.
From these we obtain

\[
F(2s+1, j, s) = \frac{1}{2} \left(\begin{array}{c} 2s - 1 \\ s - 1 \end{array} \right), \quad \text{if } j \text{ is odd.} \tag{2.3}
\]

Note that by a permutation of columns, we can give \(A(m+1, s+1) \) the form

\[
A(m+1, s+1) = \begin{pmatrix} 1 & 1 \cdots & 1 & 0 & \cdots & 0 \\ A(m, s) & A(m, s+1) \end{pmatrix}.
\]

From this we immediately find two more relations:

\[
F(m+1, j, s) = \begin{pmatrix} m \choose s \end{pmatrix} - F(m, j-1, s) - F(m, j-1, s+1), \tag{2.4}
\]

\[
F(m+1, j, s+1) = \begin{pmatrix} m \choose s \end{pmatrix} - F(m, j-1, s) + F(m, j-1, s+1). \tag{2.5}
\]

III. PROOF OF THEOREM 1

We prove the theorem by induction on \(m \). For small values of \(m \) the theorem is easily checked by hand. Assume the theorem is true for \(m \leq k \). Let \(2s < k + 1, 1 \leq j \leq k \). We distinguish three cases.

Case a) \(j = k \). We have by (2.1)

\[
F(k+1, k, s) = \begin{pmatrix} k \choose s \end{pmatrix} - F(k, k-1, s) - F(k, k-1, s+1),
\]

so by the induction hypothesis

\[
F(k+1, j, s) \leq \begin{pmatrix} k \choose s-1 \end{pmatrix} + \begin{pmatrix} k \choose s-1 \end{pmatrix} = \begin{pmatrix} k \choose s \end{pmatrix}.
\]

and

\[
F(k+1, j, s) \geq \begin{pmatrix} k \choose s-2 \end{pmatrix} + \begin{pmatrix} k \choose s-2 \end{pmatrix} = \begin{pmatrix} k \choose s \end{pmatrix}.
\]

Case b) \(1 \leq j \leq k-1 \) and \(2s < k \). Now we use (2.4)

\[
F(k+1, j, s) = F(k, j, s-1) + F(k, j, s),
\]

so by the induction hypothesis

\[
F(k+1, j, s) \leq \begin{pmatrix} k \choose s-1 \end{pmatrix} + \begin{pmatrix} k \choose s-1 \end{pmatrix} = \begin{pmatrix} k \choose s \end{pmatrix}
\]

and

\[
F(k+1, j, s) \geq \begin{pmatrix} k \choose s-2 \end{pmatrix} + \begin{pmatrix} k \choose s-2 \end{pmatrix} = \begin{pmatrix} k \choose s \end{pmatrix}.
\]

Case c) \(1 \leq j \leq k-1 \) and \(2s = k \). We must now distinguish between odd and even values of \(j \). Let \(j \) be odd. By (2.4) and (2.3) we have

\[
F(2s+1, j, s) = F(2s, j, s) + F(2s, j, s-1)
\]

\[
= \begin{pmatrix} 2s-1 \choose s-1 \end{pmatrix} + F(2s, j, s-1),
\]

and then the induction hypothesis yields

\[
F(2s+1, j, s) \leq \begin{pmatrix} 2s-1 \choose s-1 \end{pmatrix} + \begin{pmatrix} 2s-1 \choose s-1 \end{pmatrix} = \begin{pmatrix} 2s \choose s \end{pmatrix},
\]

\[
F(2s+1, j, s) \geq \begin{pmatrix} 2s-1 \choose s-2 \end{pmatrix} + \begin{pmatrix} 2s-1 \choose s-2 \end{pmatrix} = \begin{pmatrix} 2s \choose s-1 \end{pmatrix}.
\]

Let \(j \) be even. By (2.5) and (2.3) we have

\[
F(2s+1, j, s) = \begin{pmatrix} 2s \choose s-1 \end{pmatrix} - F(2s, j-1, s-1) + F(2s, j-1, s)
\]

\[
= \begin{pmatrix} 2s \choose s-1 \end{pmatrix} + \begin{pmatrix} 2s-1 \choose s-1 \end{pmatrix} - F(2s, j-1, s-1),
\]

and now the induction hypothesis yields

\[
F(2s+1, j, s) \leq \begin{pmatrix} 2s \choose s-1 \end{pmatrix} + \begin{pmatrix} 2s-1 \choose s-1 \end{pmatrix} - \begin{pmatrix} 2s-1 \choose s-2 \end{pmatrix}
\]

\[
= \begin{pmatrix} 2s \choose s-1 \end{pmatrix} - \begin{pmatrix} 2s \choose s-2 \end{pmatrix},
\]

\[
F(2s+1, j, s) \geq \begin{pmatrix} 2s \choose s-1 \end{pmatrix} + \begin{pmatrix} 2s-1 \choose s-1 \end{pmatrix} - \begin{pmatrix} 2s-1 \choose s-1 \end{pmatrix} = \begin{pmatrix} 2s \choose s-1 \end{pmatrix}.
\]

Cases a), b), c) show that the theorem is also true for \(m = k + 1 \) and the proof is complete.

Note that the theorem has some combinatorial interest. It is nice to know that codewords cannot have weight less than the rows of the generator, but one should also realize that these codes are not good. Also as anticodes they do not seem to be very promising.

For the sake of completeness we mention the following facts concerning \(C(m, s) \), (cf. [2])

\[
C(m, s) \text{ has dimension } \begin{pmatrix} m \choose s \end{pmatrix} \text{ if } s \text{ is odd,}
\]

\[
\begin{pmatrix} m-1 \choose s \end{pmatrix} \text{ if } s \text{ is even.}
\]

By adding the all-one vector of the code \(C(m, s) \) if \(s \) is even, a code with dimension \(m \) is obtained with minimum weight \(d(m, s) \) where

\[
d(m, s) = \begin{cases} \begin{pmatrix} m-1 \choose s \end{pmatrix} & \text{if } 2s < m, \\ \begin{pmatrix} m-1 \choose s \end{pmatrix} & \text{if } 2s > m, \\ 2 \begin{pmatrix} 2s-1 \choose s-2 \end{pmatrix} & \text{if } 2s = m. \end{cases}
\]

For \(2s > m \), the assertion about the minimum distance is a consequence of the following obvious extension of Theorem 1.

Theorem 1':

a) For \(m \geq 1, 2s > m \) and \(1 \leq j \leq m-1 \) we have

\[
\begin{pmatrix} m-1 \choose s \end{pmatrix} \leq F(m, j, s) \leq \begin{pmatrix} m-1 \choose s-1 \end{pmatrix}.
\]

b) For \(s \geq 1 \) and \(1 \leq j \leq 2s-1 \) we have

\[
F(2s, j, s) = \begin{pmatrix} 2s-1 \choose s-1 \end{pmatrix}, \quad s \text{ odd,}
\]

and

\[
2 \begin{pmatrix} 2s-2 \choose s-2 \end{pmatrix} \leq F(2s, j, s) \leq 2 \begin{pmatrix} 2s-2 \choose s-1 \end{pmatrix}, \quad s \text{ even.}
\]

Proof:

a) Combination of Theorem 1 and (2.2).

b) Combination of Theorem 1, (2.3), (2.4) and a.

References
