How to measure cognitive complexity in human-computer interaction

Rauterberg, G.W.M.

Published in:
Cybernetics and systems '96 : proceedings of the Thirteenth European Meeting on Cybernetics and Systems Research, held at the University of Vienna, Austria, 9-12 April 1996

Published: 01/01/1996

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
How to Measure Cognitive Complexity in Human-Computer Interaction

Matthias Rauterberg

Work- and Organizational Psychology Unit
Swiss Federal Institute of Technology (ETH)
Nelkenstrasse 11, CH-8092 Zurich, Switzerland
Tel: +41-1-632 7082, Email: rauterberg@ifap.bepr.ethz.ch

Abstract
A framework to conceptualize measure of behaviour complexity (BC), system complexity (SC) and task complexity (TC) was developed. From this framework cognitive complexity (CC) is derived as CC = SC + TC - BC. In an empirical study to investigate different measures of cognitive complexity 6 beginners and 6 experts solved 4 different tasks with an interactive database management system. To analyze the empirical data recorded during the interactive sessions a special program was developed. The program’s purpose and the program architecture are described. Four different approaches from the literature to measure complexity in a quantitative way were considered and discussed. Application of these 4 approaches were compared and tested against the empirical results of the experiment. The measure of McCabe (1976) proved to be the most effective.

1 Introduction
This study was carried out to support the formal analysis of studying user keystroke behaviour. The normal design cycle used to construct a formal model is a top down approach. In this paper we present an automatic bottom up approach to construct a formal description of user behaviour. The formalism we have selected to model the user's knowledge with finite state/transition systems, is the Petri net theory. There are different formalisms for constructing user models the context of human computer interaction; TAG (Payne & Green 1986), CLG (Moran 1981), GOMS (Card, Moran & Newell 1983), CCT (Kieras & Polson 1985), and different kinds of grammars BNF (Reisner 1981), EBNF (Reisner 1984), etc. Using any of these formalisms the investigator is obliged to design the pure ("error free") user model in a top down approach. Then he or she can try to prove the model with "error free" empirical data. This is difficult, expensive and insufficient, and one of the consequences is that most of the formal models exist only as paper versions and have not been implemented as executable simulations. For a detailed critique of the mentioned formalism see Sutcliffe (1989) Karat & Bennett (1991) or Benyon (1992).

If user models can be constructed using an automatic, bottom up approach, then the handling of formal models becomes easy. To achieve this, we first of all develop a theoretical framework, which fits our empirical approach. Based on this framework we are able to test four different measures of complexity according to their "discriminating power".

2 Cognitive complexity in man computer interaction
Cognitive complexity has been defined as "an aspect of a person's cognitive functioning which at one end is defined by the use of many constructs with many relationships to one another (complexity) and at the other end by the use of few constructs with limited relationships to one another (simplicity)" (Pervin 1984, p. 507). Transferring this broad definition to the man computer interaction could mean: the complexity of the user's mental model of the dialog system is given by the number of known dialog contexts ("constructs") on one hand, and by the number of known dialog operations ("relationships") on the other hand. The scope of this paper does not include approaches based on questionnaires (Scott, Osgood & Peterson 1979, McDaniel & Lawrence 1990).

2.1 Definition of cognitive complexity
Observing the behaviour of people solving a specific problem or task is our basis for estimating "cognitive complexity (CC)". The cognitive structures of users are not directly observable, so we need a method and a theory to use the observable behaviour as one parameter to estimate CC. A second parameter is a description of the action or problem solving space itself. The third parameter is an "objective" measure of the task or problem structure. We call the complexity of the observable behaviour the "behaviour complexity (BC)". This behaviour complexity can be estimated by analysing the recorded concrete task solving process, which leads to an appropriate task solving solution. The complexity of a given tool (e.g. an interactive system) we call "system complexity (SC)". The last parameter we need is an estimation of the "task complexity (TC)".

The necessary task solving knowledge for a given task is constant. This knowledge embedded in the cognitive structure (CC) can be observed and measured with BC. If the cognitive structure is too simple, then the concrete task solving process must be filled up with a lot of heuristics or trial and error strategies. Learning how to solve a specific task with a given system means that BC decreases (to a minimum = TC) and CC increases (to a maximum = SC). We assume, that the difference (BC–TC) is equal to the difference (SC–CC). The necessary task solving knowledge for a given task is constant. This knowledge embedded in the cognitive structure (CC) can be observed and measured with BC. If the cognitive structure is too simple, then the concrete task solving process must be filled up with a lot of heuristics or trial and error strategies. Learning how to solve a specific task with a given system means that BC decreases (to a minimum = TC) and CC increases (to a maximum = SC). We assume, that the difference (BC–TC) is equal to the difference (SC–CC).

To solve a task, a person needs knowledge about the dialog structure of the interactive software (measured by SC) and about the task structure (measured by TC). SC is an upper limit for TC (SC >= TC); this aspect means, that the system structure constrains the complexity of the obser
The semantic of Ccycle can be described by the number of a sequence \(S = T + P \); the value of \(P \) in our context is a constant to correct the result of Formula 5 in the case and the total number of states \(S \) (state). The parameter \(P \) is given by the number of all observed BCs per task. Given a sample of different complete task solving processes, the best approximation for TC seems to be the minimal solution regarding a specific complexity measurement. One plausible consequence of this assumption is that CC is equal to SC in the case of "best solution" (TC=BC). This is the approach we are presenting here.

2.2 Quantitative measurements of complexity

The cognitive complexity (CC) is defined by Formula 2. To measure the system complexity (SC) we need a description of the interactive system "behaviour". In the context of this work we are using a state/transition matrix to describe all possible dialog actions the user can use to change from one dialog state to another. Then we need to carry out an empirical investigation to observe and record user behaviour solving a set of tasks with the interactive system.

To measure complexity we introduce four different metrics. The first simple metric we use is given by Stevens, Myers and Constantine (1974). They count the number of dialog states \(S \) (states) to measure the "absolute structural complexity of a net" (see Formula 3).

\[
C_{state} = S \quad \text{(Formula 3)}
\]

The "relative structural complexity" of a net is the ratio of the number of connections between dialog states \(T \) (transition) to the total number of dialog states \(S \) (state) (see Formula 4). The measure \(C_{fan} \) represents the average number of connections per state, so we call this complexity measure the "fan degree" of the net.

\[
C_{fan} = \frac{T}{S} \quad \text{(Formula 4)}
\]

The third metric we use is published by McCabe (1976). His complexity measure was created in the context of software development, to analyse large programs. The mathematical background of this measure is graph theory, which offers several procedures to describe different aspects of net structures. If we have two dimensional net structures, then we can calculate the number of basic cycles ("holes") in the net with this complexity measure (see Formula 5).

The complexity is defined by the difference of the total number of connections \(T \) (transition) and the total number of states \(S \) (state). The parameter \(P \) is a constant to correct the result of Formula 5 in the case of a sequence \(S = T + P \); the value of \(P \) in our context is 1. The semantic of \(C_{cycle} \) can be described by the number of "holes" in a net. \(C_{cycle} \) is a metric to calculate the number of linear independent cycles of a plane and coherent net.

\[
C_{cycle} = T - S + P \quad \text{(Formula 5)}
\]

The fourth metric is given by Kornwachs (1987). His concept was developed for a general system with elements and connections. His complexity measure was explicitly designed for man-computer interaction. The idea of this measure is to estimate the actual net density compared to the maximal possible net density. The maximal possible net density increases proportional to the square of the number of states. Let \(S \) be the number of all elements ("states") in a given system \(I \); the matrix of all realized connections \(c \) is given by: \(c_{ij}=0 \), if element \(i \in I \) is disconnected with element \(j \in I \), and \(c_{ij}=1 \), if element \(i \in I \) is connected with element \(j \in I \). The number of all realized (= really existing) connections is \(t = \sum c_{ij} \). All possible directed connections \(s \) of the system \(I \) can be calculated by \(s = 5(S-1) \). The structural density \(d \) is given by \(d = t/s \). The "structural degree of complexity" \(C_{density} \) is now defined as the structural density \(d \).

\[
C_{density} = \frac{T}{S(S-1)} \quad \text{(Formula 6)}
\]

With \(C_{state} \), \(C_{fan} \), \(C_{cycle} \), and \(C_{density} \) we have four different metrics to measure complexity. We shall discuss the advantages and disadvantages of these four quantitative metrics in the context of an empirical investigation below.

2.3 Representations of cognitive complexity

Measurement of complexity of a system described with a state/transition matrix in a quantitative way is one central issue; the other central issue is to transform the structure of a given system in an "appropriate form". One qualitative approach to figure complexity is drawing the "net structure" of the system. If we use Petri-Nets (Petri 1980) instead of the equivalent state/transition formalism (Wasserman 1985), we can simulate the user's mental model in an executable form with Petri-Net simulators.

A Petri-Net is a mathematical structure consisting of two non-empty disjoint sets of nodes, called S-elements and T-elements, respectively, and a binary relation \(F \), called the flow relation. \(F \) connects only nodes of different types and leaves no node isolated. Nets can be interpreted by using a suitable pair of concepts for the sets \(S \) (signified by curved brackets \([\] \)) and \(T \) (signified by square brackets \((\) \)) and a suitable interpretation for the flow relation \(F \) (signified by an arrow \(-> \)). The means/activity interpretation allows one to describe the static structure of a system with several active and passive functional components: means (S) = real or informational entity, and activity \([T] = (\text{repeatable}) \text{ action of a system. } \text{ The flow relation } F \text{ means: } \lbrack a \rbrack \rightarrow (m) \text{, the activity } a \text{ (e.g. a dialog operation) produces means } m \text{ (e.g. a dialog state); } (m) \rightarrow \lbrack a \rbrack \text{, activity } a \text{ uses means } m. \text{ The main operations (relations) between two nets are abstraction, embedding and folding (Genrich, Lautenbach & Thiagarajan 1980). Folding is the most important operation in our context.}

3 The Automatic Mental Model Evaluator (AMME)

What is the main concern of a user interacting with a software system? The user must build up a mental repre
sition of the system's structure and gain knowledge about the functions of this system with respect to a set of tasks. Furthermore, he must learn the language, i.e., a set of symbols, their syntax, and operations connected to them, to evoke interaction sequences (the interactive "processes") related to task and subtask functions. So, the user's representations of the system structure are models of a virtual machine. A "virtual machine" is defined as a representation of the functionality of a system (functional units and their behaviour). The most important point for the user is the relation between task and machine, and not so much the internal structure of the machine's system. Consequently, the task for the human factors engineer is to model a suitable interface as a representation of the virtual machine which can serve as a possible mental representation for the user.

The symbolic representation of the machine system consists of the following elements: 1. objects (things to operate on), 2. operations (symbols and their syntax), and 3. states (the "dialog states"). The mental model of the user can be structured in representing objects, operations, states, system structure, and task structure.

3.1 The "idea" of AMME

If a user interacts with a dialog system, he or she produces a sequence of states and transitions (s') -> [t'] -> (s'') -> [t''] -> (s''') -> [t'''] -> ... Each state corresponds to a dialog context, and each transition corresponds to a dialog operation. This sequence is called a "process". Measurable facts in the process are for example number of states and transitions, time per transition, etc. This measurements can be easily done based on a protocol of the user's behaviour automatically recorded by the dialog system in a "logfile" (the logging recording technique; Crellin, Horn & Preece 1990).

To measure the complexity of the mental model which generates the actual process, we first need a mapping procedure from the observable process to the embedded structure of this process. This mapping procedure can be done with the folding operation in the context of Petri nets. Folding a process means to map S-elements onto S-elements and T-elements onto T-elements while keeping the F-structure. The result is the structure of the performance net. The result of a folding operation of our example sequence above is a loop (s') -> [t'] -> (s'') -> [t''] -> (s''') -> [t'''] -> ... Each state corresponds to a dialog context, and each transition corresponds to a dialog operation. This sequence is called a "process". Measurable facts in the process are for example number of states and transitions, time per transition, etc. This measurements can be easily done based on a protocol of the user's behaviour automatically recorded by the dialog system in a "logfile" (the logging recording technique; Crellin, Horn & Preece 1990).

To measure the complexity of the mental model which generates the actual process, we first need a mapping procedure from the observable process to the embedded structure of this process. This mapping procedure can be done with the folding operation in the context of Petri nets. Folding a process means to map S-elements onto S-elements and T-elements onto T-elements while keeping the F-structure. The result is the structure of the performance net. The result of a folding operation of our example sequence above is a loop (s') -> [t'] -> (s'') -> [t''] -> (s''') -> [t'''] -> ... Each state corresponds to a dialog context, and each transition corresponds to a dialog operation. This sequence is called a "process". Measurable facts in the process are for example number of states and transitions, time per transition, etc. This measurements can be easily done based on a protocol of the user's behaviour automatically recorded by the dialog system in a "logfile" (the logging recording technique; Crellin, Horn & Preece 1990).

The prime idea of our approach is based on the actual observation of users performing a specific task. The key to the interpretation of the protocols is a map of the complete task solving domain, on which the behaviour of individual processes is drawn. This task solving domain in our approach is the whole dialog net structure of the interactive system. A sequence of keystrokes can be contemplated as a sentence derived from a defined grammar or as a process derived from a Petri net. The state transition net, as a complete description of the software the user is interacting with, can be used to identify the equal states in the keystroke sequence. All parts of the user's keystroke sequence between two dialog states are elementary processes. All elementary processes can be combined to form a Petri net (the "folding" operator). The "folded" Petri net is a formal description ("model") of the procedural knowledge of the users behaviour.

3.2 The program structure of AMME

The tool AMME consists of four different modules: (1) the dialog system with the logging recording feature; (2) a transformation program, which translates the binary logfile in a readable ascii file; (3) the analysing program PACEGEN (Hofmann & Rudnik 1991), which extracts the net of the task and user specific process and calculates different quantitative metrics of the generated net; (4) the Petrinet simulator PACE (Dähler 1989).

4 Analyzing user behaviour recorded in logfiles

4.1 The empirical investigation

We tested the dialog system ADIMENS 2.21 with 12 users (Rautenberg 1992). These 12 users had to solve 10 different benchmark tasks in the context of operating the database system. We present the results of the first four different benchmark tasks.

Subjects: Two different user groups took part in this experiment: a beginner group (N=6: 4 women, 2 men; average age of 27 years), and an expert group (N=6: 0 woman, 6 men; average age of 38 years).

Experimental setting: First, the experience with computers was measured with a 115-item questionnaire and with interviews, then the beginner group was instructed for 1.5 hours in handling the database system. The expert group had 1,740 hours of experience in handling the database system. Their total computer experience of about 7,500 hours was the result of their daily work using different types of computers and software systems. The duration of the actual task solving session was about 30 minutes. Each keystroke with a timestamp was recorded in a logfile. Each user needed about 2 hours for the whole experiment (10 tasks, individual sessions).

System description: The dialog system was the relational database system ADIMENS version 2.21 with a character oriented user interface (CUI) running on standard IBM PC's with standard keyboard. The whole dialog structure is strictly hierarchical organized with three levels: (1) the main menu has 7 dialog operations (ordinary ascii characters chosen from a menu) to go down to 7 different modules, and 5 function keys with specific semantics; (2) at the module level each module has exactly 4 different dialog operations to change to routines and on average 4.1 (±1.7; range: 0-5) function keys with specific semantics; (3) at the routine level the user has only on average 3.7 (±2.9; range: 0-10) different function keys to control the dialog (additionally all ascii keys and the cursor keys are usable).

The number of all ordinary dialog contexts (main menu, modules, routines) is 1+7*4=29. But to describe the complete dialog structure with all help, error and additional dialog states we need at least 144 different dialog states.

Task description: In the experiment all users had to play the role of a camping place manager. This manager uses a database system with a data base consisting of
three data files: PLACE, GROUP, and ADDRESS. All users had to solve the four different tasks operating the database system (for a complete task description see Rautenberg 1992, p. 230: task 1 "info", task 2 "delete", task 3 "edit", task 5 "filter").

Dependent measures: One of the most important dependent measures is the task solving time. This variable and the results of the computer experience questionnaire are needed for validating the different complexity measures. With the analysing program PACEGEN we obtained the following measures per user and per task: the number of all different transitions (T vector: "# of transitions") and the number of all different dialog states (S vector: "# of states"). We do not assume a massive learning process during the task solving period. So, a good measure of CC must differentiate between beginners and experts, but not overall between the four tasks!

4.2 Experimental results

Let us begin with the performance measure task solving time (in seconds). The means of the two experimental groups are different (MEAN begin = 914 ±494; MEAN exp = 270 ±164). The experts are significantly faster than the beginners (Factor "experience" df = 1, F = 45.3, p ≤ 0.001; Factor "tasks" df = 3, F = 4.0, p ≤ 0.014; Interaction "experience" × Factor "tasks" df = 3, F = 1.5, p ≤ 0.234). This expected result is fundamental for validating the complexity measures. The second important result is the significant difference among the four tasks (MEAN task-1 = 419 ±331; MEAN task-2 = 789 ±702; MEAN task-3 = 724 ±422; MEAN task-4 = 436 ±345).

If this time measure is a coarse estimation of complexity, then the order of the four tasks according to their complexity is: Lowest is task 1, followed by task 4, task 3 and task 2. A close look at task 3 shows, that a user has to know how to handle 15 different states just for the editor required in the dialog context of the routine "update": to change from one editor state to another the user needs at least 45 different transitions (e.g. different semantics of the cursor keys). In the following analysis we evaluate the logfiles only on the routine level, so we do not measure the behavioural complexity below this level.

The next estimation of complexity is the number of different dialog states. We need 144 different dialog states to describe the dialog structure of the interactive system. Solving a given task the user has to navigate through this dialog structure. The average number of different dialog states the beginners need to solve all tasks is significantly higher than the average of the expert group (MEAN begin = 11.5 ±2.8; MEAN exp = 9.2 ±2.9; Factor "experience" df = 1, F = 8.8, p ≤ 0.005; Factor "tasks" df = 3, F = 5.8, p ≤ 0.002; Interaction "experience" × Factor "tasks" df = 3, F = 0.8, p ≤ 0.485). This result can be easily explained by the different experience of operating the system: The beginners need more heuristic search strategies to solve the tasks than the experts. There is also a significant difference between task 4 and the other three tasks (MEAN task-1 = 9.5 ±3.6; MEAN task-2 = 9.6 ±2.9; MEAN task-3 = 9.3 ±2.4; MEAN task-4 = 13.1 ±1.0).

The beginners also use significantly more different transitions than the experts (MEAN begin = 28.0 ±9.4; MEAN exp = 21.3 ±8.6). This result supports the interpretation, that the beginners need more heuristics to solve the tasks than the experts. In solving task 4 all users need the most number of transitions. The main effect "tasks" in the analysis of variance is significant (Factor "experience" df = 1, F = 7.5, p ≤ 0.009; Factor "tasks" df = 3, F = 3.4, p ≤ 0.026; Interaction "experience" × Factor "tasks" df = 3, F = 0.4, p ≤ 0.721). The results of these three dependent measures are the basis to find out which of the following four cognitive complexity measures is the best.

5 Validation of the four different complexity measures

To estimate the cognitive complexity we must first calculate the behaviour complexity (“BC”) of each user and each task. Then we estimate the task complexity (“TC”) of each task by searching for the minimum of the 12 empirical values of the behaviour complexity (the "best" solution). The system complexity is given by the system description, and is always constant in the context of a specific complexity measure.

5.1 "Cognitive Complexity" based on the metric for "different dialog states"

First we present the results of the measure of cognitive complexity CC state of Stevens et al. (1974) according to the number of different dialog states (S: states). The results for the behavioral complexity BC state are given above (see chapter 4.2). The following estimations of the behavioural, system, and task complexity are set:

Behaviour Complexity: BC state = S; System Complexity: SC state = 144 (number of total states); Task Complexity: TC state = min[BC state] task-4 = 1, min[BC state] task-2 = 2, min[BC state] task-3 = 3, min[BC state] task-4 = 4; Cognitive Complexity: CC state = SC state + TC state = BC state

This measure CC state can differentiate between beginners and experts. The cognitive complexity CC state of the performance model of the experts is significantly higher than the cognitive complexity CC state of the beginners (MEAN begin = 139.8 ±3.2; MEAN exp = 141.7 ±2.6; Factor "experience" df = 1, F = 6.8, p ≤ 0.013). This outcome is meaningful. But the result, that the average complexity CC state of the cognitive model of task 3 and 4 is higher than the complexity CC state of task 1 and 2, is counter intuitive (MEAN task-1 = 138.5 ±3.6; MEAN task-2 = 140.4 ±2.9; MEAN task-3 = 141.7 ±2.4; MEAN task-4 = 142.5 ±1.7; Factor "tasks" df = 3, F = 5.4, p ≤ 0.003). This result would enforce the interpretation, that the users had more knowledge of the "more complex" tasks than of the "less complex" tasks. This outcome can only be explained, if there was a massive learning process during the task solving period. This assumption could be plausible for beginners, but not for the experts. So, if this interpretation is correct, then we must have a significant interaction "exp. x task" in the analysis of variance. But there is no significant interaction (Interaction "experience" × Factor "tasks" df = 3, F = 1.3, p ≤ 0.314). Let us see, how this aspect will be handled by the other three measures of complexity.

5.2 "Cognitive Complexity" based on the metric for "fan degrees"

Now we present the results of the measure of cognitive complexity of Stevens et al. (1974) according to the ave
rage fan degree of each dialog state. The total number of all possible dialog states (S) is 144, and of all transitions (T) is 356 (given by the system description).

Behaviour Complexity: \(BC_{\text{fan}} = T/S; \) **System Complexity:**

\[
\begin{align*}
SC_{\text{fan}} &= 358/144 = 2.486; ~~~ Task Complexity: \quad TC_{\text{fan}}: \min[BC_{\text{fan}}/T] &= 1.875, \min[BC_{\text{fan}}/T^2] = 2.077, \\
& \min[BC_{\text{fan}}/T^3] = 2.000, \min[BC_{\text{fan}}/T^4] = 2.000; ~~~ Cognitive Complexity: \quad CC_{\text{fan}} = SC_{\text{fan}} + TC_{\text{fan}} - BC_{\text{fan}}
\end{align*}
\]

The average fan degree of all 144 dialog states is 2.486 (\(SC_{\text{fan}} \)). This means that the user can choose on average between 2 and 3 alternatives to go navigating in the dialog structure. If we take the fact that the 29 main dialog contexts described above have between 3.7 and 12.0 transitions alternatives (see section on "system description"), then we can derive from the system description, that the most dialog states in the system description are of simple decision quality: "go on" (\(SC_{\text{fan}} = 1; 48\% \)), "yes" or "no", "ok" or "cancel" (\(SC_{\text{fan}} = 2; 22\% \)), (\(SC_{\text{fan}} = 3; 11\% \)) and (\(SC_{\text{fan}} > 3; 19\% \)).

Task Complexity:

\[
\begin{align*}
\text{min}[BC_{\text{fan}}/T] &= 1.875, \min[BC_{\text{fan}}/T^2] = 2.077, \\
& \min[BC_{\text{fan}}/T^3] = 2.000, \min[BC_{\text{fan}}/T^4] = 2.000; ~~~ Cognitive Complexity: \quad CC_{\text{fan}} = SC_{\text{fan}} + TC_{\text{fan}} - BC_{\text{fan}}
\end{align*}
\]

The TC\(_{\text{fan}}\) measure does not differentiate very well among the four tasks. This measure CC\(_{\text{fan}}\) can differentiate between beginners and experts in the expected direction: The complexity of the cognitive models of experts is significantly higher than the complexity of beginner models (MEAN\(_{\text{begin}} = 2.15 \pm 0.14; \) MEAN\(_{\text{exp}} = 2.35 \pm 0.13; \) Factor "experience" \(df=1, F=29.0, p<0.001 \)). The cognitive complexity CC\(_{\text{fan}}\) of all users does not differ in the four tasks (MEAN\(_{\text{task-1}} = 2.24 \pm 0.17; \) MEAN\(_{\text{task-2}} = 2.32 \pm 0.14; \) MEAN\(_{\text{task-3}} = 2.20 \pm 0.16; \) MEAN\(_{\text{task-4}} = 2.24 \pm 0.19; \) Factor "tasks" \(df=3, F=1.7, p=0.190; \) Interaction "experience" \(\times \) Factor "tasks" \(df=3, F=0.4, p=0.737 \).

5.3 "Cognitive Complexity" based on the metric for "net cycles" (McCabe)

The empirical values of the number of states (S) and transitions (T) of each user per task are given by the vectors S and T.

Behaviour Complexity: \(BC_{\text{cycle}} = T – S + 1; \) **System Complexity:**

\[
\begin{align*}
SC_{\text{cycle}} &= 358 – 144 + 1 = 215; ~~~ Task Complexity: \quad TC_{\text{cycle}}: \min[BC_{\text{cycle}}/T] &= 5, \min[BC_{\text{cycle}}/T^2] = 8, \\
& \min[BC_{\text{cycle}}/T^3] = 8, \min[BC_{\text{cycle}}/T^4] = 13; ~~~ Cognitive Complexity: \quad CC_{\text{cycle}} = SC_{\text{cycle}} + TC_{\text{cycle}} - BC_{\text{cycle}}
\end{align*}
\]

It is important to notice, that the task complexity TC\(_{\text{cycle}}\) of the different tasks is in the expected direction: task 1 is highly complex and task 4 is low in complexity. The cognitive complexity CC\(_{\text{cycle}}\) of the mental models of beginners is significantly less complex than the cognitive complexity of the mental models of the experts (MEAN\(_{\text{begin}} = 0.187 \pm 0.173; \) MEAN\(_{\text{exp}} = 0.137 \pm 0.166; \) Factor "experience" \(df=1, F=3.0, p<0.090 \)), but very well among the four different tasks (MEAN\(_{\text{task-1}} = 0.381 \pm 0.156; \) MEAN\(_{\text{task-2}} = 0.162 \pm 0.094; \) MEAN\(_{\text{task-3}} = 0.089 \pm 0.093; \) MEAN\(_{\text{task-4}} = 0.018 \pm 0.020; \) Factor "tasks" \(df=3, F=29.4, p<0.001; \) Interaction "experience" \(\times \) Factor "tasks" \(df=3, F=1.0, p=0.409 \).

The average values of CC\(_{\text{density}}\) of the cognitive performance models according to the tasks are in a surprising direction: The users lose their knowledge during the task solving period. This outcome is not plausible.

5.4 "Cognitive Complexity" based on the metric for "net density" (Kornwachs)

The empirical values of the number of states (S) and transitions (T) of each user per task are given by the vectors S and T.

Behaviour Complexity: \(BC_{\text{density}} = T/(S*(S-1)); \) **System Complexity:**

\[
\begin{align*}
SC_{\text{density}} &= 358/(144*(144-1)) = 0.017; ~~~ Task Complexity: \quad TC_{\text{density}}: \min[BC_{\text{density}}/T] &= 0.667, \\
& \min[BC_{\text{density}}/T^2] = 0.433, \min[BC_{\text{density}}/T^3] = 0.333, \\
& \min[BC_{\text{density}}/T^4] = 0.182; ~~~ Cognitive Complexity: \quad CC_{\text{density}} = SC_{\text{density}} + TC_{\text{density}} - BC_{\text{density}}
\end{align*}
\]

The estimations of task complexity TC\(_{\text{density}}\) are counter intuitive: task 1 is highly complex and task 4 is low in complexity! Also, the system complexity SC\(_{\text{density}}\) is lower than each task complexity TC\(_{\text{density}}\). This fact leads to negative complexity values! We did not include in the construction of CC\(_{\text{density}}\) the aspect of the structural complexity of hierarchies (see Kornwachs 1987), so, perhaps, this surprising result of negative complexity values comes from neglecting this aspect.

The measure CC\(_{\text{density}}\) differentiates poorly between beginners and experts (MEAN\(_{\text{begin}} = 0.187 \pm 0.173; \) MEAN\(_{\text{exp}} = 0.137 \pm 0.166; \) Factor "experience" \(df=1, F=3.0, p<0.090 \)), but very well among the four different tasks (MEAN\(_{\text{task-1}} = 0.381 \pm 0.156; \) MEAN\(_{\text{task-2}} = 0.162 \pm 0.094; \) MEAN\(_{\text{task-3}} = 0.089 \pm 0.093; \) MEAN\(_{\text{task-4}} = 0.018 \pm 0.020; \) Factor "tasks" \(df=3, F=29.4, p<0.001; \) Interaction "experience" \(\times \) Factor "tasks" \(df=3, F=1.0, p=0.409 \).

The average values of CC\(_{\text{density}}\) of the cognitive performance models according to the tasks are in a surprising direction: The users lose their knowledge during the task solving period. This outcome is not plausible.

6 Discussion and Conclusions

Based on the assumption, that our theoretical model of cognitive complexity given by Formulas 1–4 is valid and meaningful, we are able to test and validate the four different metrics for complexity.

After the first test trial presented above, we bring the four different complexity measures (CCs) in relation to other aspects of our experimental "reality". First, we calculate the product moment correlation (r) of the CCs with "task solving time": CC\(_{\text{state}} \) r=−0.427, p<0.002; CC\(_{\text{fan}} \) r=−0.576, p<0.001; CC\(_{\text{cycle}} \) r=−0.576, p<0.001; CC\(_{\text{density}} \) r=0.126, p<0.394. As one can see, there is a significant negative correlation between CC\(_{\text{state}}\), CC\(_{\text{fan}}\), and CC\(_{\text{cycle}}\) with the task solving time. This is a valid and plausible outcome. Only CC\(_{\text{density}}\) correlates positively (insignificant) with task solving time and with number of dialog states, so we can exclude the measure CC\(_{\text{density}}\) from further considerations.

The measures CC\(_{\text{state}}\), CC\(_{\text{fan}}\), and CC\(_{\text{cycle}}\) are highly intercorrelated (see Tab. 1), except for CC\(_{\text{state}}\) and CC\(_{\text{fan}}\). We can assume that both measures estimate different qualities of a net structure. This result sounds plausible. If we take into account that CC\(_{\text{state}}\) differs with the tasks, then we can exclude the metric CC\(_{\text{state}}\) from further studies, as well.
We introduce the idea of "discriminating power" of the measures above. This discriminating power can be expressed as the F-ratio of the analysis of variances. We presume that the measure CC is a more or less stable attribute of each user in the scope of our study. CC is changing only during a massive learning process (see Rauterberg & Aeppli 1995). We do not assume that the experts in our investigation acquire fresh knowledge of operating the interactive system during the task solving period. This assumption is valid, because the experts are highly skilled over several years of operating the database system.

To compare the discriminating power of both of the remaining measures CC and CCcycle we have to compare the F-ratio of the three sources of variance ("Factors") given by the analysis of variance (see above). Overall, the measures CC and CCcycle discriminate sufficiently between beginners and experts and not between the four tasks.

If we take into account that the measure TCfan is not really appropriate to differentiate between the tasks, we can accept that the measure CCcycle meets all demands. Overall, the best quantitative metric for complexity in our context seems to be CCcycle. This relative measure estimates the average number of basic cycles in a net structure. Most empirical values of this measure lie between 195 and 215 near to the maximum of 215, which indicates that only some expert users had a complete knowledge of the system structure. To reach the maximum value of SC is only possible, when BC is equal to TC. We can conclude that in this comparison the four different quantitative metrics for complexity are of different value in measuring task and cognitive complexity. The measure of McCabe (1976) seems to be the most appropriate metric.
CYBERNETICS AND SYSTEMS '96

VOLUME II

Proceedings of the Thirteenth European Meeting on Cybernetics and Systems Research, organized by the Austrian Society for Cybernetic Studies, held at the University of Vienna, Austria, 9–12 April 1996

Edited by

ROBERT TRAPPL

University of Vienna and Austrian Society for Cybernetic Studies

Copyright © 1996 by Austrian Society for Cybernetic Studies, Vienna

ISBN 3 85206 133 4

Printed in Austria