Interaction of water with hydroxyl-groups in h-mordenite - a neutron inelastic-scattering study

Citation for published version (APA):

DOI:
10.1021/j100183a010

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 13. Sep. 2019
on the site I' in the sodalite cage. The distance to the oxygen of H$_2$O is 1.16 (1) Å while the distance to O(3) of the framework is 2.04 (3) Å (see Table III and Figure 3a). We suggest that the formation of a hydroxonium ion has taken place, which is hydrogen bonded to the framework oxygens. The formation of hydroxonium ions at low water content in zeolites has already been proposed earlier. An inelastic neutron scattering study of water adsorbed in H-mordenite has been recently reported and the spectra show vibrational modes belonging to hydroxonium ions besides the unperturbed OH bands.

One notices that at low water content, the deuterium at O(3) is the first to be perturbed, even though O(1) is considered to be the more acidic one. This can be explained by stabilizing electrostatic forces in the sodalite cages, where the hydroxonium ion formed can be hydrogen bonded to close framework oxygens or to neighboring water molecules on symmetry equivalent positions in the same sodalite cage. Furthermore, the sites I', II, and II in the sodalite cage have been reported to be the first sites occupied by water, at low water content of the zeolites. The water molecules in a sodalite cage without formation of hydroxonium ions can form small clusters, hydrogen bonded with each other and/or with the framework oxygens.

Acknowledgment. We thank G. Clugnet for helpful advice during the sample preparations. We would also like to thank Prof. H. Fess for the T.H. Darmstadt for support and encouragement during the course of this work.

Interaction of Water with Hydroxyl Groups in H-Mordenite: A Neutron Inelastic Scattering Study

Hervé Jobic,* Mirjam Czjzek,

Institut de Recherches sur la Catalyse—CNRS Villeurbanne, 2 avenue Albert Einstein, F-69626 Villeurbanne Cedex, France

and Rutger A. van Santen

Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (Received: October 7, 1991; In Final Form: December 6, 1991)

Neutron inelastic scattering has been used to study the adsorption of water, at low loading, in zeolite H-mordenite. The results are compared to the neutron spectra of the bare zeolite and of ice. For the bare zeolite, the in-plane and out-of-plane bending modes of the bridged hydroxyl groups are measured at 1060 and 320 cm$^{-1}$, respectively. After water adsorption, the observed vibrational features are assigned to different species: hydroxonium ions, H$_2$O hydrogen bonded, and free hydroxyl groups.

Introduction

The adsorption of water in cation-containing zeolites has been followed by several spectroscopic methods; however, the influence of water on hydroxyl groups has been less studied. The formation of hydroxonium ions, H$_2$O$^+$, resulting from the adsorption of small amounts of water on strong Bronsted sites in zeolites has been previously envisaged (e.g., ref 2), but it is only recently that its existence has been proved by experimental and theoretical methods.

Infrared spectra of water adsorbed at various equilibrium pressures on HZSM-5 showed the appearance of bands assigned to H$_2$O$^+$ (at 2805 and 2463 cm$^{-1}$), while the band at 3610 cm$^{-1}$ corresponding to the stretching mode of the bridged hydroxyls decreased in intensity.

Line-shape simulations of 1H NMR signals of water adsorbed at various concentrations in HY and HZSM-5 allowed the determination of different species: H$_2$O$^+$, H$_2$O bonded to bridging OH groups, water, and free hydroxyl groups.6

The presence of H$_2$O$^+$ in HY zeolite has also been observed by high-resolution powder neutron diffraction, but the geometry of the hydroxonium ion could not be determined precisely. Therefore, the experimental results on the formation of H$_2$O$^+$ in H-zeolites are still scarce. More information could be obtained by another spectroscopic technique: neutron inelastic scattering (NIS). The vibrational modes involving hydrogen motions can

be observed by NIS because of the large incoherent cross section and the low mass of the proton. There are several features which make NIS complementary to the infrared and Raman techniques, e.g., the lack of optical selection rules, and the possibility to compute both the frequencies and the intensities of the normal modes. Further, with a neutron reactor equipped with a hot source (the ILL, France) or on a pulsed neutron source (e.g., ISIS, UK) the whole spectral range 1-4000 cm$^{-1}$ can now be measured. With these sources, spectra are obtained in neutron energy loss, which has the advantage of decreasing the effect of multiphonon features.

For cation-containing zeolites (without protons), the NIS spectrum corresponds to the vibrational density of states, weighted by the scattering cross sections and by the atomic displacements. When the zeolite contains hydroxyl groups, the framework vibrations still appear in the NIS spectrum (because the H atoms follow the lattice modes) and on top of these modes one can observe the in-plane and out-of-plane bending modes of the hydroxyl groups.

Since the existence of hydronium mordenite has been previously reported, we have chosen to study by NIS the adsorption of water in this zeolite. The crystal structure of Na-mordenite has been determined.

When water is adsorbed on H-M, the spectra shown in Figures 1b and 3 are obtained. Since the NIS intensities are proportional to the number of hydrogen atoms, it is found from Figure 1b that there is about one H$_2$O molecule per OH group. If a comparison is made with the NIS spectrum of ice, shown in Figure 2, it appears that the H$_2$O molecules in H-M do not simply form H$_2$O clusters, as observed at higher loadings in several zeolites. In particular, the OH bending mode ν_{OH}, measured at 1620 cm$^{-1}$ in ice, is not observed in Figure 1b. The librational modes of H$_2$O, which are measured at 590 and 805 cm$^{-1}$ in ice are also much changed in the zeolite since maxima are found at 460 and 910 cm$^{-1}$ in Figure 1b. An intense peak is also observed at 450 cm$^{-1}$ in Figure 3.

Results and Discussion

The NIS spectrum of H-M, obtained at 10 K on INFB, is shown in Figure 1a. The bands correspond to the bending modes of the bridged hydroxyl groups, because they involve large displacements for the hydrogen atoms. The peak at 1060 cm$^{-1}$ is assigned to in-plane (δ) bending modes and the peak at 320 cm$^{-1}$ to out-of-plane (γ) deformations of the bridged OH groups. The NIS spectrum of H-M, obtained at 10 K on INFB, is shown in Figure 1b. The largest bands correspond to the bending modes of the bridged hydroxyl groups, because they involve large displacements for the hydrogen atoms. The peak at 1060 cm$^{-1}$ is assigned to in-plane (δ) bending modes and the peak at 320 cm$^{-1}$ to out-of-plane (γ) deformations of the bridged OH groups. The NIS spectrum of H-M, obtained at 10 K on INFB, is shown in Figure 1b. The largest bands correspond to the bending modes of the bridged hydroxyl groups, because they involve large displacements for the hydrogen atoms. The peak at 1060 cm$^{-1}$ is assigned to in-plane (δ) bending modes and the peak at 320 cm$^{-1}$ to out-of-plane (γ) deformations of the bridged OH groups. The NIS spectrum of H-M, obtained at 10 K on INFB, is shown in Figure 1b. The largest bands correspond to the bending modes of the bridged hydroxyl groups, because they involve large displacements for the hydrogen atoms. The peak at 1060 cm$^{-1}$ is assigned to in-plane (δ) bending modes and the peak at 320 cm$^{-1}$ to out-of-plane (γ) deformations of the bridged OH groups.
On the basis of the infrared and Raman literature on the vibrational modes of hydroxonium ions, the bands at 1385 and 1670 cm\(^{-1}\) can be tentatively assigned to the symmetric and antisymmetric bending modes of this species. The bands at 460 and 910 cm\(^{-1}\) would then correspond to librational modes.

The shoulders at 600 and 800 cm\(^{-1}\) can be assigned to H\(_2\)O molecules hydrogen bonded to OH groups or bound to extra framework Al or residual cations. Two weaker bands are measured at 340 and 1060 cm\(^{-1}\) in Figure 1b (one of these bands is also observed at 350 cm\(^{-1}\) in Figure 3); they correspond to unperturbed OH bridging groups; the proportion of these OH groups, estimated from the NIS intensities, is ca. 30%.

The low-frequency region, which is shown in Figure 3, is also quite different from the one reported for ice. The bands observed in that energy range correspond to translational motions. The peak at 60 cm\(^{-1}\) is assigned to a translational mode of hydrogen-bonded H\(_2\)O (monodentate), and the peak at 100 cm\(^{-1}\) to a translational mode of H\(_3\)O\(^+\) bidentate coordinated to the zeolite lattice.

Acknowledgment. We thank Dr. H. J. Lauter for his help in performing the neutron experiment on INFB, at the Institut Laue-Langevin, Grenoble, France. We also thank Dr. J. Tomkinson for his assistance during the neutron measurements on TFXA, at ISIS, Rutherford Appleton Laboratory, UK.
