Electrical conductivity study of defects in zirconium doped yttrium aluminium garnet ceramics
Schuh, L.H.; Metselaar, R.; de With, G.

Published in:
Science of ceramics: proceedings of the ... international conference, 14th, Canterbury, England, 7-9 September, 1987

Published: 01/01/1988

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 04. Jan. 2019
ELECTRICAL CONDUCTIVITY STUDY OF DEFECTS IN ZIRCONIUM DOPED YTTRIUM ALUMINIUM GARNET CERAMICS

L. Schuh, R. Metselaar, G. de With

High temperature measurements of conductivity as \(f(T) \) of \(\text{Y}_3\text{Al}_5\text{O}_{12} \) (YAG) doped with 50 ppm Zr in \(\text{CO/CO}_2 \) and \(\text{H}_2/\text{H}_2\text{O} \) gas mixtures show a significant difference in the activation energy [3.54 resp. 1.91 eV] at constant oxygen partial pressure. The sign of the Seebeck coefficient indicates that a \(\text{H}_2/\text{H}_2\text{O} \) atmosphere introduces protons as conducting species into the garnet lattice. Impedance spectroscopy revealed that this is a bulk effect, while the grain boundaries are nearly unaffected by ambient atmosphere. Ionic and electronic conductivity as \(f(p_0) \) show that ionic conductivity dominates in the high \(p_0 \) regime, while at low \(p_0 \) electronic conductivity increases with \(p_0 \), indicating that either \(V_0^+ \) and \(V_0^- \) or defect clusters appear as prevailing ionic defects.

INTRODUCTION

Aluminium oxide ceramics are well studied and have many applications. This material can be sintered to translucency, usually with MgO as dopant. Recently it was shown that \(\text{Y}_3\text{Al}_5\text{O}_{12} \) (yttrium aluminium garnet or YAG) can be sintered to a quite better translucency with \(\text{SiO}_2 \) or MgO as sintering additive than \(\text{Al}_2\text{O}_3 \). Moreover it is known that YAG has a higher resistance against aggressive environments (viz. hot alkali vapour) than \(\text{Al}_2\text{O}_3 \). The combination of these properties make YAG ceramic a candidate material, that may be used to produce high durability envelopes for sodium discharge lamps.

Till now the mechanical, microstructural, and optical properties of YAG ceramics were investigated to some extent. The defect chemistry is, however, also quite important for the understanding of sintering and corrosion behaviour. Some authors determined the high-temperature defect properties of single crystal \(\text{Y}_3\text{Al}_5\text{O}_{12} \), because this material is an important solid state laser host crystal (Nd-YAG laser). All investigators came to the result, that YAG is a mixed ionic-electronic conductor at high temperatures. The dominating ionic defects are oxygen-vacancies. The subject of this paper is to give some information about high-temperature defect properties of zirconia-doped polycrystalline YAG-ceramics.

EXPERIMENTAL

Materials

In this work we present an investigation of YAG ceramic doped with 55 wt.-ppm Zr. The YAG powder was prepared by using the wet-chemical route (sulphate process) as described in ref. 7. Doping with zirconium was done by adding a proper amount of the nitrate. The samples were sintered at 2020 K for 4 hours in a wet \(\text{H}_2 \) atmosphere. All samples reached a relative density higher than 98%. Microstructure of various materials was determined by SEM/EDX. The grain size ranged from 4 - 7 \(\mu \text{m} \).
Zirconium-ionse have a relative high solubility in the YAG lattice (up to 700 ppm without any second phase segregation\(^1\)). SEM/EDX observations and X-ray diffraction further showed that up to 6\% Al-rich inclusions (presumably Al\(_2\)O\(_3\)) with 0.5 - 1 \(\mu\)m diameter are present. The presence of these inclusions was confirmed by TEM investigations.\(^4\)

Methods

The defect-chemical investigation was done by impedance spectroscopy, ionic transport and Seebeck coefficient measurements. Our samples for electrical conductivity measurements were disc-shaped with a diameter of 10 mm and a thickness of 0.7 mm. The two faces of a specimen were polished down to 1 \(\mu\)m with diamond paste, cleaned and painted with platinum paste (Emetron Leitplatin). The electrode surface was kept small (about 3 mm in diameter) in order to minimize the contribution of surface and air conduction paths.

A Solartron 1174 frequency response analyzer (0.1 mHz - 1 MHz) interfaced to a Hewlett Packard HP 86 computer was used for impedance measurements. A.c.-conductivity was determined as a function of temperature (up to 1700 K) and oxygen partial pressure \(p_2\) \((10^5 - 10^{-14} \text{ Pa})\). Usually a voltage of 100 mV Rms was applied across the sample. After a change of \(p_2\), the system was equilibrated about 12 hours before the conductivity was measured. We used \(H_2/H_2O\), \(CO/CO_2\) and \(O_2/N_2\) gas mixtures to establish a controlled \(p_2\). Every measurement of the frequency dispersion was checked by a determination of the d.c.-resistance. Complete impedance plots in the \(Z'-Z''\) representation allow to get information about bulk (grain interior) and grain boundary conductivity.

The investigation of the Seebeck coefficient and transport number was done in an apparatus described elsewhere\(^1\).\(^3\)

RESULTS AND DISCUSSION

Fig. 1 gives the temperature dependence of the total conductivity measured at different \(p_2\)'s. Each point was determined by analysing the appertaining \(Z'-Z''\) plot. Because of the difficulty to separate bulk- \((R_b)\) and grain boundary \((R_{gb})\) conductivity at all temperatures we plotted \((R_b + R_{gb})\) vs. \(\sigma T\). The activation energies \(E_A\) were calculated by using the Arrhenius relation: \(\sigma = \sigma_o/T \exp(-E_A/kT)\) with \(\sigma = \text{conductivity}, T = \text{temperature}, k = \text{Boltzmann-constant} \).

<table>
<thead>
<tr>
<th>Curve</th>
<th>Atmosphere</th>
<th>(p_2) (Pa)</th>
<th>(E_A) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(H_2/H_2O)</td>
<td>(10^{-14})</td>
<td>1.91</td>
</tr>
<tr>
<td>2</td>
<td>(CO/CO_2)</td>
<td>(10^{-11})</td>
<td>3.54</td>
</tr>
<tr>
<td>3</td>
<td>(CO/CO_2)</td>
<td>(10^{-7})</td>
<td>3.38</td>
</tr>
<tr>
<td>4</td>
<td>(O_2)</td>
<td>(10^5)</td>
<td>3.04</td>
</tr>
</tbody>
</table>
in a YAG specimen of pure O_2 to 3.5 eV. E_A is significantly smaller. Recently it was shown that hydrogen can enter the YAG-lattice forming OH-bonds. So we expect a contribution of protonic conduction in a YAG specimen that is equilibrated in a H_2/H_2O atmosphere. In order to clarify this point the thermopower in different gas mixtures was measured. The sign of the thermopower or Seebeck coefficient gives information about the sign of the dominating mobile charge carriers. Negative charge carriers are dominating in N_2/O_2 and CO/CO_2 mixtures, while positive carriers are prevailing in H_2/H_2O. N_2/O_2 and CO/CO_2 mixture affect the conduction mechanism by a change in pO_2. The E_A in both atmospheres is approximately equal. A H_2/H_2O mixture influences the conduction mechanism by introducing new positive charge carriers into the lattice. This is confirmed by IR-spectroscopic detection of OH stretch-bonds after an anneal in H_2.

TABLE 2. Sign of the Seebeck-coefficient in different gas-mixtures

<table>
<thead>
<tr>
<th>Gas-mixture</th>
<th>pO_2 (Pa)</th>
<th>Sign of the Seebeck-coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_2/O_2</td>
<td>10^5</td>
<td>-</td>
</tr>
<tr>
<td>CO/CO_2</td>
<td>10^{-11}</td>
<td>-</td>
</tr>
<tr>
<td>H_2/H_2O</td>
<td>10^{-13}</td>
<td>+</td>
</tr>
</tbody>
</table>

Fig. 2 and 3 give two impedance spectra of Zr-doped YAG measured in N_2/O_2 ($pO_2=10^5 \text{ Pa}$) at 1650 K and in H_2/H_2O ($pO_2=10^{-13} \text{ Pa}$) at 1450 K. Fig. 2 shows a wide semicircle that could be extrapolated to zero resistance. This arc is caused by bulk conduction. The intersection of that circle with the Z'-axis gives the bulk-resistance as 360 kΩ. At frequencies lower than 20 kHz begins a distortion of the arc which is caused by an influence of the grain boundaries. The resistance of the grain boundaries can be estimated as 20 kΩ. That means that highly resistive YAG
grains are covered by a much better conducting boundary layer.

FIG. 2 Impedance plot for Zr-doped YAG at 1650 K and \(P_{O_2} = 10 \) Pa \((N_2/O_2\) mixture).

Fig. 3 gives the impedance plot for the same sort of sample, measured in a \(H_2/H_2O \) atmosphere. The relaxation times of the two conduction processes are now well separated. The bulk resistance can be derived as 40.5 k\(\Omega \) and the grain boundary resistance is 18 k\(\Omega \). A low frequency dispersion, which is typically observed, is of no further interest here.

Comparing both spectra one can conclude that the grain boundary resistance is hardly influenced by ambient gas atmosphere (note that fig. 3 is recorded at a lower temperature than fig. 2 to get well formed arcs). The bulk resistance changes significantly with the gas mixture. An interpretation of the impedance

FIG. 3 Impedance plot for Zr-doped YAG at 1450 K and \(P_{O_2}=10^{-12} \) Pa \((H_2/H_2O\) mixture).
FIG. 4 Total electrical conductivity, ionic transport number t_1, electronic σ_{el} and ionic σ conductivity in YAG doped with 55 ppm Zr at 1670 K.

spectra indicates that a H_2-containing gas atmosphere changes the bulk properties, while leaving the grain boundaries nearly unaffected.

The pO_2 dependence of conductivity at 1670 K is shown in fig. 4 together with the ionic transport number t_1 and the ionic and electronic contribution to the total conductivity. Zr-doped YAG shows a red colour after treatment in a reducing atmosphere and decolours upon annealing in an oxidizing atmosphere.

An interpretation of the isotherms shown in fig. 4 combined with the fact, that the sign of the Seebeck-coefficient is negative at low pO_2 (except in a H_2-containing atmosphere), indicate that $\sigma = \sigma_{el}$ in this pO_2 regime. σ_{el} increases $\propto pO_2^n$ with $n= -1/5$. In the high oxygen pressure region conductivity is independent of pO_2. This is the regime of ionic conductivity. Recently it was shown by several workers that the dominating defects in YAG are oxygen vacancies V_o^{--11}. The electronic conduction increases with a slope of $-1/5$. This dependence is intermediate between the intrinsic conduction mechanism with a slope of $-1/6$ and a simple impurity controlled mechanism exhibiting a slope of $-1/4$. Several workers interpreted an analogous 1/5 power oxygen pressure dependence in NiO by assuming the simultaneously presence of singly and doubly ionised nickel vacancies 16. Taking over this proposition we can interpret the 1/5 slope found in the present work by assuming singly and doubly ionised oxygen vacancies V_o^- and V_o^{--1}. Recently it was shown by computer simulation for NiO, CoO, MnO and FeO that also cluster formation can explain a slope of 1/5.
FINAL REMARKS

Further investigation of an influence of other doping elements on defect related properties in YAG may enable us to decide whether V_0^-' and V_0^+ or cluster formation dominates.

REFERENCES

1. PEELEN, J.G.J., Ceramurgia Int. 5, 70 (1979) and 5, 115 (1979).