Constructing levels in arrangements and higher order Voronoi diagrams

Citation for published version (APA):

DOI:
10.1137/S0097539795281840

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Oct. 2023
Abstract. We give simple randomized incremental algorithms for computing the $\leq k$-level in an arrangement of n lines in the plane or in an arrangement of n planes in \mathbb{R}^3. The expected running time of our algorithms is $O(nk + n\alpha(n) \log n)$ for the planar case and $O(nk^2 + n\log^3 n)$ for the three-dimensional case. Both bounds are optimal unless k is very small. The algorithm generalizes to computing the $\leq k$-level in an arrangement of discs or x-monotone Jordan curves in the plane. Our approach can also compute the k-level; this yields a randomized algorithm for computing the order-k Voronoi diagram of n points in the plane in expected time $O(k(n - k) \log n + n\log^3 n)$.

Key words. arrangements, random sampling, Voronoi diagrams

AMS subject classifications. 65Y25, 68Q25, 68U05

PII. S0097-5397(95)28184-0
We will not distinguish between the two definitions of levels, as it will be clear from the context to which of them we are referring.

The maximum combinatorial complexity of the \(\leq k \)-level in an arrangement of hyperplanes in \(\mathbb{R}^d \) is known precisely. Using a probabilistic argument, Clarkson and Shor [CS89] proved that it is \(\Theta(n^{\lfloor d/2 \rfloor}k^{\lceil d/2 \rceil}) \). By a similar technique, Sharir [Sha91] proved that the maximum complexity of the \(\leq k \)-level for a set of \(n \) discs is \(\Theta(nk) \).

He also proved that the complexity of the \(\leq k \)-level for \(n \) \(x \)-monotone Jordan curves, each pair of which intersects in at most \(s \) points, is \(O(k^2\lambda_s(n/k)) \). Here \(\lambda_s(m) \) is the maximum length of an \((m, s)\) Davenport–Schinzel sequence; \(\lambda_s(m) \) is roughly linear in \(m \) for any constant \(s \) [ASS89].

The problem of efficiently computing the \(\leq k \)-level has not been resolved completely. Mulmuley [Mul91b] gave a randomized incremental algorithm for computing the \(\leq k \)-level in hyperplane arrangements in any dimension. For \(d \geq 4 \), the expected running time of his algorithm is \(O(n^{\lfloor d/2 \rfloor}k^{\lceil d/2 \rceil}) \), which is optimal. For \(d = 2, 3 \) the expected running time of his algorithm is \(O(nk^{\lfloor d/2 \rfloor} \log(n/k)) \), which exceeds the output size by a logarithmic factor. Recently, Everett, Robert, and van Kreveld [ERvK96] gave an optimal \(O(n \log n + nk) \) expected time randomized algorithm for computing the \(\leq k \)-level in an arrangement of lines in the plane. Their algorithm does not easily extend to more general ranges.

Mulmuley’s algorithm can be applied to compute the \(\leq k \)-level of arrangements of \(x \)-monotone Jordan curves in the plane, but it is not clear how to generalize it for computing the \(\leq k \)-level for more general ranges like discs. Sharir [Sha91] presented a divide-and-conquer algorithm for computing the \(\leq k \)-level of rather general ranges in the plane. Its worst-case running time is roughly \(\log^2 n \) times the maximum size of the \(\leq k \)-level.

In this paper we give a somewhat different randomized incremental algorithm for computing the \(\leq k \)-level whose expected running time is \(O(nk + n \log n \alpha(n)) \) in the plane and \(O(nk^2 + n \log^3 n) \) in 3-space, which is worst-case optimal unless \(k \) is very small. The main difference of this algorithm compared with Mulmuley’s algorithm [Mul91b, Mul93] is as follows. Mulmuley’s algorithm inserts the hyperplanes one by one in a random order and maintains the \(\leq k \)-level of \(\mathcal{A}(R) \), the arrangement of the hyperplanes that have already been inserted. When adding a new hyperplane \(h \), the algorithm first updates the arrangement locally at cells that are intersected by \(h \). Then it removes cells that have “fallen off” because they are now on level \(k+1 \); Mulmuley calls this the peeling step. Our algorithm maintains a part of \(\mathcal{A}(R) \) that is in general...
smaller than the \(\leq k \)-level. Namely, when inserting a new hyperplane, the algorithm estimates the level of each of the newly created cells of the current cell complex with respect to \(H \), the full set of hyperplanes. Mulmuley’s algorithm, in contrast, looks at the level with respect to \(R \), the set of hyperplanes already inserted. As soon as our estimate shows that a cell lies completely outside the \(\leq k \)-level, it is discarded.

This strategy can also be used in situations where Mulmuley’s algorithm has difficulty accessing the cells of the current complex that must be peeled off. This is, for instance, the case where one wants to compute the \(\leq k \)-level in an arrangement of discs.

Our approach can also be used to compute the \(k \)-level in an arrangement. This time a cell of the current cell complex is discarded as soon as it becomes clear that it does not intersect the \(k \)-level of \(A(H) \). The complexity of this algorithm depends on combinatorial bounds on the complexity of a \(k \)-level, and here the knowledge is less satisfactory than for the \(\leq k \)-level. Lovász proved that a \(k \)-level in an arrangement of \(n \) lines in the plane has \(O(n\sqrt{k}) \) vertices [Lov71], and Erdős et al. [ELS87] proved a lower bound of \(\Omega(n\log(k + 1)) \). There was no progress on this problem for the last twenty-five years except for a slightly improved upper bound by Pach, Steiger, and Szemerédi [PSS92]. Recently, Dey [Dey97] improved the upper bound to \(O(nk^{1/3}) \). See [AA97, DE93, ZV92] for known results on \(k \)-levels in higher dimensions. Edelsbrunner and Welzl [EW86] gave an algorithm for computing the \(k \)-level in the plane, which was later slightly improved by Cole, Sharir, and Yap [CSY87] to \(O(n\log n + m\log^2 k) \) running time, where \(m \) stands for the actual complexity of the \(k \)-level. Our algorithm yields \(O(nk^{1/3}\log^{2/3} n + n\log^2 n) \) expected time complexity. (If one could prove better worst-case bounds for the \(k \)-level maximum complexity, we would get an improvement in the algorithm’s complexity as well; see section 4 for exact bounds.) This compares favorably to the worst-case running times of previous algorithms; however, our algorithm is not fully output sensitive (its running time depends on the complexity of levels in arrangements of various random subsets of the given lines). In principle, our algorithm for computing the \(k \)-level also works in higher dimensions, and its running time can be obtained by plugging the known bounds on the complexity of the \(k \)-level in higher dimensions [ABFK92, DE93, ZV92] into the analysis of our algorithm. We, however, do not discuss it in this paper, because our main interest lies in the special three-dimensional case discussed next.

If all the hyperplanes are tangent to the unit paraboloid, the maximum complexity of the \(k \)-level of a three-dimensional arrangement is known to be \(\Theta(k(n - k)) \). This situation arises when the planes are the images of a set of points in the plane under the transformation that maps the order-\(k \) Voronoi diagram of these points to the \(k \)-level of the planes (see, e.g., [Ede87]). Most known algorithms for computing the \(k \)-level in three-dimensional space actually compute the \(\leq k \)-level [Mul91b, CE87, BDT93]. Since the complexity of the \(\leq k \)-level is \(\Theta(nk^2) \) in the situation sketched above, the running time of these algorithms is at least \(\Omega(nk^2 + n\log n) \). The randomized incremental algorithm by Aurenhammer and Schwarzkopf [AS92] maintains only the \(k \)-level, but it can be shown that any randomized incremental algorithm that maintains the \(k \)-level of the intermediate arrangements must take time \(\Omega(nk^2) \) as well, since the expected number of structural changes in the \(k \)-level is \(\Omega(nk^2) \) [AS92]. The only algorithm that approaches the desired \(O(k(n - k)) \) time bound was presented by Clarkson [Cla87], and it runs in time \(O(n^{1+\varepsilon} k) \), where \(\varepsilon > 0 \) is an arbitrarily small constant. His algorithm can probably be improved somewhat by using more recent results on geometric cuttings.
We show that our algorithm for computing the k-level for n planes tangent to the unit paraboloid runs in $O(k(n-k) \log n + n \log^3 n)$ expected time in this case. We conjecture that the running time is in fact $O(k(n-k) + n \log n)$, which is asymptotically optimal, but currently we cannot prove it.

2. Preliminaries.

Arrangements. Let H be a set of n hyperplanes in d-dimensional space. We denote the arrangement of H by $A(H)$. We regard it as a cell complex with cells (also called faces) of dimensions 0 to d that are relatively open. We define the level of a cell of $A(H)$ as the level of any point of its relative interior.

For simplicity of exposition, we assume that the hyperplanes are in general position. This assumption can be removed by a more careful (and technically a little more complicated) treatment or by standard perturbation arguments [Ede87].

Canonical triangulations. Let C be a subcomplex of $A(H)$, that is, a collection of cells of $A(H)$ such that whenever $C \subseteq C'$ is a face of C, then also $C' \subseteq C$. The canonical triangulation1 of C ([Cla88]), which we denote by C^\vee, is defined as follows. Let C be a j-dimensional cell of C (thus, a convex polytope), and let v be the bottom vertex of C, that is, the lexicographically smallest vertex of C. If $j = 1$, then C is a segment and it is already a (one-dimensional) simplex. If $j > 1$, then we recursively triangulate the $(j - 1)$-dimensional faces of C and extend each $(j - 1)$-simplex to a j-simplex using the vertex v. (Unbounded cells require some care in this definition [Cla88]$.^2$) The canonical triangulation of a cell with m vertices has $O(m)$ simplices. The canonical triangulation C^\vee of the subcomplex C is the simplicial complex obtained by triangulating each cell of C in this manner.

Let R be a subset of H. For a (relatively open) simplex $\Delta \subseteq A(R)^\vee$, let $K(\Delta)$ denote the set of hyperplanes of H intersecting Δ, and put $w(\Delta) = |K(\Delta)| + 1$. The hyperplanes from $K(\Delta)$ are said to be in conflict with Δ, and $w(\Delta)$ is called the weight of Δ.

For each simplex Δ of the canonical triangulation, let $D(\Delta) \subseteq H$ be a set of hyperplanes such that Δ appears in the canonical triangulation of the arrangement of $D(\Delta)$, but does not appear in the canonical triangulation of $A(D')$ for any proper subset $D' \subset D(\Delta)$. It can be shown that if H is in general position, $D(\Delta)$ is unique and its size is bounded by a constant $b = b(d)$. This $D(\Delta)$ is called the defining set of Δ. For instance, for $d = 2$ a typical triangle Δ is defined by five lines—the two lines whose intersection is the bottom vertex, the line containing the side opposite to the bottom vertex, and the two lines intersecting this side at the other two vertices of Δ, so $b(2) = 5$. The following fact is often used in the analysis of randomized geometric algorithms; among others, it captures the above-mentioned uniqueness of the defining set. For a proof and detailed discussion, see Chazelle and Friedman [CF90, sec. 5].

Fact 2.1. Let $S \subseteq H$, and let Δ be a simplex of $A(S)^\vee$. Then the following condition holds: for any $R \subseteq H$, $\Delta \subseteq A(R)^\vee$ if and only if $D(\Delta) \subseteq R$ and $R \cap K(\Delta) = \emptyset$.

When generalizing the algorithm below to computing the $\leq k$-level in more general arrangements (for example, in an arrangement of discs), we need to define an appropriate analog of the canonical triangulation having the above property.

A tool for analyzing randomized incremental algorithms. We now discuss a random-sampling result that we need for the analysis of our algorithms. We do not state it in a full generality but only in the specific setting in which we need it.

1Sometimes the name bottom vertex triangulation is used in the literature.
LEMMA 2.2. For each \(R \subseteq \mathcal{A} \), let \(C(R) \) be a subcomplex of the arrangement \(\mathcal{A}(R) \). Assume that the subcomplexes have the following “monotonicity” property:

\[
\text{Let } R' \subseteq R \subseteq H, \text{ let } C \text{ be a cell of } C(R), \text{ and let } C' \text{ be the cell of } \mathcal{A}(R') \text{ containing } C. \text{ Then } C' \in C(R').
\]

(For instance, \(C(R) \) may be the collection of all cells in \(\mathcal{A}(R) \) intersecting some fixed set \(X \subseteq \mathbb{R}^d \), plus their lower-dimensional faces. Then (\(\ast \)) clearly holds. In our applications, the definition of \(C(R) \) will be a bit more technical, but it will have a similar flavor.)

Let \(f : \mathbb{N} \to \mathbb{R}^+ \) be a nondecreasing function so that \(f(r) \) is an upper bound for the expected total number of vertices of \(C(R) \), where \(R \) is a randomly chosen \(r \)-element subset of \(H \). Then we have the following:

(i) Let \(R \) be a randomly chosen \(r \)-element subset of \(H \), and let \(c \) be a constant. Then

\[
\mathbb{E} \left[\sum_{\Delta \in C(R) \setminus N_r} w(\Delta)^c \right] = O \left(\left(\frac{n}{r} \right)^c f(r) \right).
\]

(ii) Consider a randomized incremental algorithm that inserts the hyperplanes of \(H \) one by one in a random order and maintains \(C(R) \), where \(R = \{h_1, h_2, \ldots, h_r\} \) is the set of hyperplanes already inserted. Let \(N_r \) denote the set of simplices newly created at step \(r \), that is, \(N_r = C(h_1, h_2, \ldots, h_r \setminus C(h_1, h_2, \ldots, h_{r-1}) \setminus C(h_1, h_2, \ldots, h_{r-1}) \}. \) Then for any constant \(c \geq 0 \) we have

\[
\mathbb{E} \left[\sum_{\Delta \in N_r} w(\Delta)^c \right] = O \left(\frac{n^c}{r^{c+1}} f(r) \right).
\]

Part (i) says that, under condition (\(\ast \)), the expected average weight \(w(\Delta) \) of a simplex in \(C(R) \) is about \(n/r \) even if we take the \(c \)-th degree averages. Often the amount of work that a randomized algorithm performs at step \(r \) is directly related to the weight of the newly created simplices; part (ii) can then be used to analyze the running time.

Sketch of proof. Results of this type were first obtained by Chazelle et al. [CEG+93], who essentially proved (ii) with \(c = 1 \) (in a more general setting) by analyzing a randomized incremental algorithm. The general case, where \(c > 1 \), can be obtained by an extension of their analysis, as is shown by de Berg, Dobrindt, and Schwarzkopf [dBDS94]. A somewhat different approach, going via the “static” part (i) and generalizing an approach of Chazelle and Friedman [CF90], is presented by Agarwal, Matoušek, and Schwarzkopf [AMS97]. In order to apply the general framework of [AMS97] to our situation, we need the following properties of the canonical triangulation of \(C(R) \):

(a) If a simplex \(\Delta \) is present in \(C(R) \), then \(D(\Delta) \subseteq R \) and \(K(\Delta) \cap R = \emptyset \).

(b) For any \(\Delta \in C(R)^\circ \), we have \(\Delta \in C(R')^\circ \) whenever \(R' \subseteq R \) and \(D(\Delta) \subseteq R' \).

Condition (a) is immediate from Fact 2.1, and condition (b) follows from Fact 2.1 together with property (\(\ast \)). Under these conditions, (i) is proved by Agarwal, Matoušek, and Schwarzkopf [AMS97]. Part (ii) can now be derived from (i) by backward analysis: the simplices of \(N_r \) are those destroyed by deleting the hyperplane \(h_r \) from \(R = \{h_1, h_2, \ldots, h_r\} \). Since the order of hyperplanes is random, \(h_r \) is a random hyperplane of \(R \). Each simplex of \(C(R)^\circ \) is only destroyed by deleting \(h_r \) if \(h_r \in D(\Delta) \).
Therefore, the expected sum $\sum w(\Delta)^c$ over the simplices destroyed by deleting a random hyperplane of R is at most b/r times the expectation of $\sum_{\Delta \in C(R)^v} w(\Delta)^c$, and since R is a random r-element subset of H, we can use (i).

3. Computing the $\leq k$-level and k-level for hyperplanes.

Outline of the algorithm. We describe the algorithm for an arbitrary dimension $d \geq 2$ because it may be a useful alternative to Mulmuley’s algorithm even for $d \geq 4$ (although the asymptotic running time for $d \geq 4$ is the same as that of his algorithm).

We first generate a random permutation h_1, h_2, \ldots, h_n of H and then insert the hyperplanes one by one in this order. Let R denote the set $\{h_1, \ldots, h_r\}$ of hyperplanes inserted in the first r steps. As the hyperplanes are inserted, the algorithm maintains the following structures:

- The canonical triangulation K^∇_r of a subcomplex K_r of $A(R)$ (more precisely, we store the simplices as well as their adjacency relations).
- The conflict lists: for every simplex $\Delta \in K^\nabla_r$, the list $K(\Delta)$ of hyperplanes of $H \setminus R$ intersecting its relative interior, and for every hyperplane $h \in H \setminus R$, the list of all simplices with $h \in K(\Delta)$.
- For every simplex $\Delta \in K^\nabla_r$, the level ℓ_Δ of one of its (arbitrarily chosen) interior points with respect to $A(H)$.

At a high level, the insertion of a new hyperplane h_r can be described as follows.

1. Find all cells of K_{r-1} intersected by h_r using the conflict lists. Split such cells, retiangulate them as necessary, update the conflict lists, and compute the level information for the new simplices.

2. Test each of the newly created cells to see whether it is active (the meaning of this will be described below). If a new cell is not active, its simplices and their conflict lists are discarded. The resulting complex is K_r.

We now discuss these steps in more detail.

Updating the information. In the first step, we identify all the simplices in K^∇_{r-1} intersected by h_r using the conflict lists. Since we know the adjacency relations among the simplices, we can compute the intersected simplices as a collection of groups, one for each cell that h_r intersects. Consider such a group, and let C be the corresponding cell. All the simplices in the group have to be deleted and replaced by a number of new simplices. We first consider the situation for $d = 2$, which is illustrated in Figure 2.

To deal with the parts of C that lies on the same side of h_r as the bottom vertex v of C, we draw new diagonals from v to the two intersection points of h_r with the boundary of C; this creates three new simplices. The part of C lying on the opposite side of h_r is simply triangulated from scratch. This way the canonical triangulations of the two cells that result from the splitting of C are constructed in time that is linear in the number of new simplices that are created. The adjacency relations among the simplices can easily be determined during the process.

Things are not very different in higher dimensions. Consider a three-dimensional cell C. We first retriangulate the two-dimensional facets that are intersected, in the way we just described. We also triangulate the facet $C \cap h_r$. It remains to connect the triangles of the boundary triangulation to the correct bottom vertex (this is necessary only if they were not already connected to this vertex in the triangulation of C, of course): this is analogous to the two-dimensional case. In general, in dimension d we first treat the parts of the $(d-1)$-facets incident to intersected simplices recursively, and then we connect the $(d-1)$-simplices that still need to be extended to d-simplices to the correct bottom vertex.

Our second task is to compute the conflict lists of the new simplices. Let C be a cell that has been split by h_r into two new cells C' and C'', where C' is the cell that
contains the bottom vertex of C. Let S be the set of new simplices in C' and C''. Some of the simplices of C' may already have existed in C; these simplices already have the correct conflict list and are not present in S. The union of the conflict lists for the simplices in S is the same as the union of the conflict lists of the simplices of C that were destroyed by h_r (minus h_r itself). We denote this set of hyperplanes by $K(S)$. To find the conflict lists for the simplices in S, we first determine for each hyperplane $h \in K(S)$ one simplex of S that it intersects — its initial simplex — as follows.

Consider a hyperplane $h \in K(S)$. If h intersects some simplex of S in an edge that is also an edge of the old cell C, then this simplex can serve as initial simplex for h. We can find it through the conflict list of a destroyed simplex of C that contained that edge. If h intersects none of the simplices of S in an edge of C, then h must separate the bottom vertex of C' from $C \cap h_r$. Hence, any simplex of C' that has a facet on $C \cap h_r$ can serve as an initial simplex for h. We conclude that we can find initial simplices for all hyperplanes in $K(S)$ in time linear in the total size of the old conflict lists. (We may find more than one initial simplex for a hyperplane, but this is no problem.)

Once we have an initial simplex for each hyperplane $h \in K(S)$, we traverse the adjacency graph of the simplices to find the other simplices in S that are intersected by h. Since the subgraph of the adjacency graph induced by these simplices is connected, the total time spent in traversals, over all hyperplanes of $K(S)$, is linear in the total size of the new conflict lists.

The last thing we have to do in step 1 is to determine for each new simplex the level of one of its interior points with respect to $A(H)$. To this end, we consider a simplex of C that was destroyed by h_r. Let p be the point interior to the destroyed simplex that defined its level. Let Δ_p be the new simplex that contains p. Trivially, we now know the level of a point interior to Δ_p. To compute the level of an interior point for each of the other new simplices, we again traverse the adjacency graph. The traversal starts at Δ_p. When we step from one simplex to the next, we can update the level of an interior point in time proportional to the size of the conflict lists of the two simplices. Hence, the total time we need is linear in the total size of the conflict lists of the new simplices.

Testing active cells. Recall that ℓ_Δ denotes the level of an interior point of the simplex Δ. The level of any other point in Δ must lie in the range

$$I_\Delta = \ell_\Delta - w(\Delta), \ldots, \ell_\Delta + w(\Delta).$$

We call Δ active if I_Δ contains a level that we wish to compute. So if we are comput-
ing the ≤k-level, then ∆ is active if \(I_\Delta \cap \{0, 1, 2, \ldots, k\} \neq \emptyset \), and if we are computing the k-level, then ∆ is active if \(k \in I_\Delta \). Since we are maintaining a subcomplex of \(\mathcal{A}(R) \), we cannot discard individual simplices: a cell either has to be kept as a whole, or it has to be discarded as a whole. Of course, we should not discard cells that contain active simplices. Therefore we define a cell to be active if at least one of the simplices of its canonical triangulation is active. Note that after inserting the last hyperplane all conflict lists are empty, and so the remaining cell complex is exactly what we wish to compute. (If we are computing the k-level, the remaining complex consists of the cells of level k, from which the k-level can be reconstructed easily.)

Step 2 of our algorithm tests whether the new cells created by the insertion of \(h_r \) are active. To this end, we store with each cell a counter indicating the number of active simplices in its canonical triangulation. Let \(C \) be a cell that was split, and let \(C' \) be one of the two new cells. To compute the counter for \(C' \) we should only spend time on its new simplices and on the simplices from \(C \) that were destroyed; we should not spend time on simplices in \(C' \) that were already present in \(C \). But this is easy given the counter for \(C \) and the levels of the new and old simplices. We conclude that we can test whether \(C' \) is active in time proportional to the number of new simplices in \(C' \) plus the number of destroyed simplices from \(C \).

4. The analysis. We have seen that the total work for inserting \(h_r \) is proportional to the total size of the conflict lists of the simplices destroyed by \(h_r \) and of the newly created simplices. Since the simplices being destroyed must have been created before, the total work is proportional to \(\sum_\Delta w(\Delta) \), where the summation is over all simplices created by the algorithm. Observe that it could happen that we create a new cell, spend time to triangulate it and to compute the conflict lists and the levels of all its simplices, and then immediately discard it. In other words, we may spend time on (simplices of) cells that are never active. Our analysis must take this into consideration, of course.

We are going to apply Lemma 2.2 to estimate the sum \(\sum_\Delta w(\Delta) \) over all created simplices. The complex \(K_r \), maintained by the algorithm does not seem to be directly suitable for the analysis. We thus define for every \(R \subseteq H \) an auxiliary complex \(\tilde{K}(R) \), which can be used in the role of \(C(R) \) in Lemma 2.2.

For a cell \(C \) of \(\mathcal{A}(R) \), its diameter \(\text{diam}(C) \) is defined as the maximum number of hyperplanes of \(H \) intersecting a segment fully contained in \(C \). We define an auxiliary set \(\tilde{K}_0(R) \) of d-cells of \(\mathcal{A}(R) \). The algorithm for computing the (≤ k)-level includes a d-cell \(C \in \mathcal{A}(R) \) into \(\tilde{K}_0(R) \) if and only if it intersects (≤ k′)-level in \(\mathcal{A}(H) \), where \(k' = k'(C) = k + 2(d + 1) \text{diam}(C) + d + 1 \) (note that we take cells of the arrangement of \(R \), but we consider levels in the arrangement of \(H \)). Similarly, the algorithm for computing the k-level includes a d-cell \(C \in \mathcal{A}(R) \) in \(\tilde{K}_0(R) \) if it intersects the region between the levels \(k - 2(d + 1) \text{diam}(C) + d + 1 \) and \(k + 2(d + 1) \text{diam}(C) + d + 1 \) of \(\mathcal{A}(H) \). The complex \(\tilde{K}(R) \) consists of the cells that belong to \(\tilde{K}_0(R) \) or that share a facet with a cell of \(\tilde{K}_0(R) \), plus their lower-dimensional faces.

Lemma 4.1. All simplices \(\Delta \) created by the actual algorithm in the rth step are contained in \(\tilde{K}(\{h_1, \ldots, h_r\})^\vee \setminus \tilde{K}(\{h_1, \ldots, h_{r-1}\})^\vee \); thus, a fictitious algorithm that maintains \(\tilde{K}(R)^\vee \) will create all simplices created by the actual algorithm.

Proof. We prove the lemma for the algorithm that computes the k-level; the proof for the computation of the ≤k-level is analogous.

All cells created by the actual algorithm arise by splitting an active cell \(C \). Let \(C' \) and \(C'' \) denote the two cells into which \(C \) is split. One of these two cells, say \(C' \), has diameter at least \((\text{diam}(C) - 1)/2 \). We shall prove that \(C' \) is in \(\tilde{K}_0(\{h_1, \ldots, h_r\}) \).
Since C' and C'' share a facet, we get that both C' and C'' lie in $\tilde{K}(\{h_1, \ldots, h_r\})$, from which the lemma follows.

Let Δ be an active simplex of C, and let p be the point in the interior of Δ defining its level ℓ_Δ. Since $w(\Delta) \leq d \cdot \text{diam}(C)$ and Δ is active, we know that

$$\ell_\Delta - d \cdot \text{diam}(C) \leq k \leq \ell_\Delta + d \cdot \text{diam}(C).$$

Let q be an arbitrary point in C'. The level of q differs from the level of p by at most $d \cdot \text{diam}(C)$. Hence,

$$\text{level of } q - (d + 1) \text{diam}(C) \leq k \leq \text{level of } q + (d + 1) \text{diam}(C),$$

and since $\text{diam}(C') \geq (\text{diam}(C) - 1)/2$, this proves the lemma. \square

It is easy to check that the complex $\tilde{K}(R)$ satisfies the monotonicity condition (\ast) in Lemma 2.2, so we may apply Lemma 2.2(ii) for $c = 1$ to $\tilde{K}(R)$. By Lemma 4.1 we can now bound the expected running time of our algorithm as follows.

Corollary 4.2. Let f be a nondecreasing function such that $E[|\tilde{K}(R)^\bigvee|] \leq f(r)$ for any $r = 1, 2, \ldots, n$, where the expectation is over a random choice of an r-element set $R \subseteq H$. Then the expected running time of the algorithm is

$$O\left(\sum_{r=1}^{n} \frac{n}{r^2} f(r)\right).$$

An ε-net argument. We are going to estimate the function $f(r) = E[|\tilde{K}(R)^\bigvee|]$.

General results of Haussler and Welzl [HW87] imply that, for a suitable constant $c = c(d)$, a random r-element sample $R \subseteq H$ has the following property with probability at least $1 - 1/r^d$: any line segment s that does not intersect any hyperplane of R intersects at most $c^2 r \log r$ hyperplanes of H. (This is usually expressed by saying that R is an ε-net with respect to segments, with $\varepsilon = c \log r/r$ [HW87].) Let ε-NET(R) be a predicate expressing this property, that is, ε-NET(R) is true if and only if R has this property. We can write, using conditional expectations

$$E[|\tilde{K}(R)^\bigvee|] = E\left[|\tilde{K}(R)^\bigvee| \mid \varepsilon\text{-NET}(R)\right] \cdot \Pr[\varepsilon\text{-NET}(R)]
+ E\left[|\tilde{K}(R)^\bigvee| \mid \text{NOT } \varepsilon\text{-NET}(R)\right] \cdot \Pr[\text{NOT } \varepsilon\text{-NET}(R)].$$

Since $\tilde{K}(R)^\bigvee$ has never more than $O(r^d)$ simplices, this is at most

$$\left(1 - 1/r^d\right) \cdot E\left[|\tilde{K}(R)^\bigvee| \mid \varepsilon\text{-NET}(R)\right] + O(1).$$

Let us consider the case when ε-NET(R) is true. Let M be the maximum diameter of a cell in $\mathcal{A}(R)$; we thus have $M = O((n/r) \log r)$. Consider a cell C of $\tilde{K}(R)$. By definition of $\tilde{K}(R)$, C is adjacent to a cell C' that intersects the $\leq (k + 2(d + 1))M + d + 1$-level of $\mathcal{A}(H)$ (this concerns the algorithm for $(\leq k)$-level computation). Hence, C is completely contained in the $\leq (k + 2(d + 2))M + 2d + 1$-level of $\mathcal{A}(H)$ (the constants could be improved by a more careful argument). Now set $\delta = 2(d + 2)M + 2d + 1$, so all cells of $\tilde{K}(R)$ are contained in the $\leq (k + \delta)$-level of $\mathcal{A}(H)$. Similarly, in the case of computing the k-level, all cells of $\tilde{K}(R)$ are contained in the region between levels $k - \delta$ and $k + \delta$. We denote the region that contains the cells of $\tilde{K}(R)$ in either algorithm by $T = T(r)$. Thus the quantity $|\tilde{K}(R)^\bigvee|$ that we want to bound is at most proportional to the number of vertices of $\mathcal{A}(R)$ lying in the region T.
If \(R \) is a random \(r \)-element subset of \(H \), then for any fixed vertex \(v \) of \(A(H) \) the probability of it being a vertex of \(A(R) \) is at most \((r/n)^d \). If \(R \) is conditioned to satisfy \(\varepsilon \)-NET(\(R \)), this probability can increase at most by the factor of \((1 - r^{-d})^{-1} \).

Hence, the expected number of vertices of \(A(R) \) in \(T \) is at most \((1 - r^{-d})^{-1}(r/n)^dN_T \), where \(N_T \) stands for the number of vertices of \(A(H) \) in \(T \). From equation (1) we get
\[
f(r) = O(1 + N_T r^d/n^d).
\]

By Corollary 4.2, we can now bound the expected running time of the algorithm by
\[
O(n) + \frac{O(1)}{n^{d-1}} \sum_{r=1}^{n} r^{d-2}N_T.
\]

(This holds provided that \(f \) comes out as a nondecreasing function, which is the case in all our applications.)

Specific results. We can now bound the expected running time of our algorithm in various situations by substituting appropriate bounds on \(N_T \).

First we look at the computation of the \(\leq k \)-level in three-dimensional space. Here \(N_T \) is bounded by the number of vertices of the \(\leq (k + \delta) \)-level, so \(N_T = O(n(k + \delta)^2) \).

For the computation of the \(k \)-level, \(N_T \) is the total complexity of the levels \(k - \delta \) to \(k + \delta \). In the three-dimensional case we are mainly interested in sets of planes that are the image of a set of points in the plane under the transformation that maps the order-\(k \) Voronoi diagram of the points to the \(k \)-level of the planes. In this case all planes are tangent to the unit paraboloid and \(N_T = O(n(k + \delta)\delta) \). For the \(k \)-level of a set of lines in the plane, we can use the following result by Dey [Dey97]: for any arrangement of \(n \) lines in the plane and for any integer \(s < n - k \), the complexity of all \(j \) levels for \(k \leq j \leq k + s \) is \(O(n(k + s)^{1/3} s^{2/3}) \). In our situation \(s = \delta \), so we obtain \(N_T = O(n(k + \delta)^{1/3} \delta^{2/3}) \).

We summarize the results of these calculations in the following theorem.

Theorem 4.3.

(i) The \(\leq k \)-level in an arrangement of \(n \) planes in \(\mathbb{R}^3 \) can be computed in \(O(nk^2 + n \log^3 n) \) expected time.

(ii) The \(k \)th order Voronoi diagram for \(n \) points in the plane can be computed in \(O((n - k)k \log n + n \log^2 n) \) expected time by computing the \(k \)-level in the corresponding arrangement of \(n \) planes in \(\mathbb{R}^3 \).

(iii) The \(k \)-level in an arrangement of \(n \) lines in the plane can be computed in \(O(nk^{1/3} \log^{2/3} n + n \log^2 n) \) expected time.

Our algorithm also works in other situations, such as the computation of the \(\leq k \)-level of a set of lines, discs, or monotone curves in the plane. In these situations, however, there is an algorithm that obtains slightly better bounds. The details of this are described in the next section.

5. **Improvements and extensions.** The algorithm of the previous section is suboptimal when \(k \) is very small (polylogarithmic in \(n \)); in this case Mulmuley’s algorithm is better. We can illustrate this on the algorithm for computing the \(\leq k \)-level in the plane, when \(k \) is a constant. The analysis of our algorithm accounts for the maintenance of the portion of \(A(R) \) roughly within the \(\leq \delta \)-level, where \(\delta = O((n/r) \log r) \). According to this analysis we maintain a region of complexity \(O(r \log r) \). Mulmuley’s algorithm maintains the \(\leq \delta \)-level in the arrangement of the lines already inserted, which has only \(O(r) \) complexity.

One simple improvement is, of course, to run Mulmuley’s algorithm in parallel with ours and see which one finishes first. This eliminates the potential advantage of our algorithm—namely, that no peeling step is necessary—so it cannot be directly
applied to discs, say. We indicate another route to an improvement; currently, however, it only works for the planar case (which is not so interesting for lines, since an optimal algorithm has been known there). We first explain the approach for the construction of the \(\leq k \)-level in an arrangement of lines in the plane. We then show that the improved algorithm also works for discs and curves.

Lazy clean-up and refined activity test. To improve the running time of the algorithm we should maintain fewer cells. In other words, the cells we maintain should be closer to the \(\leq k \)-level. To achieve this we will insist that each cell in the current complex \(K_r \) intersects the \(\leq (k + 2n/r) \)-level (while the previous analysis used the fact that with high enough probability, each cell intersects the \(\leq (k + O((n/r) \log r)) \)-level).

There are two issues to be addressed. First, the new requirement is time dependent: a cell that was acceptable at some step \(r \) may have to be eliminated at some later step \(r' \), though it has not been split. Second, we have to refine the test of activity for a simplex: there can be simplices intersected by many more than \(n/r \) lines at step \(r \), so we cannot use just one interior point to estimate the level of all points in such a simplex accurately enough.

To deal with the first issue, we use the so-called lazy strategy [dBDS94]. That is, we do not worry about cells that are not split but should be deactivated because \(r \) has increased. Thus, when we insert a new line we only perform an activity test for the newly created cells. Of course, cells that should be eliminated cannot be kept around for too long. We discard these cells at periodic clean-up steps. In particular, we do a clean-up after steps 1, 2, 4, 8, and so on. Since we do only a logarithmic number of clean-ups, we can afford to do them in a brute-force manner: we traverse the entire current complex and eliminate all cells that do not contain a point of the \(\leq (k + n/r) \)-level, performing an activity test described below for each cell and discarding those which do not pass the test. In this way, we make sure that at any step \(r \) each cell intersects the \(\leq (k + 2n/r) \)-level.

Now we describe the activity test for a cell \(C \) at step \(r \). Again, we test each simplex \(\Delta \in C^V \) separately. We subdivide the simplex into smaller simplices, each intersected by at most \(n/r \) lines of \(H \setminus \mathcal{R} \), and we determine the level of an interior point for each of these small simplices. Now \(\Delta \) is active if and only if at least one of these points is at level less than or equal to \(k + n/r \). This test is again conservative: cells that contain a part of the \(\leq k \)-level are always active. Subdividing \(\Delta \) into smaller simplices plus determining their levels can be performed in \(O(w(\Delta)^2 r/n) \) expected time using a randomized algorithm of Chazelle and Friedman [CF90] (see also [Mat91]). At a regular insertion step, this refined activity test is performed only for the newly created cells. At the clean-up steps the test is performed for all the cells. This implies that a cell that is present at step \(r \) must have been tested (and found active) at some step \(r' \) with \(r/2 \leq r' \leq r \). Hence, a cell that is present at time \(r \) (that is, after the insertion of the \(r \)th line has been completed) contains a point of level at most \(k + 2n/r \). This finishes the description of the modifications to the algorithm.

More general ranges. The modified algorithm (and also the basic algorithm) can be applied to arrangements of ranges other than halfspaces. We only need to supply a suitable notion of a canonical triangulation (a subdivision of the arrangement into constant complexity cells) and implement the steps of the algorithm suitably. As an illustration, we mention two planar cases, namely discs and \(x \)-monotone Jordan curves with a bounded number of intersections for every pair of curves.

As a canonical triangulation, we use the vertical decomposition of the cells: we extend a vertical segment upward from every intersection point of two curves until it hits another curve and extend a vertical segment downward until it hits another
which will be of the same order as equation (3).

For the activity test we need one more ingredient: we must be able to decompose a trapezoid into smaller trapezoids, each intersected by at most \(n/r \) curves. An obvious modification of the Chazelle and Friedman algorithm [CF90] can compute such a subdivision in \(O(w(\Delta)^2 r/n) \) expected time. Now we have all the tools available to implement the algorithm described above (or the basic one of the previous section).

The analysis. To analyze the modified algorithm we again define an auxiliary, possibly larger complex \(\tilde{K}(R) \): a cell \(C \in \mathcal{A}(R) \) belongs to \(\tilde{K}(R) \) if it has a point of level \(\leq (k+2n/r) \) or is adjacent to a cell with such a point, where \(r = |R| \). The complex \(\tilde{K}(R) \) has the monotonicity property \((\ast)\) needed in Lemma 2.2. There is also an analog of Lemma 4.1, namely, that all cells created in the \(r \)th step of the algorithm are in \(\tilde{K}(\{h_1, \ldots, h_r\}) \setminus \tilde{K}(\{h_1, \ldots, h_{r-1}\}) \), and all cells present in the actually maintained collection in the \(r \)th step are in \(\tilde{K}(\{h_1, \ldots, h_r\}) \).

The time needed for the insertion steps (not counting the clean-up phases) is bounded by \(\sum_{\Delta} w(\Delta) \tilde{r}(\Delta)/n \), where we sum over all simplices created by the algorithm, and where \(\tilde{r}(\Delta) \) is the moment of creation of \(\Delta \). Using Lemma 2.2(ii) for \(c = 2 \) we get the bound of

\[
O\left(\sum_{r=1}^{n} \frac{n}{r^2} f(r) \right),
\]

where \(f(r) \) is a nondecreasing upper bound for \(E\left[\left|\tilde{K}(R)^\Delta\right|\right] \).

The clean-up phases can be accounted for as follows. The simplices that are discarded in a clean-up phase after inserting the \(r \)th line passed an activity test at some time \(r' \geq r/2 \), so the time for the activity test that discards them can be charged to that previous test. Every test gets charged at most once this way. The simplices that pass the activity test at the clean-up phase after step \(r \) belong to \(\tilde{K}(R)^\Delta \), \(R = \{h_1, \ldots, h_r\} \), and hence the time for these tests at the considered clean-up phase is at most \(\sum_{\Delta \in \tilde{K}(R)^\Delta} w(\Delta)^2 r/n \). Applying Lemma 2.2(i) with \(c = 2 \) and summing up over all clean-up phases, we get a contribution of \(\sum_{i=1}^{\lfloor \log_2 n \rfloor} (n/2^i) f(2^i) \), which will be of the same order as equation (3).

It remains to provide a good bound on the expected size of \(\tilde{K}(R)^\Delta \). This is at most proportional to the expected number of vertices of \(\tilde{K}(R) \). We could use an \(\varepsilon \)-net argument again, arguing that, with high probability, all such vertices are at level at most \(k + O((n/r) \log r) \) in the arrangement of \(H \). This, however, gives nothing better than the analysis of the basic algorithm. In the planar case, a refined argument can be given (although the resulting bound is probably still not tight). We start with the case of lines.

First, we pick a number \(k' \) in the range \([k + 2n/r, 2(k + 2n/r)]\) such that the \(k' \)-level in \(\mathcal{A}(H) \) has \(O(n) \) complexity (this is possible since the total complexity of all levels in this range is \(O(n(k + n/r)) \)). Then we divide the vertices of \(\tilde{K}(R) \) into two types: those within the \(\leq k' \)-level of \(H \) and those outside. The expected number of vertices of the first type is \(O((r/n)^2 nk') \). As for the vertices of the second type, they all belong to cells of \(\mathcal{A}(R) \) intersecting \(L \), the \(k' \)-level of \(\mathcal{A}(H) \), or the adjacent cells. The collection of such cells can naturally be called the 1-zone of \(L \). It follows from the probabilistic argument of Clarkson and Shor [CS89] that the complexity of
the 1-zone is of the same order as the complexity of the zone of \(L\), that is, of the cells intersecting \(L\), and it remains to bound the expected complexity of this zone. Let \(m\) denote the number of intersections of the lines of \(R\) with \(L\) (a contiguous segment is counted as one intersection). The number of intersections of the lines of \(H\) with \(L\) is \(O(n)\) (each line meeting \(L\) does so at a vertex), and hence the expectation of \(m\) is \(O(r)\). We may now use a standard trick to convert the zone of \(L\) to a single cell in an arrangement of \(O(m + r)\) (possibly unbounded) segments, namely, we remove from each line of \(R\) a small portion around its intersections with \(L\). By [GSS89], the complexity of a single cell in an arrangement of \(n\) segments is \(O(n\alpha(n))\), and so the expected zone complexity in our case is \(O(r\alpha(n))\). We may thus conclude that \(f(r) = O(r^2k/n + r\alpha(n))\), and the expected running time of the algorithm is \(O(nk + n\log n\alpha(n))\).

The same analysis can be applied for other ranges as long as we can bound the expected complexity of the zone of the \(k\)-level. For the case of discs or \(x\)-monotone Jordan curves, the zone complexity can be bounded using the same argument, since one has a good bound on the complexity of a single cell in an arrangement of the corresponding (curvilinear) segments: a single cell defined by \(n\) segments of curves with at most \(s\) intersections per pair has complexity \(O(\lambda_s+2(n))\) [GSS89]. We obtain the following result.

Theorem 5.1. The \(\leq k\)-level in an arrangement of \(n\) discs in the plane can be computed in expected \(O(nk + \lambda_4(n)\log n)\) time. The \(\leq k\)-level in an arrangement of \(n\) \(x\)-monotone Jordan curves with each pair having most \(s\) intersections can be computed in expected \(O(k^2\lambda_s(n/k) + \lambda_{s+2}(n)\log n)\) time.

6. Concluding remarks

We presented randomized incremental algorithms for computing \(\leq k\)-levels or \(k\)-levels in arrangements. The main difference from previous algorithms is that we use estimates of the level in the final arrangement to decide which part of the current arrangement to keep, whereas previous algorithms used the level in the current arrangement. Consequently, our algorithm maintains less information (unless \(k\) is very small) and therefore it is faster. For most values of \(k\) we have shown that our algorithm is optimal. We think that it is also optimal for small \(k\), but we have not been able to prove this.

This is one of the questions we leave open: is it possible to tighten the analysis of the basic algorithm and show that it is optimal for any \(k\) (both for computing the \(\leq k\)-level and for computing the \(k\)th order Voronoi diagram in the plane)? If one cannot do this for the basic algorithm, then maybe it is possible for the modified algorithm. Here one has a purely combinatorial question: what is the expected complexity of the zone of \(L_{k'}\) in the arrangement of a random sample of size \(r\), where \(L_{k'}\) is the \(k\)-level in the full arrangement? (Here \(k'\) can be chosen suitably so that the \(k\)-level has no more than the average complexity.) It seems quite likely that this expectation should be \(O(r)\) in the plane and \(O(r^2k'/n)\) in 3-space.

REFERENCES

CONSTRUCTING LEVELS IN ARRANGEMENTS

