Learning networks for complex interconnections

Mocanu, D.C.; Exarchakos, G.; Liotta, A.

Published: 13/06/2016

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Learning networks for complex interconnections

Decebal Constantin Mocanu¹, Georgios Exarchakos¹, Antonio Liotta¹
¹ Eindhoven University of Technology, Electrical Engineering, Electro-Optical Communications Group
Contact: {d.c.mocanu; g.exarchakos; a.liotta}@tue.nl

1. Introduction
Nowadays, science is mainly done using the traditional reductionism paradigm [1]. It attempts to explain the behaviour of any system by zooming over and understanding at different levels all its components. These yield to have very specialized persons in any subfield of science, but to have fewer people to study the systems as a whole. With this approach, somewhere on the way, the whole picture is lost. This was hinted millennials ago by Aristotle in Metaphysics: “The whole is more than the sum of its parts”. Mathematically, Aristotle’s statement cannot be true, but it may be that we do not have knowledge on all systems’ elements. To overcome these limitations the modern complex systems paradigm tries to study the systems and the interactions between them as a whole, making use of network science (a multi-disciplinary field across mathematics, physics, sociology, and computer science).

2. Real-world open questions
Following this vision, we tried to solve difficult open questions in areas such as communication networks and computer vision using artificial intelligence or network science, e.g.: simultaneously classification and prediction of human activities [2]; redundancy reduction in wireless sensors networks [3]; estimating the quality perceived by users in image/video network services with no prior knowledge [4].

3. A theoretical breakthrough: the synergy between network science and artificial intelligence
Even when successful in real-world problems, still, all of the above solutions may be affected by scalability issues at some level. Thus, we pioneered the theoretical study of the synergy between network science and artificial intelligence [1] (left image) to enlarge the scalability bounds of both fields. Firstly, we conceived a fully decentralized and stochastic centrality metric inspired by swarm intelligence [5]. We showed how, for instance, a Facebook application running in a decentralized way on each user device would be able to compute the importance of all 1 billion users in less than 9 seconds. Secondly, we showed how neural networks inspired by network science may handle higher dimensional data (few orders of magnitude more) than their counterparts at no cost in performance or speed [5].

4. Conclusions
In the big picture, all of these fruitful achievements represent just a drop in the ocean. One limitation of them is the static setting. As next steps, we will tackle this limit by considering dynamic settings.

References