Spectroscopy study of partially premixed combustion in a light-duty optical engine
Izadi Najafabadi, M.; Egelmeers, L.B.A.; Dam, N.J.; Somers, L.M.T.

Published: 23/06/2016

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Spectroscopy Study of Partially Premixed Combustion in a Light-Duty optical Engine

M. Izdi Najafabadi (M.Izdi.Najafabadi@tue.nl)
L.B.A. Egelmeers (L.b.a.egelmeers@student.tue.nl)
Nico Dam (N.J.Dam@tue.nl)
Bart Somers (L.M.T.Somers@tue.nl)

Background

The partially premixed combustion (PPC) concept has shown high efficiency and has proven its potential to achieve simultaneous reduction of soot and NOx emissions. The low NOx emissions are resulting from the low combustion temperature. The low soot emissions is a result of increased premixing with respect to conventional CI engines. However, the in-cylinder phenomena are still needed to be investigated for further practical implementations. Spectroscopy is an important research tool for the identification of chemical species during the combustion phenomena.

Approach

The origin of the emitted photons are analyzed by means of high-speed spectroscopic measurements in a light-duty optical engine (Figure 1).

Results

Effect of SOI (Stratification):

Conclusions

- Broadband chemiluminescence, a collective name for CO2*, HCO* and CH2O* chemiluminescence, makes up the majority of the spectrum for HCCI combustion. For decreasing ID, OH*, CH* and C2* chemiluminescence increase.

- Analyzing the in-cylinder combustion by means of optical filters should be done with care, since a significant broadband chemiluminescence signal is transmitted as well for both PPC and HCCI regimes.

- Broadband chemiluminescence can also be used as a measure for the heat release rate. This implies that, although OH* chemiluminescence is absent in HCCI combustion, OH* broadband filters can be used to map the local rate of heat release in the combustion chamber. However, further fundamental investigation is required for validation when different combustion parameters are used.