Design of a bilateral position-force, master-slave teleoperation system with non similar robots

Citation for published version (APA):

Document status and date:
Published: 01/01/2008

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
* A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
* The final author version and the galley proof are versions of the publication after peer review.
* The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

* Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Design of a bilateral position/force master slave teleoperation system with non similar robots

P. van Zutven\textcopyright, A. Rodriguez-Angeles\textcopyright, C. A. Cruz-Villar\textcopyright
\textcopyrightEindhoven University of Technology
Department Mechanical Engineering
Dynamics and Control Technology Group,
\textcopyrightCenter for Research and Advanced Studies (CINVESTAV-IPN)
Electrical Engineering Department, Mechatronics Group
E-mail:p.w.m.v.zutven@student.tue.nl; aangeles@cinvestav.mx; cacruz@cinvestav.mx

Desired topic: synchronization under control

In this research a bilateral master slave teleoperation system with two non similar robots is designed and investigated through simulations and experiments, see Figure 1. Both robots are fully characterized kinematically and dynamically. Dynamical identification is done using frequency response methods. Transfer functions are fitted through the frequency response data to obtain the system transfer function matrices. These matrices are used to design a bilateral master slave teleoperation system, where the slave robot imitates the position and orientation of the master robot whereas the master is imitating the reaction force applied to the slave when it is in contact with an environment. Controllers for both robots are developed to ensure high performance on the total system, that yields transparency of the teleoperation scheme.

Figure 1: Schematic diagram of the master - robot teleoperation system

The master controller consists of two parts, namely a PI force controller that controls the force feedback and an internal model controller that compensates for the master robot dynamics. The master robot dynamics should be compensated so that an operator, handling the master robot, actually does not feel this robot. The slave controller also uses a PI force controller to ensure that the force, which is applied by the operator to the master robot, is also applied to the environment by the slave robot. The second part of the slave controller is a position controller tuned with the slave robot transfer functions so that high performance can be reached.

At this point the robots are not provided with force sensors, thus virtual environments are considered to numerically calculate the reaction forces when one of the robots is in contact with these environments. The first type of virtual environment uses an impedance model which represents the environment as a mass-spring-damper system, especially useful for modeling soft environments that can be penetrated. The second type is based on holonomic constraint model, which is useful for modeling rigid environments whereas penetration is impossible. With both models the robots can move tangent to the environment while applying force to it. For simulation purposes an operator is designed as a PID position and force controller so that it can generate torques on the master robot to move it along smooth desired trajectories that are designed using Bezier polynomials.

Experimental results shows good convergence on the position and force errors between the master and slave robots, that concludes high transparency of the overall teleoperation system. This property is particularly of interest for haptic applications, which is considered as further work. Furthermore convergence errors guaranties synchronization between the master and slave robot in both position and applies force.